1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
|
/*
* Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
*
* Copyright 2004 IDT Inc. (rischelp@idt.com)
* Copyright 2006 Felix Fietkau <nbd@openwrt.org>
* Copyright 2008 Florian Fainelli <florian@openwrt.org>
* Copyright 2017 Roman Yeryomin <roman@advem.lv>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Writing to a DMA status register:
*
* When writing to the status register, you should mask the bit you have
* been testing the status register with. Both Tx and Rx DMA registers
* should stick to this procedure.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/ctype.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/iopoll.h>
#include <linux/in.h>
#include <linux/of_device.h>
#include <linux/of_net.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/pgtable.h>
#include <linux/clk.h>
#define DRV_NAME "korina"
#define DRV_VERSION "0.20"
#define DRV_RELDATE "15Sep2017"
struct eth_regs {
u32 ethintfc;
u32 ethfifott;
u32 etharc;
u32 ethhash0;
u32 ethhash1;
u32 ethu0[4]; /* Reserved. */
u32 ethpfs;
u32 ethmcp;
u32 eth_u1[10]; /* Reserved. */
u32 ethspare;
u32 eth_u2[42]; /* Reserved. */
u32 ethsal0;
u32 ethsah0;
u32 ethsal1;
u32 ethsah1;
u32 ethsal2;
u32 ethsah2;
u32 ethsal3;
u32 ethsah3;
u32 ethrbc;
u32 ethrpc;
u32 ethrupc;
u32 ethrfc;
u32 ethtbc;
u32 ethgpf;
u32 eth_u9[50]; /* Reserved. */
u32 ethmac1;
u32 ethmac2;
u32 ethipgt;
u32 ethipgr;
u32 ethclrt;
u32 ethmaxf;
u32 eth_u10; /* Reserved. */
u32 ethmtest;
u32 miimcfg;
u32 miimcmd;
u32 miimaddr;
u32 miimwtd;
u32 miimrdd;
u32 miimind;
u32 eth_u11; /* Reserved. */
u32 eth_u12; /* Reserved. */
u32 ethcfsa0;
u32 ethcfsa1;
u32 ethcfsa2;
};
/* Ethernet interrupt registers */
#define ETH_INT_FC_EN BIT(0)
#define ETH_INT_FC_ITS BIT(1)
#define ETH_INT_FC_RIP BIT(2)
#define ETH_INT_FC_JAM BIT(3)
#define ETH_INT_FC_OVR BIT(4)
#define ETH_INT_FC_UND BIT(5)
#define ETH_INT_FC_IOC 0x000000c0
/* Ethernet FIFO registers */
#define ETH_FIFI_TT_TTH_BIT 0
#define ETH_FIFO_TT_TTH 0x0000007f
/* Ethernet ARC/multicast registers */
#define ETH_ARC_PRO BIT(0)
#define ETH_ARC_AM BIT(1)
#define ETH_ARC_AFM BIT(2)
#define ETH_ARC_AB BIT(3)
/* Ethernet SAL registers */
#define ETH_SAL_BYTE_5 0x000000ff
#define ETH_SAL_BYTE_4 0x0000ff00
#define ETH_SAL_BYTE_3 0x00ff0000
#define ETH_SAL_BYTE_2 0xff000000
/* Ethernet SAH registers */
#define ETH_SAH_BYTE1 0x000000ff
#define ETH_SAH_BYTE0 0x0000ff00
/* Ethernet GPF register */
#define ETH_GPF_PTV 0x0000ffff
/* Ethernet PFG register */
#define ETH_PFS_PFD BIT(0)
/* Ethernet CFSA[0-3] registers */
#define ETH_CFSA0_CFSA4 0x000000ff
#define ETH_CFSA0_CFSA5 0x0000ff00
#define ETH_CFSA1_CFSA2 0x000000ff
#define ETH_CFSA1_CFSA3 0x0000ff00
#define ETH_CFSA1_CFSA0 0x000000ff
#define ETH_CFSA1_CFSA1 0x0000ff00
/* Ethernet MAC1 registers */
#define ETH_MAC1_RE BIT(0)
#define ETH_MAC1_PAF BIT(1)
#define ETH_MAC1_RFC BIT(2)
#define ETH_MAC1_TFC BIT(3)
#define ETH_MAC1_LB BIT(4)
#define ETH_MAC1_MR BIT(31)
/* Ethernet MAC2 registers */
#define ETH_MAC2_FD BIT(0)
#define ETH_MAC2_FLC BIT(1)
#define ETH_MAC2_HFE BIT(2)
#define ETH_MAC2_DC BIT(3)
#define ETH_MAC2_CEN BIT(4)
#define ETH_MAC2_PE BIT(5)
#define ETH_MAC2_VPE BIT(6)
#define ETH_MAC2_APE BIT(7)
#define ETH_MAC2_PPE BIT(8)
#define ETH_MAC2_LPE BIT(9)
#define ETH_MAC2_NB BIT(12)
#define ETH_MAC2_BP BIT(13)
#define ETH_MAC2_ED BIT(14)
/* Ethernet IPGT register */
#define ETH_IPGT 0x0000007f
/* Ethernet IPGR registers */
#define ETH_IPGR_IPGR2 0x0000007f
#define ETH_IPGR_IPGR1 0x00007f00
/* Ethernet CLRT registers */
#define ETH_CLRT_MAX_RET 0x0000000f
#define ETH_CLRT_COL_WIN 0x00003f00
/* Ethernet MAXF register */
#define ETH_MAXF 0x0000ffff
/* Ethernet test registers */
#define ETH_TEST_REG BIT(2)
#define ETH_MCP_DIV 0x000000ff
/* MII registers */
#define ETH_MII_CFG_RSVD 0x0000000c
#define ETH_MII_CMD_RD BIT(0)
#define ETH_MII_CMD_SCN BIT(1)
#define ETH_MII_REG_ADDR 0x0000001f
#define ETH_MII_PHY_ADDR 0x00001f00
#define ETH_MII_WTD_DATA 0x0000ffff
#define ETH_MII_RDD_DATA 0x0000ffff
#define ETH_MII_IND_BSY BIT(0)
#define ETH_MII_IND_SCN BIT(1)
#define ETH_MII_IND_NV BIT(2)
/* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
#define ETH_RX_FD BIT(0)
#define ETH_RX_LD BIT(1)
#define ETH_RX_ROK BIT(2)
#define ETH_RX_FM BIT(3)
#define ETH_RX_MP BIT(4)
#define ETH_RX_BP BIT(5)
#define ETH_RX_VLT BIT(6)
#define ETH_RX_CF BIT(7)
#define ETH_RX_OVR BIT(8)
#define ETH_RX_CRC BIT(9)
#define ETH_RX_CV BIT(10)
#define ETH_RX_DB BIT(11)
#define ETH_RX_LE BIT(12)
#define ETH_RX_LOR BIT(13)
#define ETH_RX_CES BIT(14)
#define ETH_RX_LEN_BIT 16
#define ETH_RX_LEN 0xffff0000
#define ETH_TX_FD BIT(0)
#define ETH_TX_LD BIT(1)
#define ETH_TX_OEN BIT(2)
#define ETH_TX_PEN BIT(3)
#define ETH_TX_CEN BIT(4)
#define ETH_TX_HEN BIT(5)
#define ETH_TX_TOK BIT(6)
#define ETH_TX_MP BIT(7)
#define ETH_TX_BP BIT(8)
#define ETH_TX_UND BIT(9)
#define ETH_TX_OF BIT(10)
#define ETH_TX_ED BIT(11)
#define ETH_TX_EC BIT(12)
#define ETH_TX_LC BIT(13)
#define ETH_TX_TD BIT(14)
#define ETH_TX_CRC BIT(15)
#define ETH_TX_LE BIT(16)
#define ETH_TX_CC 0x001E0000
/* DMA descriptor (in physical memory). */
struct dma_desc {
u32 control; /* Control. use DMAD_* */
u32 ca; /* Current Address. */
u32 devcs; /* Device control and status. */
u32 link; /* Next descriptor in chain. */
};
#define DMA_DESC_COUNT_BIT 0
#define DMA_DESC_COUNT_MSK 0x0003ffff
#define DMA_DESC_DS_BIT 20
#define DMA_DESC_DS_MSK 0x00300000
#define DMA_DESC_DEV_CMD_BIT 22
#define DMA_DESC_DEV_CMD_MSK 0x01c00000
/* DMA descriptors interrupts */
#define DMA_DESC_COF BIT(25) /* Chain on finished */
#define DMA_DESC_COD BIT(26) /* Chain on done */
#define DMA_DESC_IOF BIT(27) /* Interrupt on finished */
#define DMA_DESC_IOD BIT(28) /* Interrupt on done */
#define DMA_DESC_TERM BIT(29) /* Terminated */
#define DMA_DESC_DONE BIT(30) /* Done */
#define DMA_DESC_FINI BIT(31) /* Finished */
/* DMA register (within Internal Register Map). */
struct dma_reg {
u32 dmac; /* Control. */
u32 dmas; /* Status. */
u32 dmasm; /* Mask. */
u32 dmadptr; /* Descriptor pointer. */
u32 dmandptr; /* Next descriptor pointer. */
};
/* DMA channels specific registers */
#define DMA_CHAN_RUN_BIT BIT(0)
#define DMA_CHAN_DONE_BIT BIT(1)
#define DMA_CHAN_MODE_BIT BIT(2)
#define DMA_CHAN_MODE_MSK 0x0000000c
#define DMA_CHAN_MODE_AUTO 0
#define DMA_CHAN_MODE_BURST 1
#define DMA_CHAN_MODE_XFRT 2
#define DMA_CHAN_MODE_RSVD 3
#define DMA_CHAN_ACT_BIT BIT(4)
/* DMA status registers */
#define DMA_STAT_FINI BIT(0)
#define DMA_STAT_DONE BIT(1)
#define DMA_STAT_CHAIN BIT(2)
#define DMA_STAT_ERR BIT(3)
#define DMA_STAT_HALT BIT(4)
#define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
((dev)->dev_addr[1]))
#define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
((dev)->dev_addr[3] << 16) | \
((dev)->dev_addr[4] << 8) | \
((dev)->dev_addr[5]))
#define MII_CLOCK 1250000 /* no more than 2.5MHz */
/* the following must be powers of two */
#define KORINA_NUM_RDS 64 /* number of receive descriptors */
#define KORINA_NUM_TDS 64 /* number of transmit descriptors */
/* KORINA_RBSIZE is the hardware's default maximum receive
* frame size in bytes. Having this hardcoded means that there
* is no support for MTU sizes greater than 1500. */
#define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
#define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
#define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
#define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
#define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
#define TX_TIMEOUT (6000 * HZ / 1000)
enum chain_status {
desc_filled,
desc_is_empty
};
#define DMA_COUNT(count) ((count) & DMA_DESC_COUNT_MSK)
#define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
#define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
#define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
/* Information that need to be kept for each board. */
struct korina_private {
struct eth_regs __iomem *eth_regs;
struct dma_reg __iomem *rx_dma_regs;
struct dma_reg __iomem *tx_dma_regs;
struct dma_desc *td_ring; /* transmit descriptor ring */
struct dma_desc *rd_ring; /* receive descriptor ring */
dma_addr_t td_dma;
dma_addr_t rd_dma;
struct sk_buff *tx_skb[KORINA_NUM_TDS];
struct sk_buff *rx_skb[KORINA_NUM_RDS];
dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
int rx_next_done;
int rx_chain_head;
int rx_chain_tail;
enum chain_status rx_chain_status;
int tx_next_done;
int tx_chain_head;
int tx_chain_tail;
enum chain_status tx_chain_status;
int tx_count;
int tx_full;
int rx_irq;
int tx_irq;
spinlock_t lock; /* NIC xmit lock */
int dma_halt_cnt;
int dma_run_cnt;
struct napi_struct napi;
struct timer_list media_check_timer;
struct mii_if_info mii_if;
struct work_struct restart_task;
struct net_device *dev;
struct device *dmadev;
int mii_clock_freq;
};
static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
{
return lp->td_dma + (idx * sizeof(struct dma_desc));
}
static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
{
return lp->rd_dma + (idx * sizeof(struct dma_desc));
}
static inline void korina_abort_dma(struct net_device *dev,
struct dma_reg *ch)
{
if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
writel(0x10, &ch->dmac);
while (!(readl(&ch->dmas) & DMA_STAT_HALT))
netif_trans_update(dev);
writel(0, &ch->dmas);
}
writel(0, &ch->dmadptr);
writel(0, &ch->dmandptr);
}
static void korina_abort_tx(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
korina_abort_dma(dev, lp->tx_dma_regs);
}
static void korina_abort_rx(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
korina_abort_dma(dev, lp->rx_dma_regs);
}
/* transmit packet */
static netdev_tx_t korina_send_packet(struct sk_buff *skb,
struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
u32 chain_prev, chain_next;
unsigned long flags;
struct dma_desc *td;
dma_addr_t ca;
u32 length;
int idx;
spin_lock_irqsave(&lp->lock, flags);
idx = lp->tx_chain_tail;
td = &lp->td_ring[idx];
/* stop queue when full, drop pkts if queue already full */
if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
lp->tx_full = 1;
if (lp->tx_count == (KORINA_NUM_TDS - 2))
netif_stop_queue(dev);
else
goto drop_packet;
}
lp->tx_count++;
lp->tx_skb[idx] = skb;
length = skb->len;
/* Setup the transmit descriptor. */
ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
if (dma_mapping_error(lp->dmadev, ca))
goto drop_packet;
lp->tx_skb_dma[idx] = ca;
td->ca = ca;
chain_prev = (idx - 1) & KORINA_TDS_MASK;
chain_next = (idx + 1) & KORINA_TDS_MASK;
if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
if (lp->tx_chain_status == desc_is_empty) {
/* Update tail */
td->control = DMA_COUNT(length) |
DMA_DESC_COF | DMA_DESC_IOF;
/* Move tail */
lp->tx_chain_tail = chain_next;
/* Write to NDPTR */
writel(korina_tx_dma(lp, lp->tx_chain_head),
&lp->tx_dma_regs->dmandptr);
/* Move head to tail */
lp->tx_chain_head = lp->tx_chain_tail;
} else {
/* Update tail */
td->control = DMA_COUNT(length) |
DMA_DESC_COF | DMA_DESC_IOF;
/* Link to prev */
lp->td_ring[chain_prev].control &=
~DMA_DESC_COF;
/* Link to prev */
lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
/* Move tail */
lp->tx_chain_tail = chain_next;
/* Write to NDPTR */
writel(korina_tx_dma(lp, lp->tx_chain_head),
&lp->tx_dma_regs->dmandptr);
/* Move head to tail */
lp->tx_chain_head = lp->tx_chain_tail;
lp->tx_chain_status = desc_is_empty;
}
} else {
if (lp->tx_chain_status == desc_is_empty) {
/* Update tail */
td->control = DMA_COUNT(length) |
DMA_DESC_COF | DMA_DESC_IOF;
/* Move tail */
lp->tx_chain_tail = chain_next;
lp->tx_chain_status = desc_filled;
} else {
/* Update tail */
td->control = DMA_COUNT(length) |
DMA_DESC_COF | DMA_DESC_IOF;
lp->td_ring[chain_prev].control &=
~DMA_DESC_COF;
lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
lp->tx_chain_tail = chain_next;
}
}
netif_trans_update(dev);
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
drop_packet:
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
}
static int korina_mdio_wait(struct korina_private *lp)
{
u32 value;
return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
value, value & ETH_MII_IND_BSY,
1, 1000);
}
static int korina_mdio_read(struct net_device *dev, int phy, int reg)
{
struct korina_private *lp = netdev_priv(dev);
int ret;
ret = korina_mdio_wait(lp);
if (ret < 0)
return ret;
writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
writel(1, &lp->eth_regs->miimcmd);
ret = korina_mdio_wait(lp);
if (ret < 0)
return ret;
if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
return -EINVAL;
ret = readl(&lp->eth_regs->miimrdd);
writel(0, &lp->eth_regs->miimcmd);
return ret;
}
static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
{
struct korina_private *lp = netdev_priv(dev);
if (korina_mdio_wait(lp))
return;
writel(0, &lp->eth_regs->miimcmd);
writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
writel(val, &lp->eth_regs->miimwtd);
}
/* Ethernet Rx DMA interrupt */
static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct korina_private *lp = netdev_priv(dev);
u32 dmas, dmasm;
irqreturn_t retval;
dmas = readl(&lp->rx_dma_regs->dmas);
if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
dmasm = readl(&lp->rx_dma_regs->dmasm);
writel(dmasm | (DMA_STAT_DONE |
DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmasm);
napi_schedule(&lp->napi);
if (dmas & DMA_STAT_ERR)
printk(KERN_ERR "%s: DMA error\n", dev->name);
retval = IRQ_HANDLED;
} else
retval = IRQ_NONE;
return retval;
}
static int korina_rx(struct net_device *dev, int limit)
{
struct korina_private *lp = netdev_priv(dev);
struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
struct sk_buff *skb, *skb_new;
u32 devcs, pkt_len, dmas;
dma_addr_t ca;
int count;
for (count = 0; count < limit; count++) {
skb = lp->rx_skb[lp->rx_next_done];
skb_new = NULL;
devcs = rd->devcs;
if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
break;
/* check that this is a whole packet
* WARNING: DMA_FD bit incorrectly set
* in Rc32434 (errata ref #077) */
if (!(devcs & ETH_RX_LD))
goto next;
if (!(devcs & ETH_RX_ROK)) {
/* Update statistics counters */
dev->stats.rx_errors++;
dev->stats.rx_dropped++;
if (devcs & ETH_RX_CRC)
dev->stats.rx_crc_errors++;
if (devcs & ETH_RX_LE)
dev->stats.rx_length_errors++;
if (devcs & ETH_RX_OVR)
dev->stats.rx_fifo_errors++;
if (devcs & ETH_RX_CV)
dev->stats.rx_frame_errors++;
if (devcs & ETH_RX_CES)
dev->stats.rx_frame_errors++;
goto next;
}
/* Malloc up new buffer. */
skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
if (!skb_new)
break;
ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(lp->dmadev, ca)) {
dev_kfree_skb_any(skb_new);
break;
}
pkt_len = RCVPKT_LENGTH(devcs);
dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
pkt_len, DMA_FROM_DEVICE);
/* Do not count the CRC */
skb_put(skb, pkt_len - 4);
skb->protocol = eth_type_trans(skb, dev);
/* Pass the packet to upper layers */
napi_gro_receive(&lp->napi, skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
/* Update the mcast stats */
if (devcs & ETH_RX_MP)
dev->stats.multicast++;
lp->rx_skb[lp->rx_next_done] = skb_new;
lp->rx_skb_dma[lp->rx_next_done] = ca;
next:
rd->devcs = 0;
/* Restore descriptor's curr_addr */
rd->ca = lp->rx_skb_dma[lp->rx_next_done];
rd->control = DMA_COUNT(KORINA_RBSIZE) |
DMA_DESC_COD | DMA_DESC_IOD;
lp->rd_ring[(lp->rx_next_done - 1) &
KORINA_RDS_MASK].control &=
~DMA_DESC_COD;
lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
rd = &lp->rd_ring[lp->rx_next_done];
writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
}
dmas = readl(&lp->rx_dma_regs->dmas);
if (dmas & DMA_STAT_HALT) {
writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmas);
lp->dma_halt_cnt++;
rd->devcs = 0;
rd->ca = lp->rx_skb_dma[lp->rx_next_done];
writel(korina_rx_dma(lp, rd - lp->rd_ring),
&lp->rx_dma_regs->dmandptr);
}
return count;
}
static int korina_poll(struct napi_struct *napi, int budget)
{
struct korina_private *lp =
container_of(napi, struct korina_private, napi);
struct net_device *dev = lp->dev;
int work_done;
work_done = korina_rx(dev, budget);
if (work_done < budget) {
napi_complete_done(napi, work_done);
writel(readl(&lp->rx_dma_regs->dmasm) &
~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmasm);
}
return work_done;
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void korina_multicast_list(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
unsigned long flags;
struct netdev_hw_addr *ha;
u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
/* Set promiscuous mode */
if (dev->flags & IFF_PROMISC)
recognise |= ETH_ARC_PRO;
else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
/* All multicast and broadcast */
recognise |= ETH_ARC_AM;
/* Build the hash table */
if (netdev_mc_count(dev) > 4) {
u16 hash_table[4] = { 0 };
u32 crc;
netdev_for_each_mc_addr(ha, dev) {
crc = ether_crc_le(6, ha->addr);
crc >>= 26;
hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
}
/* Accept filtered multicast */
recognise |= ETH_ARC_AFM;
/* Fill the MAC hash tables with their values */
writel((u32)(hash_table[1] << 16 | hash_table[0]),
&lp->eth_regs->ethhash0);
writel((u32)(hash_table[3] << 16 | hash_table[2]),
&lp->eth_regs->ethhash1);
}
spin_lock_irqsave(&lp->lock, flags);
writel(recognise, &lp->eth_regs->etharc);
spin_unlock_irqrestore(&lp->lock, flags);
}
static void korina_tx(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
u32 devcs;
u32 dmas;
spin_lock(&lp->lock);
/* Process all desc that are done */
while (IS_DMA_FINISHED(td->control)) {
if (lp->tx_full == 1) {
netif_wake_queue(dev);
lp->tx_full = 0;
}
devcs = lp->td_ring[lp->tx_next_done].devcs;
if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
(ETH_TX_FD | ETH_TX_LD)) {
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
/* Should never happen */
printk(KERN_ERR "%s: split tx ignored\n",
dev->name);
} else if (devcs & ETH_TX_TOK) {
dev->stats.tx_packets++;
dev->stats.tx_bytes +=
lp->tx_skb[lp->tx_next_done]->len;
} else {
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
/* Underflow */
if (devcs & ETH_TX_UND)
dev->stats.tx_fifo_errors++;
/* Oversized frame */
if (devcs & ETH_TX_OF)
dev->stats.tx_aborted_errors++;
/* Excessive deferrals */
if (devcs & ETH_TX_ED)
dev->stats.tx_carrier_errors++;
/* Collisions: medium busy */
if (devcs & ETH_TX_EC)
dev->stats.collisions++;
/* Late collision */
if (devcs & ETH_TX_LC)
dev->stats.tx_window_errors++;
}
/* We must always free the original skb */
if (lp->tx_skb[lp->tx_next_done]) {
dma_unmap_single(lp->dmadev,
lp->tx_skb_dma[lp->tx_next_done],
lp->tx_skb[lp->tx_next_done]->len,
DMA_TO_DEVICE);
dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
lp->tx_skb[lp->tx_next_done] = NULL;
}
lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
lp->td_ring[lp->tx_next_done].link = 0;
lp->td_ring[lp->tx_next_done].ca = 0;
lp->tx_count--;
/* Go on to next transmission */
lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
td = &lp->td_ring[lp->tx_next_done];
}
/* Clear the DMA status register */
dmas = readl(&lp->tx_dma_regs->dmas);
writel(~dmas, &lp->tx_dma_regs->dmas);
writel(readl(&lp->tx_dma_regs->dmasm) &
~(DMA_STAT_FINI | DMA_STAT_ERR),
&lp->tx_dma_regs->dmasm);
spin_unlock(&lp->lock);
}
static irqreturn_t
korina_tx_dma_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct korina_private *lp = netdev_priv(dev);
u32 dmas, dmasm;
irqreturn_t retval;
dmas = readl(&lp->tx_dma_regs->dmas);
if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
dmasm = readl(&lp->tx_dma_regs->dmasm);
writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
&lp->tx_dma_regs->dmasm);
korina_tx(dev);
if (lp->tx_chain_status == desc_filled &&
(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
writel(korina_tx_dma(lp, lp->tx_chain_head),
&lp->tx_dma_regs->dmandptr);
lp->tx_chain_status = desc_is_empty;
lp->tx_chain_head = lp->tx_chain_tail;
netif_trans_update(dev);
}
if (dmas & DMA_STAT_ERR)
printk(KERN_ERR "%s: DMA error\n", dev->name);
retval = IRQ_HANDLED;
} else
retval = IRQ_NONE;
return retval;
}
static void korina_check_media(struct net_device *dev, unsigned int init_media)
{
struct korina_private *lp = netdev_priv(dev);
mii_check_media(&lp->mii_if, 1, init_media);
if (lp->mii_if.full_duplex)
writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
&lp->eth_regs->ethmac2);
else
writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
&lp->eth_regs->ethmac2);
}
static void korina_poll_media(struct timer_list *t)
{
struct korina_private *lp = from_timer(lp, t, media_check_timer);
struct net_device *dev = lp->dev;
korina_check_media(dev, 0);
mod_timer(&lp->media_check_timer, jiffies + HZ);
}
static void korina_set_carrier(struct mii_if_info *mii)
{
if (mii->force_media) {
/* autoneg is off: Link is always assumed to be up */
if (!netif_carrier_ok(mii->dev))
netif_carrier_on(mii->dev);
} else /* Let MMI library update carrier status */
korina_check_media(mii->dev, 0);
}
static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct korina_private *lp = netdev_priv(dev);
struct mii_ioctl_data *data = if_mii(rq);
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irq(&lp->lock);
rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
spin_unlock_irq(&lp->lock);
korina_set_carrier(&lp->mii_if);
return rc;
}
/* ethtool helpers */
static void netdev_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct korina_private *lp = netdev_priv(dev);
strscpy(info->driver, DRV_NAME, sizeof(info->driver));
strscpy(info->version, DRV_VERSION, sizeof(info->version));
strscpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
}
static int netdev_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct korina_private *lp = netdev_priv(dev);
spin_lock_irq(&lp->lock);
mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
spin_unlock_irq(&lp->lock);
return 0;
}
static int netdev_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct korina_private *lp = netdev_priv(dev);
int rc;
spin_lock_irq(&lp->lock);
rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
spin_unlock_irq(&lp->lock);
korina_set_carrier(&lp->mii_if);
return rc;
}
static u32 netdev_get_link(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
return mii_link_ok(&lp->mii_if);
}
static const struct ethtool_ops netdev_ethtool_ops = {
.get_drvinfo = netdev_get_drvinfo,
.get_link = netdev_get_link,
.get_link_ksettings = netdev_get_link_ksettings,
.set_link_ksettings = netdev_set_link_ksettings,
};
static int korina_alloc_ring(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
struct sk_buff *skb;
dma_addr_t ca;
int i;
/* Initialize the transmit descriptors */
for (i = 0; i < KORINA_NUM_TDS; i++) {
lp->td_ring[i].control = DMA_DESC_IOF;
lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
lp->td_ring[i].ca = 0;
lp->td_ring[i].link = 0;
}
lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
lp->tx_full = lp->tx_count = 0;
lp->tx_chain_status = desc_is_empty;
/* Initialize the receive descriptors */
for (i = 0; i < KORINA_NUM_RDS; i++) {
skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
if (!skb)
return -ENOMEM;
lp->rx_skb[i] = skb;
lp->rd_ring[i].control = DMA_DESC_IOD |
DMA_COUNT(KORINA_RBSIZE);
lp->rd_ring[i].devcs = 0;
ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(lp->dmadev, ca))
return -ENOMEM;
lp->rd_ring[i].ca = ca;
lp->rx_skb_dma[i] = ca;
lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
}
/* loop back receive descriptors, so the last
* descriptor points to the first one */
lp->rd_ring[i - 1].link = lp->rd_dma;
lp->rd_ring[i - 1].control |= DMA_DESC_COD;
lp->rx_next_done = 0;
lp->rx_chain_head = 0;
lp->rx_chain_tail = 0;
lp->rx_chain_status = desc_is_empty;
return 0;
}
static void korina_free_ring(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
int i;
for (i = 0; i < KORINA_NUM_RDS; i++) {
lp->rd_ring[i].control = 0;
if (lp->rx_skb[i]) {
dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
KORINA_RBSIZE, DMA_FROM_DEVICE);
dev_kfree_skb_any(lp->rx_skb[i]);
lp->rx_skb[i] = NULL;
}
}
for (i = 0; i < KORINA_NUM_TDS; i++) {
lp->td_ring[i].control = 0;
if (lp->tx_skb[i]) {
dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
lp->tx_skb[i]->len, DMA_TO_DEVICE);
dev_kfree_skb_any(lp->tx_skb[i]);
lp->tx_skb[i] = NULL;
}
}
}
/*
* Initialize the RC32434 ethernet controller.
*/
static int korina_init(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
/* Disable DMA */
korina_abort_tx(dev);
korina_abort_rx(dev);
/* reset ethernet logic */
writel(0, &lp->eth_regs->ethintfc);
while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
netif_trans_update(dev);
/* Enable Ethernet Interface */
writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
/* Allocate rings */
if (korina_alloc_ring(dev)) {
printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
korina_free_ring(dev);
return -ENOMEM;
}
writel(0, &lp->rx_dma_regs->dmas);
/* Start Rx DMA */
writel(0, &lp->rx_dma_regs->dmandptr);
writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
writel(readl(&lp->tx_dma_regs->dmasm) &
~(DMA_STAT_FINI | DMA_STAT_ERR),
&lp->tx_dma_regs->dmasm);
writel(readl(&lp->rx_dma_regs->dmasm) &
~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmasm);
/* Accept only packets destined for this Ethernet device address */
writel(ETH_ARC_AB, &lp->eth_regs->etharc);
/* Set all Ether station address registers to their initial values */
writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
&lp->eth_regs->ethmac2);
/* Back to back inter-packet-gap */
writel(0x15, &lp->eth_regs->ethipgt);
/* Non - Back to back inter-packet-gap */
writel(0x12, &lp->eth_regs->ethipgr);
/* Management Clock Prescaler Divisor
* Clock independent setting */
writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
&lp->eth_regs->ethmcp);
writel(0, &lp->eth_regs->miimcfg);
/* don't transmit until fifo contains 48b */
writel(48, &lp->eth_regs->ethfifott);
writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
korina_check_media(dev, 1);
napi_enable(&lp->napi);
netif_start_queue(dev);
return 0;
}
/*
* Restart the RC32434 ethernet controller.
*/
static void korina_restart_task(struct work_struct *work)
{
struct korina_private *lp = container_of(work,
struct korina_private, restart_task);
struct net_device *dev = lp->dev;
/*
* Disable interrupts
*/
disable_irq(lp->rx_irq);
disable_irq(lp->tx_irq);
writel(readl(&lp->tx_dma_regs->dmasm) |
DMA_STAT_FINI | DMA_STAT_ERR,
&lp->tx_dma_regs->dmasm);
writel(readl(&lp->rx_dma_regs->dmasm) |
DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
&lp->rx_dma_regs->dmasm);
napi_disable(&lp->napi);
korina_free_ring(dev);
if (korina_init(dev) < 0) {
printk(KERN_ERR "%s: cannot restart device\n", dev->name);
return;
}
korina_multicast_list(dev);
enable_irq(lp->tx_irq);
enable_irq(lp->rx_irq);
}
static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct korina_private *lp = netdev_priv(dev);
schedule_work(&lp->restart_task);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void korina_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
korina_tx_dma_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
static int korina_open(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
int ret;
/* Initialize */
ret = korina_init(dev);
if (ret < 0) {
printk(KERN_ERR "%s: cannot open device\n", dev->name);
goto out;
}
/* Install the interrupt handler
* that handles the Done Finished */
ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
0, "Korina ethernet Rx", dev);
if (ret < 0) {
printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
dev->name, lp->rx_irq);
goto err_release;
}
ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
0, "Korina ethernet Tx", dev);
if (ret < 0) {
printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
dev->name, lp->tx_irq);
goto err_free_rx_irq;
}
mod_timer(&lp->media_check_timer, jiffies + 1);
out:
return ret;
err_free_rx_irq:
free_irq(lp->rx_irq, dev);
err_release:
korina_free_ring(dev);
goto out;
}
static int korina_close(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
u32 tmp;
del_timer(&lp->media_check_timer);
/* Disable interrupts */
disable_irq(lp->rx_irq);
disable_irq(lp->tx_irq);
korina_abort_tx(dev);
tmp = readl(&lp->tx_dma_regs->dmasm);
tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
writel(tmp, &lp->tx_dma_regs->dmasm);
korina_abort_rx(dev);
tmp = readl(&lp->rx_dma_regs->dmasm);
tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
writel(tmp, &lp->rx_dma_regs->dmasm);
napi_disable(&lp->napi);
cancel_work_sync(&lp->restart_task);
korina_free_ring(dev);
free_irq(lp->rx_irq, dev);
free_irq(lp->tx_irq, dev);
return 0;
}
static const struct net_device_ops korina_netdev_ops = {
.ndo_open = korina_open,
.ndo_stop = korina_close,
.ndo_start_xmit = korina_send_packet,
.ndo_set_rx_mode = korina_multicast_list,
.ndo_tx_timeout = korina_tx_timeout,
.ndo_eth_ioctl = korina_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = korina_poll_controller,
#endif
};
static int korina_probe(struct platform_device *pdev)
{
u8 *mac_addr = dev_get_platdata(&pdev->dev);
struct korina_private *lp;
struct net_device *dev;
struct clk *clk;
void __iomem *p;
int rc;
dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
lp = netdev_priv(dev);
if (mac_addr)
eth_hw_addr_set(dev, mac_addr);
else if (of_get_ethdev_address(pdev->dev.of_node, dev) < 0)
eth_hw_addr_random(dev);
clk = devm_clk_get_optional(&pdev->dev, "mdioclk");
if (IS_ERR(clk))
return PTR_ERR(clk);
if (clk) {
clk_prepare_enable(clk);
lp->mii_clock_freq = clk_get_rate(clk);
} else {
lp->mii_clock_freq = 200000000; /* max possible input clk */
}
lp->rx_irq = platform_get_irq_byname(pdev, "rx");
lp->tx_irq = platform_get_irq_byname(pdev, "tx");
p = devm_platform_ioremap_resource_byname(pdev, "emac");
if (IS_ERR(p)) {
printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
return PTR_ERR(p);
}
lp->eth_regs = p;
p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
if (IS_ERR(p)) {
printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
return PTR_ERR(p);
}
lp->rx_dma_regs = p;
p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
if (IS_ERR(p)) {
printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
return PTR_ERR(p);
}
lp->tx_dma_regs = p;
lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
&lp->td_dma, GFP_KERNEL);
if (!lp->td_ring)
return -ENOMEM;
lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
&lp->rd_dma, GFP_KERNEL);
if (!lp->rd_ring)
return -ENOMEM;
spin_lock_init(&lp->lock);
/* just use the rx dma irq */
dev->irq = lp->rx_irq;
lp->dev = dev;
lp->dmadev = &pdev->dev;
dev->netdev_ops = &korina_netdev_ops;
dev->ethtool_ops = &netdev_ethtool_ops;
dev->watchdog_timeo = TX_TIMEOUT;
netif_napi_add(dev, &lp->napi, korina_poll);
lp->mii_if.dev = dev;
lp->mii_if.mdio_read = korina_mdio_read;
lp->mii_if.mdio_write = korina_mdio_write;
lp->mii_if.phy_id = 1;
lp->mii_if.phy_id_mask = 0x1f;
lp->mii_if.reg_num_mask = 0x1f;
platform_set_drvdata(pdev, dev);
rc = register_netdev(dev);
if (rc < 0) {
printk(KERN_ERR DRV_NAME
": cannot register net device: %d\n", rc);
return rc;
}
timer_setup(&lp->media_check_timer, korina_poll_media, 0);
INIT_WORK(&lp->restart_task, korina_restart_task);
printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
dev->name);
return rc;
}
static int korina_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unregister_netdev(dev);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id korina_match[] = {
{
.compatible = "idt,3243x-emac",
},
{ }
};
MODULE_DEVICE_TABLE(of, korina_match);
#endif
static struct platform_driver korina_driver = {
.driver = {
.name = "korina",
.of_match_table = of_match_ptr(korina_match),
},
.probe = korina_probe,
.remove = korina_remove,
};
module_platform_driver(korina_driver);
MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
MODULE_LICENSE("GPL");
|