1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
|
// SPDX-License-Identifier: GPL-2.0
/*
* ARM PL35X NAND flash controller driver
*
* Copyright (C) 2017 Xilinx, Inc
* Author:
* Miquel Raynal <miquel.raynal@bootlin.com>
* Original work (rewritten):
* Punnaiah Choudary Kalluri <punnaia@xilinx.com>
* Naga Sureshkumar Relli <nagasure@xilinx.com>
*/
#include <linux/amba/bus.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/clk.h>
#define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"
/* SMC controller status register (RO) */
#define PL35X_SMC_MEMC_STATUS 0x0
#define PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6)
/* SMC clear config register (WO) */
#define PL35X_SMC_MEMC_CFG_CLR 0xC
#define PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1 BIT(1)
#define PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 BIT(4)
#define PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 BIT(6)
/* SMC direct command register (WO) */
#define PL35X_SMC_DIRECT_CMD 0x10
#define PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
#define PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
/* SMC set cycles register (WO) */
#define PL35X_SMC_CYCLES 0x14
#define PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
#define PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
#define PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
#define PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
#define PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
#define PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
#define PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
/* SMC set opmode register (WO) */
#define PL35X_SMC_OPMODE 0x18
#define PL35X_SMC_OPMODE_BW_8 0
#define PL35X_SMC_OPMODE_BW_16 1
/* SMC ECC status register (RO) */
#define PL35X_SMC_ECC_STATUS 0x400
#define PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
/* SMC ECC configuration register */
#define PL35X_SMC_ECC_CFG 0x404
#define PL35X_SMC_ECC_CFG_MODE_MASK 0xC
#define PL35X_SMC_ECC_CFG_MODE_BYPASS 0
#define PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
#define PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
#define PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3
/* SMC ECC command 1 register */
#define PL35X_SMC_ECC_CMD1 0x408
#define PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
#define PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
#define PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
#define PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
/* SMC ECC command 2 register */
#define PL35X_SMC_ECC_CMD2 0x40C
#define PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
#define PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
/* SMC ECC value registers (RO) */
#define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
#define PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
#define PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
#define PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))
/* NAND AXI interface */
#define PL35X_SMC_CMD_PHASE 0
#define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
#define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
#define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
#define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
#define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
#define PL35X_SMC_DATA_PHASE BIT(19)
#define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
#define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)
#define PL35X_NAND_MAX_CS 1
#define PL35X_NAND_LAST_XFER_SZ 4
#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))
#define PL35X_NAND_ECC_BITS_MASK 0xFFF
#define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
#define PL35X_NAND_ECC_BIT_OFF_MASK 0x7
struct pl35x_nand_timings {
unsigned int t_rc:4;
unsigned int t_wc:4;
unsigned int t_rea:3;
unsigned int t_wp:3;
unsigned int t_clr:3;
unsigned int t_ar:3;
unsigned int t_rr:4;
unsigned int rsvd:8;
};
struct pl35x_nand {
struct list_head node;
struct nand_chip chip;
unsigned int cs;
unsigned int addr_cycles;
u32 ecc_cfg;
u32 timings;
};
/**
* struct pl35x_nandc - NAND flash controller driver structure
* @dev: Kernel device
* @conf_regs: SMC configuration registers for command phase
* @io_regs: NAND data registers for data phase
* @controller: Core NAND controller structure
* @chip: NAND chip information structure
* @selected_chip: NAND chip currently selected by the controller
* @assigned_cs: List of assigned CS
* @ecc_buf: Temporary buffer to extract ECC bytes
*/
struct pl35x_nandc {
struct device *dev;
void __iomem *conf_regs;
void __iomem *io_regs;
struct nand_controller controller;
struct list_head chips;
struct nand_chip *selected_chip;
unsigned long assigned_cs;
u8 *ecc_buf;
};
static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
{
return container_of(ctrl, struct pl35x_nandc, controller);
}
static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
{
return container_of(chip, struct pl35x_nand, chip);
}
static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * chip->ecc.bytes);
oobregion->length = chip->ecc.bytes;
return 0;
}
static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * chip->ecc.bytes) + 8;
oobregion->length = 8;
return 0;
}
static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
.ecc = pl35x_ecc_ooblayout16_ecc,
.free = pl35x_ecc_ooblayout16_free,
};
/* Generic flash bbt decriptors */
static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = mirror_pattern
};
static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
{
writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
PL35X_SMC_DIRECT_CMD_UPD_REGS,
nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
}
static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
{
if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
return -EINVAL;
writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
pl35x_smc_update_regs(nfc);
return 0;
}
static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
{
writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
}
static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
{
u32 reg;
int ret;
ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
10, 1000000);
if (ret)
dev_err(nfc->dev,
"Timeout polling on NAND controller interrupt (0x%x)\n",
reg);
pl35x_smc_clear_irq(nfc);
return ret;
}
static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
{
u32 reg;
int ret;
ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
!(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
10, 1000000);
if (ret)
dev_err(nfc->dev,
"Timeout polling on ECC controller interrupt\n");
return ret;
}
static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
struct nand_chip *chip,
unsigned int mode)
{
struct pl35x_nand *plnand;
u32 ecc_cfg;
ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
ecc_cfg |= mode;
writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
if (chip) {
plnand = to_pl35x_nand(chip);
plnand->ecc_cfg = ecc_cfg;
}
if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
return pl35x_smc_wait_for_ecc_done(nfc);
return 0;
}
static void pl35x_smc_force_byte_access(struct nand_chip *chip,
bool force_8bit)
{
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
int ret;
if (!(chip->options & NAND_BUSWIDTH_16))
return;
if (force_8bit)
ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
else
ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);
if (ret)
dev_err(nfc->dev, "Error in Buswidth\n");
}
static void pl35x_nand_select_target(struct nand_chip *chip,
unsigned int die_nr)
{
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
struct pl35x_nand *plnand = to_pl35x_nand(chip);
if (chip == nfc->selected_chip)
return;
/* Setup the timings */
writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
pl35x_smc_update_regs(nfc);
/* Configure the ECC engine */
writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
nfc->selected_chip = chip;
}
static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
unsigned int len, bool force_8bit,
unsigned int flags, unsigned int last_flags)
{
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
unsigned int buf_end = len / 4;
unsigned int in_start = round_down(len, 4);
unsigned int data_phase_addr;
u32 *buf32 = (u32 *)in;
u8 *buf8 = (u8 *)in;
int i;
if (force_8bit)
pl35x_smc_force_byte_access(chip, true);
for (i = 0; i < buf_end; i++) {
data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
if (i + 1 == buf_end)
data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
buf32[i] = readl(nfc->io_regs + data_phase_addr);
}
/* No working extra flags on unaligned data accesses */
for (i = in_start; i < len; i++)
buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);
if (force_8bit)
pl35x_smc_force_byte_access(chip, false);
}
static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
int len, bool force_8bit,
unsigned int flags,
unsigned int last_flags)
{
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
unsigned int buf_end = len / 4;
unsigned int in_start = round_down(len, 4);
const u32 *buf32 = (const u32 *)out;
const u8 *buf8 = (const u8 *)out;
unsigned int data_phase_addr;
int i;
if (force_8bit)
pl35x_smc_force_byte_access(chip, true);
for (i = 0; i < buf_end; i++) {
data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
if (i + 1 == buf_end)
data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
writel(buf32[i], nfc->io_regs + data_phase_addr);
}
/* No working extra flags on unaligned data accesses */
for (i = in_start; i < len; i++)
writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);
if (force_8bit)
pl35x_smc_force_byte_access(chip, false);
}
static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
unsigned char *read_ecc,
unsigned char *calc_ecc)
{
unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
unsigned short calc_ecc_lower, calc_ecc_upper;
unsigned short byte_addr, bit_addr;
read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
PL35X_NAND_ECC_BITS_MASK;
read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
PL35X_NAND_ECC_BITS_MASK;
calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
PL35X_NAND_ECC_BITS_MASK;
calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
PL35X_NAND_ECC_BITS_MASK;
ecc_odd = read_ecc_lower ^ calc_ecc_lower;
ecc_even = read_ecc_upper ^ calc_ecc_upper;
/* No error */
if (likely(!ecc_odd && !ecc_even))
return 0;
/* One error in the main data; to be corrected */
if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
/* Bits [11:3] of error code give the byte offset */
byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
/* Bits [2:0] of error code give the bit offset */
bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
/* Toggle the faulty bit */
buf[byte_addr] ^= (BIT(bit_addr));
return 1;
}
/* One error in the ECC data; no action needed */
if (hweight32(ecc_odd | ecc_even) == 1)
return 1;
return -EBADMSG;
}
static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
u8 *ecc_array)
{
u32 ecc_value = ~ecc_reg;
unsigned int ecc_byte;
for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
}
static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
struct nand_chip *chip, u8 *read_ecc)
{
u32 ecc_value;
int chunk;
for (chunk = 0; chunk < chip->ecc.steps;
chunk++, read_ecc += chip->ecc.bytes) {
ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
return -EINVAL;
pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
}
return 0;
}
static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
struct nand_chip *chip, u8 *data,
u8 *read_ecc)
{
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int max_bitflips = 0, chunk;
u8 calc_ecc[3];
u32 ecc_value;
int stats;
for (chunk = 0; chunk < chip->ecc.steps;
chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
/* Read ECC value for each chunk */
ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
return -EINVAL;
if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
mtd->ecc_stats.failed++;
continue;
}
pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
if (stats < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stats;
max_bitflips = max_t(unsigned int, max_bitflips, stats);
}
}
return max_bitflips;
}
static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
struct pl35x_nand *plnand = to_pl35x_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
unsigned int nrows = plnand->addr_cycles;
u32 addr1 = 0, addr2 = 0, row;
u32 cmd_addr;
int i, ret;
u8 status;
ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
if (ret)
return ret;
cmd_addr = PL35X_SMC_CMD_PHASE |
PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);
for (i = 0, row = first_row; row < nrows; i++, row++) {
u8 addr = page >> ((i * 8) & 0xFF);
if (row < 4)
addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
else
addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
}
/* Send the command and address cycles */
writel(addr1, nfc->io_regs + cmd_addr);
if (plnand->addr_cycles > 4)
writel(addr2, nfc->io_regs + cmd_addr);
/* Write the data with the engine enabled */
pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
0, PL35X_SMC_DATA_PHASE_ECC_LAST);
ret = pl35x_smc_wait_for_ecc_done(nfc);
if (ret)
goto disable_ecc_engine;
/* Copy the HW calculated ECC bytes in the OOB buffer */
ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
if (ret)
goto disable_ecc_engine;
if (!oob_required)
memset(chip->oob_poi, 0xFF, mtd->oobsize);
ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
0, chip->ecc.total);
if (ret)
goto disable_ecc_engine;
/* Write the spare area with ECC bytes */
pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
PL35X_SMC_CMD_PHASE_CMD1_VALID |
PL35X_SMC_DATA_PHASE_CLEAR_CS);
ret = pl35x_smc_wait_for_irq(nfc);
if (ret)
goto disable_ecc_engine;
/* Check write status on the chip side */
ret = nand_status_op(chip, &status);
if (ret)
goto disable_ecc_engine;
if (status & NAND_STATUS_FAIL)
ret = -EIO;
disable_ecc_engine:
pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
return ret;
}
/*
* This functions reads data and checks the data integrity by comparing hardware
* generated ECC values and read ECC values from spare area.
*
* There is a limitation with SMC controller: ECC_LAST must be set on the
* last data access to tell the ECC engine not to expect any further data.
* In practice, this implies to shrink the last data transfert by eg. 4 bytes,
* and doing a last 4-byte transfer with the additional bit set. The last block
* should be aligned with the end of an ECC block. Because of this limitation,
* it is not possible to use the core routines.
*/
static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(nand_get_interface_config(chip));
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
struct pl35x_nand *plnand = to_pl35x_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
unsigned int nrows = plnand->addr_cycles;
unsigned int addr1 = 0, addr2 = 0, row;
u32 cmd_addr;
int i, ret;
ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
if (ret)
return ret;
cmd_addr = PL35X_SMC_CMD_PHASE |
PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
PL35X_SMC_CMD_PHASE_CMD1_VALID;
for (i = 0, row = first_row; row < nrows; i++, row++) {
u8 addr = page >> ((i * 8) & 0xFF);
if (row < 4)
addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
else
addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
}
/* Send the command and address cycles */
writel(addr1, nfc->io_regs + cmd_addr);
if (plnand->addr_cycles > 4)
writel(addr2, nfc->io_regs + cmd_addr);
/* Wait the data to be available in the NAND cache */
ndelay(PSEC_TO_NSEC(sdr->tRR_min));
ret = pl35x_smc_wait_for_irq(nfc);
if (ret)
goto disable_ecc_engine;
/* Retrieve the raw data with the engine enabled */
pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
0, PL35X_SMC_DATA_PHASE_ECC_LAST);
ret = pl35x_smc_wait_for_ecc_done(nfc);
if (ret)
goto disable_ecc_engine;
/* Retrieve the stored ECC bytes */
pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
goto disable_ecc_engine;
pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
/* Correct the data and report failures */
return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);
disable_ecc_engine:
pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
return ret;
}
static int pl35x_nand_exec_op(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
const struct nand_op_instr *instr, *data_instr = NULL;
unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
unsigned int op_id, len, offset, rdy_del_ns;
int last_instr_type = -1;
bool cmd1_valid = false;
const u8 *addrs;
int i, ret;
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
instr = &subop->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
if (!cmds) {
cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
} else {
cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
cmd1_valid = true;
}
cmds++;
break;
case NAND_OP_ADDR_INSTR:
offset = nand_subop_get_addr_start_off(subop, op_id);
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);
for (i = offset; i < naddrs; i++) {
if (i < 4)
addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
else
addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
}
break;
case NAND_OP_DATA_IN_INSTR:
case NAND_OP_DATA_OUT_INSTR:
data_instr = instr;
len = nand_subop_get_data_len(subop, op_id);
break;
case NAND_OP_WAITRDY_INSTR:
rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
rdy_del_ns = instr->delay_ns;
break;
}
last_instr_type = instr->type;
}
/* Command phase */
cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
(cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
writel(addr1, nfc->io_regs + cmd_addr);
if (naddrs > 4)
writel(addr2, nfc->io_regs + cmd_addr);
/* Data phase */
if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
if (cmds == 2)
last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;
pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
len, data_instr->ctx.data.force_8bit,
0, last_flags);
}
if (rdy_tim_ms) {
ndelay(rdy_del_ns);
ret = pl35x_smc_wait_for_irq(nfc);
if (ret)
return ret;
}
if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
len, data_instr->ctx.data.force_8bit,
0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
return 0;
}
static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
);
static int pl35x_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
if (!check_only)
pl35x_nand_select_target(chip, op->cs);
return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
op, check_only);
}
static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
const struct nand_interface_config *conf)
{
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
struct pl35x_nand *plnand = to_pl35x_nand(chip);
struct pl35x_nand_timings tmgs = {};
const struct nand_sdr_timings *sdr;
unsigned int period_ns, val;
struct clk *mclk;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
if (IS_ERR(mclk)) {
dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
return PTR_ERR(mclk);
}
/*
* SDR timings are given in pico-seconds while NFC timings must be
* expressed in NAND controller clock cycles. We use the TO_CYCLE()
* macro to convert from one to the other.
*/
period_ns = NSEC_PER_SEC / clk_get_rate(mclk);
/*
* PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
* written anywhere in the datasheet but is an empirical observation.
*/
val = TO_CYCLES(sdr->tRC_min, period_ns);
if (sdr->tRC_min <= 20000)
val++;
tmgs.t_rc = val;
if (tmgs.t_rc != val || tmgs.t_rc < 2)
return -EINVAL;
val = TO_CYCLES(sdr->tWC_min, period_ns);
tmgs.t_wc = val;
if (tmgs.t_wc != val || tmgs.t_wc < 2)
return -EINVAL;
/*
* For all SDR modes, PL35X SMC needs tREA_max being 1,
* this is also an empirical result.
*/
tmgs.t_rea = 1;
val = TO_CYCLES(sdr->tWP_min, period_ns);
tmgs.t_wp = val;
if (tmgs.t_wp != val || tmgs.t_wp < 1)
return -EINVAL;
val = TO_CYCLES(sdr->tCLR_min, period_ns);
tmgs.t_clr = val;
if (tmgs.t_clr != val)
return -EINVAL;
val = TO_CYCLES(sdr->tAR_min, period_ns);
tmgs.t_ar = val;
if (tmgs.t_ar != val)
return -EINVAL;
val = TO_CYCLES(sdr->tRR_min, period_ns);
tmgs.t_rr = val;
if (tmgs.t_rr != val)
return -EINVAL;
if (cs == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);
return 0;
}
static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
struct nand_chip *chip,
unsigned int pg_sz)
{
struct pl35x_nand *plnand = to_pl35x_nand(chip);
u32 sz;
switch (pg_sz) {
case SZ_512:
sz = 1;
break;
case SZ_1K:
sz = 2;
break;
case SZ_2K:
sz = 3;
break;
default:
sz = 0;
break;
}
plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
plnand->ecc_cfg |= sz;
writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
}
static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret = 0;
if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
dev_err(nfc->dev,
"The hardware ECC engine is limited to pages up to 2kiB\n");
return -EOPNOTSUPP;
}
chip->ecc.strength = 1;
chip->ecc.bytes = 3;
chip->ecc.size = SZ_512;
chip->ecc.steps = mtd->writesize / chip->ecc.size;
chip->ecc.read_page = pl35x_nand_read_page_hwecc;
chip->ecc.write_page = pl35x_nand_write_page_hwecc;
chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);
nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
GFP_KERNEL);
if (!nfc->ecc_buf)
return -ENOMEM;
switch (mtd->oobsize) {
case 16:
/* Legacy Xilinx layout */
mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
break;
case 64:
mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
break;
default:
dev_err(nfc->dev, "Unsupported OOB size\n");
return -EOPNOTSUPP;
}
return ret;
}
static int pl35x_nand_attach_chip(struct nand_chip *chip)
{
const struct nand_ecc_props *requirements =
nanddev_get_ecc_requirements(&chip->base);
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
struct pl35x_nand *plnand = to_pl35x_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
(!chip->ecc.size || !chip->ecc.strength)) {
if (requirements->step_size && requirements->strength) {
chip->ecc.size = requirements->step_size;
chip->ecc.strength = requirements->strength;
} else {
dev_info(nfc->dev,
"No minimum ECC strength, using 1b/512B\n");
chip->ecc.size = 512;
chip->ecc.strength = 1;
}
}
if (mtd->writesize <= SZ_512)
plnand->addr_cycles = 1;
else
plnand->addr_cycles = 2;
if (chip->options & NAND_ROW_ADDR_3)
plnand->addr_cycles += 3;
else
plnand->addr_cycles += 2;
switch (chip->ecc.engine_type) {
case NAND_ECC_ENGINE_TYPE_ON_DIE:
/* Keep these legacy BBT descriptors for ON_DIE situations */
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
fallthrough;
case NAND_ECC_ENGINE_TYPE_NONE:
case NAND_ECC_ENGINE_TYPE_SOFT:
break;
case NAND_ECC_ENGINE_TYPE_ON_HOST:
ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
if (ret)
return ret;
break;
default:
dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
chip->ecc.engine_type);
return -EINVAL;
}
return 0;
}
static const struct nand_controller_ops pl35x_nandc_ops = {
.attach_chip = pl35x_nand_attach_chip,
.exec_op = pl35x_nfc_exec_op,
.setup_interface = pl35x_nfc_setup_interface,
};
static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
{
int ret;
/* Disable interrupts and clear their status */
writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
/* Set default bus width to 8-bit */
ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
if (ret)
return ret;
/* Ensure the ECC controller is bypassed by default */
ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
if (ret)
return ret;
/*
* Configure the commands that the ECC block uses to detect the
* operations it should start/end.
*/
writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
nfc->conf_regs + PL35X_SMC_ECC_CMD1);
writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
nfc->conf_regs + PL35X_SMC_ECC_CMD2);
return 0;
}
static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
struct device_node *np)
{
struct pl35x_nand *plnand;
struct nand_chip *chip;
struct mtd_info *mtd;
int cs, ret;
plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
if (!plnand)
return -ENOMEM;
ret = of_property_read_u32(np, "reg", &cs);
if (ret)
return ret;
if (cs >= PL35X_NAND_MAX_CS) {
dev_err(nfc->dev, "Wrong CS %d\n", cs);
return -EINVAL;
}
if (test_and_set_bit(cs, &nfc->assigned_cs)) {
dev_err(nfc->dev, "Already assigned CS %d\n", cs);
return -EINVAL;
}
plnand->cs = cs;
chip = &plnand->chip;
chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
chip->bbt_options = NAND_BBT_USE_FLASH;
chip->controller = &nfc->controller;
mtd = nand_to_mtd(chip);
mtd->dev.parent = nfc->dev;
nand_set_flash_node(chip, np);
if (!mtd->name) {
mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
"%s", PL35X_NANDC_DRIVER_NAME);
if (!mtd->name) {
dev_err(nfc->dev, "Failed to allocate mtd->name\n");
return -ENOMEM;
}
}
ret = nand_scan(chip, 1);
if (ret)
return ret;
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
nand_cleanup(chip);
return ret;
}
list_add_tail(&plnand->node, &nfc->chips);
return ret;
}
static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
{
struct pl35x_nand *plnand, *tmp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
chip = &plnand->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&plnand->node);
}
}
static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
{
struct device_node *np = nfc->dev->of_node, *nand_np;
int nchips = of_get_child_count(np);
int ret;
if (!nchips || nchips > PL35X_NAND_MAX_CS) {
dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
nchips);
return -EINVAL;
}
for_each_child_of_node(np, nand_np) {
ret = pl35x_nand_chip_init(nfc, nand_np);
if (ret) {
of_node_put(nand_np);
pl35x_nand_chips_cleanup(nfc);
break;
}
}
return ret;
}
static int pl35x_nand_probe(struct platform_device *pdev)
{
struct device *smc_dev = pdev->dev.parent;
struct amba_device *smc_amba = to_amba_device(smc_dev);
struct pl35x_nandc *nfc;
u32 ret;
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->dev = &pdev->dev;
nand_controller_init(&nfc->controller);
nfc->controller.ops = &pl35x_nandc_ops;
INIT_LIST_HEAD(&nfc->chips);
nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
if (IS_ERR(nfc->conf_regs))
return PTR_ERR(nfc->conf_regs);
nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->io_regs))
return PTR_ERR(nfc->io_regs);
ret = pl35x_nand_reset_state(nfc);
if (ret)
return ret;
ret = pl35x_nand_chips_init(nfc);
if (ret)
return ret;
platform_set_drvdata(pdev, nfc);
return 0;
}
static int pl35x_nand_remove(struct platform_device *pdev)
{
struct pl35x_nandc *nfc = platform_get_drvdata(pdev);
pl35x_nand_chips_cleanup(nfc);
return 0;
}
static const struct of_device_id pl35x_nand_of_match[] = {
{ .compatible = "arm,pl353-nand-r2p1" },
{},
};
MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);
static struct platform_driver pl35x_nandc_driver = {
.probe = pl35x_nand_probe,
.remove = pl35x_nand_remove,
.driver = {
.name = PL35X_NANDC_DRIVER_NAME,
.of_match_table = pl35x_nand_of_match,
},
};
module_platform_driver(pl35x_nandc_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
MODULE_LICENSE("GPL");
|