1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Macronix International Co., Ltd.
*
* Author:
* Mason Yang <masonccyang@mxic.com.tw>
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand-ecc-sw-hamming.h>
#include <linux/mtd/rawnand.h>
#include <linux/platform_device.h>
#include "internals.h"
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
#define MXIC_NFC_MAX_CLK_HZ 50000000
#define IRQ_TIMEOUT 1000
struct mxic_nand_ctlr {
struct clk *ps_clk;
struct clk *send_clk;
struct clk *send_dly_clk;
struct completion complete;
void __iomem *regs;
struct nand_controller controller;
struct device *dev;
struct nand_chip chip;
};
static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
{
int ret;
ret = clk_prepare_enable(nfc->ps_clk);
if (ret)
return ret;
ret = clk_prepare_enable(nfc->send_clk);
if (ret)
goto err_ps_clk;
ret = clk_prepare_enable(nfc->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(nfc->send_clk);
err_ps_clk:
clk_disable_unprepare(nfc->ps_clk);
return ret;
}
static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
{
clk_disable_unprepare(nfc->send_clk);
clk_disable_unprepare(nfc->send_dly_clk);
clk_disable_unprepare(nfc->ps_clk);
}
static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
nfc->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
nfc->regs + IDLY_CODE(1));
}
static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
{
int ret;
ret = clk_set_rate(nfc->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(nfc->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_nfc_set_input_delay(nfc, 0xf);
/*
* Phase degree = 360 * freq * output-delay
* where output-delay is a constant value 1 ns in FPGA.
*
* Get Phase degree = 360 * freq * 1 ns
* = 360 * freq * 1 sec / 1000000000
* = 9 * freq / 25000000
*/
ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
if (ret)
return ret;
return 0;
}
static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
{
int ret;
if (freq > MXIC_NFC_MAX_CLK_HZ)
freq = MXIC_NFC_MAX_CLK_HZ;
mxic_nfc_clk_disable(nfc);
ret = mxic_nfc_clk_setup(nfc, freq);
if (ret)
return ret;
ret = mxic_nfc_clk_enable(nfc);
if (ret)
return ret;
return 0;
}
static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
{
struct mxic_nand_ctlr *nfc = dev_id;
u32 sts;
sts = readl(nfc->regs + INT_STS);
if (sts & INT_RDY_PIN)
complete(&nfc->complete);
else
return IRQ_NONE;
return IRQ_HANDLED;
}
static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
{
writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(0, nfc->regs + LRD_CFG);
writel(0, nfc->regs + LRD_CTRL);
writel(0x0, nfc->regs + HC_EN);
}
static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
{
writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
nfc->regs + HC_CFG);
writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
{
writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static int mxic_nfc_wait_ready(struct nand_chip *chip)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
int ret;
ret = wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(IRQ_TIMEOUT));
if (!ret) {
dev_err(nfc->dev, "nand device timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
writel(data, nfc->regs + TXD(nbytes % 4));
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
data = readl(nfc->regs + RXD);
if (rxbuf) {
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
}
if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
dev_warn(nfc->dev, "RX FIFO not empty\n");
pos += nbytes;
}
return 0;
}
static int mxic_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op, bool check_only)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
const struct nand_op_instr *instr = NULL;
int ret = 0;
unsigned int op_id;
if (check_only)
return 0;
mxic_nfc_cs_enable(nfc);
init_completion(&nfc->complete);
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writel(0, nfc->regs + HC_EN);
writel(HC_EN_BIT, nfc->regs + HC_EN);
writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
&instr->ctx.cmd.opcode,
NULL, 1);
break;
case NAND_OP_ADDR_INSTR:
writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_ADDR_BYTES(instr->ctx.addr.naddrs),
nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
instr->ctx.addr.addrs, NULL,
instr->ctx.addr.naddrs);
break;
case NAND_OP_DATA_IN_INSTR:
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_READ, nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc, NULL,
instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
writel(instr->ctx.data.len,
nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
instr->ctx.data.buf.out, NULL,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
ret = mxic_nfc_wait_ready(chip);
break;
}
}
mxic_nfc_cs_disable(nfc);
return ret;
}
static int mxic_nfc_setup_interface(struct nand_chip *chip, int chipnr,
const struct nand_interface_config *conf)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
const struct nand_sdr_timings *sdr;
unsigned long freq;
int ret;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
ret = mxic_nfc_set_freq(nfc, freq);
if (ret)
dev_err(nfc->dev, "set freq:%ld failed\n", freq);
if (sdr->tRC_min < 30000)
writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
return 0;
}
static const struct nand_controller_ops mxic_nand_controller_ops = {
.exec_op = mxic_nfc_exec_op,
.setup_interface = mxic_nfc_setup_interface,
};
static int mxic_nfc_probe(struct platform_device *pdev)
{
struct device_node *nand_np, *np = pdev->dev.of_node;
struct mtd_info *mtd;
struct mxic_nand_ctlr *nfc;
struct nand_chip *nand_chip;
int err;
int irq;
nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
if (IS_ERR(nfc->ps_clk))
return PTR_ERR(nfc->ps_clk);
nfc->send_clk = devm_clk_get(&pdev->dev, "send");
if (IS_ERR(nfc->send_clk))
return PTR_ERR(nfc->send_clk);
nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
if (IS_ERR(nfc->send_dly_clk))
return PTR_ERR(nfc->send_dly_clk);
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->regs))
return PTR_ERR(nfc->regs);
nand_chip = &nfc->chip;
mtd = nand_to_mtd(nand_chip);
mtd->dev.parent = &pdev->dev;
for_each_child_of_node(np, nand_np)
nand_set_flash_node(nand_chip, nand_np);
nand_chip->priv = nfc;
nfc->dev = &pdev->dev;
nfc->controller.ops = &mxic_nand_controller_ops;
nand_controller_init(&nfc->controller);
nand_chip->controller = &nfc->controller;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
mxic_nfc_hw_init(nfc);
err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
0, "mxic-nfc", nfc);
if (err)
goto fail;
err = nand_scan(nand_chip, 1);
if (err)
goto fail;
err = mtd_device_register(mtd, NULL, 0);
if (err)
goto fail;
platform_set_drvdata(pdev, nfc);
return 0;
fail:
mxic_nfc_clk_disable(nfc);
return err;
}
static int mxic_nfc_remove(struct platform_device *pdev)
{
struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
struct nand_chip *chip = &nfc->chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
mxic_nfc_clk_disable(nfc);
return 0;
}
static const struct of_device_id mxic_nfc_of_ids[] = {
{ .compatible = "mxic,multi-itfc-v009-nand-controller", },
{},
};
MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
static struct platform_driver mxic_nfc_driver = {
.probe = mxic_nfc_probe,
.remove = mxic_nfc_remove,
.driver = {
.name = "mxic-nfc",
.of_match_table = mxic_nfc_of_ids,
},
};
module_platform_driver(mxic_nfc_driver);
MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
MODULE_DESCRIPTION("Macronix raw NAND controller driver");
MODULE_LICENSE("GPL v2");
|