1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020, Google LLC.
*
* Tests for KVM_CAP_EXIT_ON_EMULATION_FAILURE capability.
*/
#define _GNU_SOURCE /* for program_invocation_short_name */
#include "test_util.h"
#include "kvm_util.h"
#include "vmx.h"
#define MAXPHYADDR 36
#define MEM_REGION_GVA 0x0000123456789000
#define MEM_REGION_GPA 0x0000000700000000
#define MEM_REGION_SLOT 10
#define MEM_REGION_SIZE PAGE_SIZE
static void guest_code(void)
{
__asm__ __volatile__("flds (%[addr])"
:: [addr]"r"(MEM_REGION_GVA));
GUEST_DONE();
}
/*
* Accessors to get R/M, REG, and Mod bits described in the SDM vol 2,
* figure 2-2 "Table Interpretation of ModR/M Byte (C8H)".
*/
#define GET_RM(insn_byte) (insn_byte & 0x7)
#define GET_REG(insn_byte) ((insn_byte & 0x38) >> 3)
#define GET_MOD(insn_byte) ((insn_byte & 0xc) >> 6)
/* Ensure we are dealing with a simple 2-byte flds instruction. */
static bool is_flds(uint8_t *insn_bytes, uint8_t insn_size)
{
return insn_size >= 2 &&
insn_bytes[0] == 0xd9 &&
GET_REG(insn_bytes[1]) == 0x0 &&
GET_MOD(insn_bytes[1]) == 0x0 &&
/* Ensure there is no SIB byte. */
GET_RM(insn_bytes[1]) != 0x4 &&
/* Ensure there is no displacement byte. */
GET_RM(insn_bytes[1]) != 0x5;
}
static void process_exit_on_emulation_error(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
struct kvm_regs regs;
uint8_t *insn_bytes;
uint8_t insn_size;
uint64_t flags;
TEST_ASSERT(run->exit_reason == KVM_EXIT_INTERNAL_ERROR,
"Unexpected exit reason: %u (%s)",
run->exit_reason,
exit_reason_str(run->exit_reason));
TEST_ASSERT(run->emulation_failure.suberror == KVM_INTERNAL_ERROR_EMULATION,
"Unexpected suberror: %u",
run->emulation_failure.suberror);
if (run->emulation_failure.ndata >= 1) {
flags = run->emulation_failure.flags;
if ((flags & KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES) &&
run->emulation_failure.ndata >= 3) {
insn_size = run->emulation_failure.insn_size;
insn_bytes = run->emulation_failure.insn_bytes;
TEST_ASSERT(insn_size <= 15 && insn_size > 0,
"Unexpected instruction size: %u",
insn_size);
TEST_ASSERT(is_flds(insn_bytes, insn_size),
"Unexpected instruction. Expected 'flds' (0xd9 /0)");
/*
* If is_flds() succeeded then the instruction bytes
* contained an flds instruction that is 2-bytes in
* length (ie: no prefix, no SIB, no displacement).
*/
vcpu_regs_get(vcpu, ®s);
regs.rip += 2;
vcpu_regs_set(vcpu, ®s);
}
}
}
static void do_guest_assert(struct ucall *uc)
{
REPORT_GUEST_ASSERT(*uc);
}
static void check_for_guest_assert(struct kvm_vcpu *vcpu)
{
struct ucall uc;
if (vcpu->run->exit_reason == KVM_EXIT_IO &&
get_ucall(vcpu, &uc) == UCALL_ABORT) {
do_guest_assert(&uc);
}
}
static void process_ucall_done(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
struct ucall uc;
check_for_guest_assert(vcpu);
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Unexpected exit reason: %u (%s)",
run->exit_reason,
exit_reason_str(run->exit_reason));
TEST_ASSERT(get_ucall(vcpu, &uc) == UCALL_DONE,
"Unexpected ucall command: %lu, expected UCALL_DONE (%d)",
uc.cmd, UCALL_DONE);
}
static uint64_t process_ucall(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
struct ucall uc;
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Unexpected exit reason: %u (%s)",
run->exit_reason,
exit_reason_str(run->exit_reason));
switch (get_ucall(vcpu, &uc)) {
case UCALL_SYNC:
break;
case UCALL_ABORT:
do_guest_assert(&uc);
break;
case UCALL_DONE:
process_ucall_done(vcpu);
break;
default:
TEST_ASSERT(false, "Unexpected ucall");
}
return uc.cmd;
}
int main(int argc, char *argv[])
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
uint64_t gpa, pte;
uint64_t *hva;
int rc;
/* Tell stdout not to buffer its content */
setbuf(stdout, NULL);
TEST_REQUIRE(kvm_has_cap(KVM_CAP_SMALLER_MAXPHYADDR));
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
vcpu_set_cpuid_maxphyaddr(vcpu, MAXPHYADDR);
rc = kvm_check_cap(KVM_CAP_EXIT_ON_EMULATION_FAILURE);
TEST_ASSERT(rc, "KVM_CAP_EXIT_ON_EMULATION_FAILURE is unavailable");
vm_enable_cap(vm, KVM_CAP_EXIT_ON_EMULATION_FAILURE, 1);
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
MEM_REGION_GPA, MEM_REGION_SLOT,
MEM_REGION_SIZE / PAGE_SIZE, 0);
gpa = vm_phy_pages_alloc(vm, MEM_REGION_SIZE / PAGE_SIZE,
MEM_REGION_GPA, MEM_REGION_SLOT);
TEST_ASSERT(gpa == MEM_REGION_GPA, "Failed vm_phy_pages_alloc\n");
virt_map(vm, MEM_REGION_GVA, MEM_REGION_GPA, 1);
hva = addr_gpa2hva(vm, MEM_REGION_GPA);
memset(hva, 0, PAGE_SIZE);
pte = vm_get_page_table_entry(vm, vcpu, MEM_REGION_GVA);
vm_set_page_table_entry(vm, vcpu, MEM_REGION_GVA, pte | (1ull << 36));
vcpu_run(vcpu);
process_exit_on_emulation_error(vcpu);
vcpu_run(vcpu);
TEST_ASSERT(process_ucall(vcpu) == UCALL_DONE, "Expected UCALL_DONE");
kvm_vm_free(vm);
return 0;
}
|