1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* tools/testing/selftests/kvm/lib/x86_64/vmx.c
*
* Copyright (C) 2018, Google LLC.
*/
#include <asm/msr-index.h>
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include "vmx.h"
#define PAGE_SHIFT_4K 12
#define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
bool enable_evmcs;
struct hv_enlightened_vmcs *current_evmcs;
struct hv_vp_assist_page *current_vp_assist;
struct eptPageTableEntry {
uint64_t readable:1;
uint64_t writable:1;
uint64_t executable:1;
uint64_t memory_type:3;
uint64_t ignore_pat:1;
uint64_t page_size:1;
uint64_t accessed:1;
uint64_t dirty:1;
uint64_t ignored_11_10:2;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t suppress_ve:1;
};
struct eptPageTablePointer {
uint64_t memory_type:3;
uint64_t page_walk_length:3;
uint64_t ad_enabled:1;
uint64_t reserved_11_07:5;
uint64_t address:40;
uint64_t reserved_63_52:12;
};
int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
{
uint16_t evmcs_ver;
vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
(unsigned long)&evmcs_ver);
/* KVM should return supported EVMCS version range */
TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
(evmcs_ver & 0xff) > 0,
"Incorrect EVMCS version range: %x:%x\n",
evmcs_ver & 0xff, evmcs_ver >> 8);
return evmcs_ver;
}
/* Allocate memory regions for nested VMX tests.
*
* Input Args:
* vm - The VM to allocate guest-virtual addresses in.
*
* Output Args:
* p_vmx_gva - The guest virtual address for the struct vmx_pages.
*
* Return:
* Pointer to structure with the addresses of the VMX areas.
*/
struct vmx_pages *
vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
{
vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
/* Setup of a region of guest memory for the vmxon region. */
vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
/* Setup of a region of guest memory for a vmcs. */
vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
/* Setup of a region of guest memory for the MSR bitmap. */
vmx->msr = (void *)vm_vaddr_alloc_page(vm);
vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
memset(vmx->msr_hva, 0, getpagesize());
/* Setup of a region of guest memory for the shadow VMCS. */
vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
memset(vmx->vmread_hva, 0, getpagesize());
vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
memset(vmx->vmwrite_hva, 0, getpagesize());
/* Setup of a region of guest memory for the VP Assist page. */
vmx->vp_assist = (void *)vm_vaddr_alloc_page(vm);
vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
/* Setup of a region of guest memory for the enlightened VMCS. */
vmx->enlightened_vmcs = (void *)vm_vaddr_alloc_page(vm);
vmx->enlightened_vmcs_hva =
addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
vmx->enlightened_vmcs_gpa =
addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
*p_vmx_gva = vmx_gva;
return vmx;
}
bool prepare_for_vmx_operation(struct vmx_pages *vmx)
{
uint64_t feature_control;
uint64_t required;
unsigned long cr0;
unsigned long cr4;
/*
* Ensure bits in CR0 and CR4 are valid in VMX operation:
* - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
* - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
*/
__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
/* Enable VMX operation */
cr4 |= X86_CR4_VMXE;
__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
/*
* Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
* Bit 0: Lock bit. If clear, VMXON causes a #GP.
* Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
* outside of SMX causes a #GP.
*/
required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
required |= FEAT_CTL_LOCKED;
feature_control = rdmsr(MSR_IA32_FEAT_CTL);
if ((feature_control & required) != required)
wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
/* Enter VMX root operation. */
*(uint32_t *)(vmx->vmxon) = vmcs_revision();
if (vmxon(vmx->vmxon_gpa))
return false;
return true;
}
bool load_vmcs(struct vmx_pages *vmx)
{
if (!enable_evmcs) {
/* Load a VMCS. */
*(uint32_t *)(vmx->vmcs) = vmcs_revision();
if (vmclear(vmx->vmcs_gpa))
return false;
if (vmptrld(vmx->vmcs_gpa))
return false;
/* Setup shadow VMCS, do not load it yet. */
*(uint32_t *)(vmx->shadow_vmcs) =
vmcs_revision() | 0x80000000ul;
if (vmclear(vmx->shadow_vmcs_gpa))
return false;
} else {
if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
vmx->enlightened_vmcs))
return false;
current_evmcs->revision_id = EVMCS_VERSION;
}
return true;
}
static bool ept_vpid_cap_supported(uint64_t mask)
{
return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
}
bool ept_1g_pages_supported(void)
{
return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
}
/*
* Initialize the control fields to the most basic settings possible.
*/
static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
{
uint32_t sec_exec_ctl = 0;
vmwrite(VIRTUAL_PROCESSOR_ID, 0);
vmwrite(POSTED_INTR_NV, 0);
vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
if (vmx->eptp_gpa) {
uint64_t ept_paddr;
struct eptPageTablePointer eptp = {
.memory_type = VMX_BASIC_MEM_TYPE_WB,
.page_walk_length = 3, /* + 1 */
.ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
};
memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
vmwrite(EPT_POINTER, ept_paddr);
sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
}
if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
vmwrite(CPU_BASED_VM_EXEC_CONTROL,
rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
else {
vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
GUEST_ASSERT(!sec_exec_ctl);
}
vmwrite(EXCEPTION_BITMAP, 0);
vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
vmwrite(CR3_TARGET_COUNT, 0);
vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
VM_ENTRY_IA32E_MODE); /* 64-bit guest */
vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
vmwrite(TPR_THRESHOLD, 0);
vmwrite(CR0_GUEST_HOST_MASK, 0);
vmwrite(CR4_GUEST_HOST_MASK, 0);
vmwrite(CR0_READ_SHADOW, get_cr0());
vmwrite(CR4_READ_SHADOW, get_cr4());
vmwrite(MSR_BITMAP, vmx->msr_gpa);
vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
}
/*
* Initialize the host state fields based on the current host state, with
* the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
* or vmresume.
*/
static inline void init_vmcs_host_state(void)
{
uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
vmwrite(HOST_ES_SELECTOR, get_es());
vmwrite(HOST_CS_SELECTOR, get_cs());
vmwrite(HOST_SS_SELECTOR, get_ss());
vmwrite(HOST_DS_SELECTOR, get_ds());
vmwrite(HOST_FS_SELECTOR, get_fs());
vmwrite(HOST_GS_SELECTOR, get_gs());
vmwrite(HOST_TR_SELECTOR, get_tr());
if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
vmwrite(HOST_CR0, get_cr0());
vmwrite(HOST_CR3, get_cr3());
vmwrite(HOST_CR4, get_cr4());
vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
vmwrite(HOST_TR_BASE,
get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
vmwrite(HOST_GDTR_BASE, get_gdt().address);
vmwrite(HOST_IDTR_BASE, get_idt().address);
vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
}
/*
* Initialize the guest state fields essentially as a clone of
* the host state fields. Some host state fields have fixed
* values, and we set the corresponding guest state fields accordingly.
*/
static inline void init_vmcs_guest_state(void *rip, void *rsp)
{
vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
vmwrite(GUEST_LDTR_SELECTOR, 0);
vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
vmwrite(GUEST_INTR_STATUS, 0);
vmwrite(GUEST_PML_INDEX, 0);
vmwrite(VMCS_LINK_POINTER, -1ll);
vmwrite(GUEST_IA32_DEBUGCTL, 0);
vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
vmwrite(GUEST_ES_LIMIT, -1);
vmwrite(GUEST_CS_LIMIT, -1);
vmwrite(GUEST_SS_LIMIT, -1);
vmwrite(GUEST_DS_LIMIT, -1);
vmwrite(GUEST_FS_LIMIT, -1);
vmwrite(GUEST_GS_LIMIT, -1);
vmwrite(GUEST_LDTR_LIMIT, -1);
vmwrite(GUEST_TR_LIMIT, 0x67);
vmwrite(GUEST_GDTR_LIMIT, 0xffff);
vmwrite(GUEST_IDTR_LIMIT, 0xffff);
vmwrite(GUEST_ES_AR_BYTES,
vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
vmwrite(GUEST_SS_AR_BYTES, 0xc093);
vmwrite(GUEST_DS_AR_BYTES,
vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
vmwrite(GUEST_FS_AR_BYTES,
vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
vmwrite(GUEST_GS_AR_BYTES,
vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
vmwrite(GUEST_TR_AR_BYTES, 0x8b);
vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
vmwrite(GUEST_ACTIVITY_STATE, 0);
vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
vmwrite(GUEST_ES_BASE, 0);
vmwrite(GUEST_CS_BASE, 0);
vmwrite(GUEST_SS_BASE, 0);
vmwrite(GUEST_DS_BASE, 0);
vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
vmwrite(GUEST_LDTR_BASE, 0);
vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
vmwrite(GUEST_DR7, 0x400);
vmwrite(GUEST_RSP, (uint64_t)rsp);
vmwrite(GUEST_RIP, (uint64_t)rip);
vmwrite(GUEST_RFLAGS, 2);
vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
}
void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
{
init_vmcs_control_fields(vmx);
init_vmcs_host_state();
init_vmcs_guest_state(guest_rip, guest_rsp);
}
static void nested_create_pte(struct kvm_vm *vm,
struct eptPageTableEntry *pte,
uint64_t nested_paddr,
uint64_t paddr,
int current_level,
int target_level)
{
if (!pte->readable) {
pte->writable = true;
pte->readable = true;
pte->executable = true;
pte->page_size = (current_level == target_level);
if (pte->page_size)
pte->address = paddr >> vm->page_shift;
else
pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
} else {
/*
* Entry already present. Assert that the caller doesn't want
* a hugepage at this level, and that there isn't a hugepage at
* this level.
*/
TEST_ASSERT(current_level != target_level,
"Cannot create hugepage at level: %u, nested_paddr: 0x%lx\n",
current_level, nested_paddr);
TEST_ASSERT(!pte->page_size,
"Cannot create page table at level: %u, nested_paddr: 0x%lx\n",
current_level, nested_paddr);
}
}
void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
uint64_t nested_paddr, uint64_t paddr, int target_level)
{
const uint64_t page_size = PG_LEVEL_SIZE(target_level);
struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
uint16_t index;
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
TEST_ASSERT((nested_paddr >> 48) == 0,
"Nested physical address 0x%lx requires 5-level paging",
nested_paddr);
TEST_ASSERT((nested_paddr % page_size) == 0,
"Nested physical address not on page boundary,\n"
" nested_paddr: 0x%lx page_size: 0x%lx",
nested_paddr, page_size);
TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond beyond maximum supported,\n"
" nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
TEST_ASSERT((paddr % page_size) == 0,
"Physical address not on page boundary,\n"
" paddr: 0x%lx page_size: 0x%lx",
paddr, page_size);
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond beyond maximum supported,\n"
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
pte = &pt[index];
nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
if (pte->page_size)
break;
pt = addr_gpa2hva(vm, pte->address * vm->page_size);
}
/*
* For now mark these as accessed and dirty because the only
* testcase we have needs that. Can be reconsidered later.
*/
pte->accessed = true;
pte->dirty = true;
}
void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
uint64_t nested_paddr, uint64_t paddr)
{
__nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
}
/*
* Map a range of EPT guest physical addresses to the VM's physical address
*
* Input Args:
* vm - Virtual Machine
* nested_paddr - Nested guest physical address to map
* paddr - VM Physical Address
* size - The size of the range to map
* level - The level at which to map the range
*
* Output Args: None
*
* Return: None
*
* Within the VM given by vm, creates a nested guest translation for the
* page range starting at nested_paddr to the page range starting at paddr.
*/
void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
uint64_t nested_paddr, uint64_t paddr, uint64_t size,
int level)
{
size_t page_size = PG_LEVEL_SIZE(level);
size_t npages = size / page_size;
TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
while (npages--) {
__nested_pg_map(vmx, vm, nested_paddr, paddr, level);
nested_paddr += page_size;
paddr += page_size;
}
}
void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
uint64_t nested_paddr, uint64_t paddr, uint64_t size)
{
__nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
}
/* Prepare an identity extended page table that maps all the
* physical pages in VM.
*/
void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
uint32_t memslot)
{
sparsebit_idx_t i, last;
struct userspace_mem_region *region =
memslot2region(vm, memslot);
i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
last = i + (region->region.memory_size >> vm->page_shift);
for (;;) {
i = sparsebit_next_clear(region->unused_phy_pages, i);
if (i > last)
break;
nested_map(vmx, vm,
(uint64_t)i << vm->page_shift,
(uint64_t)i << vm->page_shift,
1 << vm->page_shift);
}
}
/* Identity map a region with 1GiB Pages. */
void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
uint64_t addr, uint64_t size)
{
__nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
}
bool kvm_vm_has_ept(struct kvm_vm *vm)
{
struct kvm_vcpu *vcpu;
uint64_t ctrl;
vcpu = list_first_entry(&vm->vcpus, struct kvm_vcpu, list);
TEST_ASSERT(vcpu, "Cannot determine EPT support without vCPUs.\n");
ctrl = vcpu_get_msr(vcpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
return false;
ctrl = vcpu_get_msr(vcpu, MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
return ctrl & SECONDARY_EXEC_ENABLE_EPT;
}
void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
uint32_t eptp_memslot)
{
TEST_REQUIRE(kvm_vm_has_ept(vm));
vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
}
void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
{
vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
}
|