1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel ThunderBay eMMC PHY driver
*
* Copyright (C) 2021 Intel Corporation
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
/* eMMC/SD/SDIO core/phy configuration registers */
#define CTRL_CFG_0 0x00
#define CTRL_CFG_1 0x04
#define CTRL_PRESET_0 0x08
#define CTRL_PRESET_1 0x0c
#define CTRL_PRESET_2 0x10
#define CTRL_PRESET_3 0x14
#define CTRL_PRESET_4 0x18
#define CTRL_CFG_2 0x1c
#define CTRL_CFG_3 0x20
#define PHY_CFG_0 0x24
#define PHY_CFG_1 0x28
#define PHY_CFG_2 0x2c
#define PHYBIST_CTRL 0x30
#define SDHC_STAT3 0x34
#define PHY_STAT 0x38
#define PHYBIST_STAT_0 0x3c
#define PHYBIST_STAT_1 0x40
#define EMMC_AXI 0x44
/* CTRL_PRESET_3 */
#define CTRL_PRESET3_MASK GENMASK(31, 0)
#define CTRL_PRESET3_SHIFT 0
/* CTRL_CFG_0 bit fields */
#define SUPPORT_HS_MASK BIT(26)
#define SUPPORT_HS_SHIFT 26
#define SUPPORT_8B_MASK BIT(24)
#define SUPPORT_8B_SHIFT 24
/* CTRL_CFG_1 bit fields */
#define SUPPORT_SDR50_MASK BIT(28)
#define SUPPORT_SDR50_SHIFT 28
#define SLOT_TYPE_MASK GENMASK(27, 26)
#define SLOT_TYPE_OFFSET 26
#define SUPPORT_64B_MASK BIT(24)
#define SUPPORT_64B_SHIFT 24
#define SUPPORT_HS400_MASK BIT(2)
#define SUPPORT_HS400_SHIFT 2
#define SUPPORT_DDR50_MASK BIT(1)
#define SUPPORT_DDR50_SHIFT 1
#define SUPPORT_SDR104_MASK BIT(0)
#define SUPPORT_SDR104_SHIFT 0
/* PHY_CFG_0 bit fields */
#define SEL_DLY_TXCLK_MASK BIT(29)
#define SEL_DLY_TXCLK_SHIFT 29
#define SEL_DLY_RXCLK_MASK BIT(28)
#define SEL_DLY_RXCLK_SHIFT 28
#define OTAP_DLY_ENA_MASK BIT(27)
#define OTAP_DLY_ENA_SHIFT 27
#define OTAP_DLY_SEL_MASK GENMASK(26, 23)
#define OTAP_DLY_SEL_SHIFT 23
#define ITAP_CHG_WIN_MASK BIT(22)
#define ITAP_CHG_WIN_SHIFT 22
#define ITAP_DLY_ENA_MASK BIT(21)
#define ITAP_DLY_ENA_SHIFT 21
#define ITAP_DLY_SEL_MASK GENMASK(20, 16)
#define ITAP_DLY_SEL_SHIFT 16
#define RET_ENB_MASK BIT(15)
#define RET_ENB_SHIFT 15
#define RET_EN_MASK BIT(14)
#define RET_EN_SHIFT 14
#define DLL_IFF_MASK GENMASK(13, 11)
#define DLL_IFF_SHIFT 11
#define DLL_EN_MASK BIT(10)
#define DLL_EN_SHIFT 10
#define DLL_TRIM_ICP_MASK GENMASK(9, 6)
#define DLL_TRIM_ICP_SHIFT 6
#define RETRIM_EN_MASK BIT(5)
#define RETRIM_EN_SHIFT 5
#define RETRIM_MASK BIT(4)
#define RETRIM_SHIFT 4
#define DR_TY_MASK GENMASK(3, 1)
#define DR_TY_SHIFT 1
#define PWR_DOWN_MASK BIT(0)
#define PWR_DOWN_SHIFT 0
/* PHY_CFG_1 bit fields */
#define REN_DAT_MASK GENMASK(19, 12)
#define REN_DAT_SHIFT 12
#define REN_CMD_MASK BIT(11)
#define REN_CMD_SHIFT 11
#define REN_STRB_MASK BIT(10)
#define REN_STRB_SHIFT 10
#define PU_STRB_MASK BIT(20)
#define PU_STRB_SHIFT 20
/* PHY_CFG_2 bit fields */
#define CLKBUF_MASK GENMASK(24, 21)
#define CLKBUF_SHIFT 21
#define SEL_STRB_MASK GENMASK(20, 13)
#define SEL_STRB_SHIFT 13
#define SEL_FREQ_MASK GENMASK(12, 10)
#define SEL_FREQ_SHIFT 10
/* PHY_STAT bit fields */
#define CAL_DONE BIT(6)
#define DLL_RDY BIT(5)
#define OTAP_DLY 0x0
#define ITAP_DLY 0x0
#define STRB 0x33
/* From ACS_eMMC51_16nFFC_RO1100_Userguide_v1p0.pdf p17 */
#define FREQSEL_200M_170M 0x0
#define FREQSEL_170M_140M 0x1
#define FREQSEL_140M_110M 0x2
#define FREQSEL_110M_80M 0x3
#define FREQSEL_80M_50M 0x4
#define FREQSEL_275M_250M 0x5
#define FREQSEL_250M_225M 0x6
#define FREQSEL_225M_200M 0x7
/* Phy power status */
#define PHY_UNINITIALIZED 0
#define PHY_INITIALIZED 1
/*
* During init(400KHz) phy_settings will be called with 200MHZ clock
* To avoid incorrectly setting the phy for init(400KHZ) "phy_power_sts" is used.
* When actual clock is set always phy is powered off once and then powered on.
* (sdhci_arasan_set_clock). That feature will be used to identify whether the
* settings are for init phy_power_on or actual clock phy_power_on
* 0 --> init settings
* 1 --> actual settings
*/
struct thunderbay_emmc_phy {
void __iomem *reg_base;
struct clk *emmcclk;
int phy_power_sts;
};
static inline void update_reg(struct thunderbay_emmc_phy *tbh_phy, u32 offset,
u32 mask, u32 shift, u32 val)
{
u32 tmp;
tmp = readl(tbh_phy->reg_base + offset);
tmp &= ~mask;
tmp |= val << shift;
writel(tmp, tbh_phy->reg_base + offset);
}
static int thunderbay_emmc_phy_power(struct phy *phy, bool power_on)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
unsigned int freqsel = FREQSEL_200M_170M;
unsigned long rate;
static int lock;
u32 val;
int ret;
/* Disable DLL */
rate = clk_get_rate(tbh_phy->emmcclk);
switch (rate) {
case 200000000:
/* lock dll only when it is used, i.e only if SEL_DLY_TXCLK/RXCLK are 0 */
update_reg(tbh_phy, PHY_CFG_0, DLL_EN_MASK, DLL_EN_SHIFT, 0x0);
break;
/* dll lock not required for other frequencies */
case 50000000 ... 52000000:
case 400000:
default:
break;
}
if (!power_on)
return 0;
rate = clk_get_rate(tbh_phy->emmcclk);
switch (rate) {
case 170000001 ... 200000000:
freqsel = FREQSEL_200M_170M;
break;
case 140000001 ... 170000000:
freqsel = FREQSEL_170M_140M;
break;
case 110000001 ... 140000000:
freqsel = FREQSEL_140M_110M;
break;
case 80000001 ... 110000000:
freqsel = FREQSEL_110M_80M;
break;
case 50000000 ... 80000000:
freqsel = FREQSEL_80M_50M;
break;
case 250000001 ... 275000000:
freqsel = FREQSEL_275M_250M;
break;
case 225000001 ... 250000000:
freqsel = FREQSEL_250M_225M;
break;
case 200000001 ... 225000000:
freqsel = FREQSEL_225M_200M;
break;
default:
break;
}
/* Clock rate is checked against upper limit. It may fall low during init */
if (rate > 200000000)
dev_warn(&phy->dev, "Unsupported rate: %lu\n", rate);
udelay(5);
if (lock == 0) {
/* PDB will be done only once per boot */
update_reg(tbh_phy, PHY_CFG_0, PWR_DOWN_MASK,
PWR_DOWN_SHIFT, 0x1);
lock = 1;
/*
* According to the user manual, it asks driver to wait 5us for
* calpad busy trimming. However it is documented that this value is
* PVT(A.K.A. process, voltage and temperature) relevant, so some
* failure cases are found which indicates we should be more tolerant
* to calpad busy trimming.
*/
ret = readl_poll_timeout(tbh_phy->reg_base + PHY_STAT,
val, (val & CAL_DONE), 10, 50);
if (ret) {
dev_err(&phy->dev, "caldone failed, ret=%d\n", ret);
return ret;
}
}
rate = clk_get_rate(tbh_phy->emmcclk);
switch (rate) {
case 200000000:
/* Set frequency of the DLL operation */
update_reg(tbh_phy, PHY_CFG_2, SEL_FREQ_MASK, SEL_FREQ_SHIFT, freqsel);
/* Enable DLL */
update_reg(tbh_phy, PHY_CFG_0, DLL_EN_MASK, DLL_EN_SHIFT, 0x1);
/*
* After enabling analog DLL circuits docs say that we need 10.2 us if
* our source clock is at 50 MHz and that lock time scales linearly
* with clock speed. If we are powering on the PHY and the card clock
* is super slow (like 100kHz) this could take as long as 5.1 ms as
* per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms
* hopefully we won't be running at 100 kHz, but we should still make
* sure we wait long enough.
*
* NOTE: There appear to be corner cases where the DLL seems to take
* extra long to lock for reasons that aren't understood. In some
* extreme cases we've seen it take up to over 10ms (!). We'll be
* generous and give it 50ms.
*/
ret = readl_poll_timeout(tbh_phy->reg_base + PHY_STAT,
val, (val & DLL_RDY), 10, 50 * USEC_PER_MSEC);
if (ret) {
dev_err(&phy->dev, "dllrdy failed, ret=%d\n", ret);
return ret;
}
break;
default:
break;
}
return 0;
}
static int thunderbay_emmc_phy_init(struct phy *phy)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
tbh_phy->emmcclk = clk_get(&phy->dev, "emmcclk");
return PTR_ERR_OR_ZERO(tbh_phy->emmcclk);
}
static int thunderbay_emmc_phy_exit(struct phy *phy)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
clk_put(tbh_phy->emmcclk);
return 0;
}
static int thunderbay_emmc_phy_power_on(struct phy *phy)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
unsigned long rate;
/* Overwrite capability bits configurable in bootloader */
update_reg(tbh_phy, CTRL_CFG_0,
SUPPORT_HS_MASK, SUPPORT_HS_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_0,
SUPPORT_8B_MASK, SUPPORT_8B_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_SDR50_MASK, SUPPORT_SDR50_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_DDR50_MASK, SUPPORT_DDR50_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_SDR104_MASK, SUPPORT_SDR104_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_HS400_MASK, SUPPORT_HS400_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_64B_MASK, SUPPORT_64B_SHIFT, 0x1);
if (tbh_phy->phy_power_sts == PHY_UNINITIALIZED) {
/* Indicates initialization, settings for init, same as 400KHZ setting */
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK, SEL_DLY_TXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK, SEL_DLY_RXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK, ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK, ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK, OTAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK, OTAP_DLY_SEL_SHIFT, 0);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK, DLL_TRIM_ICP_SHIFT, 0);
update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1);
} else if (tbh_phy->phy_power_sts == PHY_INITIALIZED) {
/* Indicates actual clock setting */
rate = clk_get_rate(tbh_phy->emmcclk);
switch (rate) {
case 200000000:
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
SEL_DLY_TXCLK_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK,
SEL_DLY_RXCLK_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK,
ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK,
ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK,
OTAP_DLY_ENA_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK,
OTAP_DLY_SEL_SHIFT, 2);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK,
DLL_TRIM_ICP_SHIFT, 0x8);
update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK,
DR_TY_SHIFT, 0x1);
/* For HS400 only */
update_reg(tbh_phy, PHY_CFG_2, SEL_STRB_MASK,
SEL_STRB_SHIFT, STRB);
break;
case 50000000 ... 52000000:
/* For both HS and DDR52 this setting works */
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
SEL_DLY_TXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK,
SEL_DLY_RXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK,
ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK,
ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK,
OTAP_DLY_ENA_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK,
OTAP_DLY_SEL_SHIFT, 4);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK,
DLL_TRIM_ICP_SHIFT, 0x8);
update_reg(tbh_phy, PHY_CFG_0,
DR_TY_MASK, DR_TY_SHIFT, 0x1);
break;
case 400000:
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
SEL_DLY_TXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK,
SEL_DLY_RXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK,
ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK,
ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK,
OTAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK,
OTAP_DLY_SEL_SHIFT, 0);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK,
DLL_TRIM_ICP_SHIFT, 0);
update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1);
break;
default:
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
SEL_DLY_TXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK,
SEL_DLY_RXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK,
ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK,
ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK,
OTAP_DLY_ENA_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK,
OTAP_DLY_SEL_SHIFT, 2);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK,
DLL_TRIM_ICP_SHIFT, 0x8);
update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK,
DR_TY_SHIFT, 0x1);
break;
}
/* Reset, init seq called without phy_power_off, this indicates init seq */
tbh_phy->phy_power_sts = PHY_UNINITIALIZED;
}
update_reg(tbh_phy, PHY_CFG_0, RETRIM_EN_MASK, RETRIM_EN_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, RETRIM_MASK, RETRIM_SHIFT, 0x0);
return thunderbay_emmc_phy_power(phy, 1);
}
static int thunderbay_emmc_phy_power_off(struct phy *phy)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
tbh_phy->phy_power_sts = PHY_INITIALIZED;
return thunderbay_emmc_phy_power(phy, 0);
}
static const struct phy_ops thunderbay_emmc_phy_ops = {
.init = thunderbay_emmc_phy_init,
.exit = thunderbay_emmc_phy_exit,
.power_on = thunderbay_emmc_phy_power_on,
.power_off = thunderbay_emmc_phy_power_off,
.owner = THIS_MODULE,
};
static const struct of_device_id thunderbay_emmc_phy_of_match[] = {
{ .compatible = "intel,thunderbay-emmc-phy",
(void *)&thunderbay_emmc_phy_ops },
{}
};
MODULE_DEVICE_TABLE(of, thunderbay_emmc_phy_of_match);
static int thunderbay_emmc_phy_probe(struct platform_device *pdev)
{
struct thunderbay_emmc_phy *tbh_phy;
struct phy_provider *phy_provider;
struct device *dev = &pdev->dev;
const struct of_device_id *id;
struct phy *generic_phy;
struct resource *res;
if (!dev->of_node)
return -ENODEV;
tbh_phy = devm_kzalloc(dev, sizeof(*tbh_phy), GFP_KERNEL);
if (!tbh_phy)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tbh_phy->reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tbh_phy->reg_base))
return PTR_ERR(tbh_phy->reg_base);
tbh_phy->phy_power_sts = PHY_UNINITIALIZED;
id = of_match_node(thunderbay_emmc_phy_of_match, pdev->dev.of_node);
if (!id) {
dev_err(dev, "failed to get match_node\n");
return -EINVAL;
}
generic_phy = devm_phy_create(dev, dev->of_node, id->data);
if (IS_ERR(generic_phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(generic_phy);
}
phy_set_drvdata(generic_phy, tbh_phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver thunderbay_emmc_phy_driver = {
.probe = thunderbay_emmc_phy_probe,
.driver = {
.name = "thunderbay-emmc-phy",
.of_match_table = thunderbay_emmc_phy_of_match,
},
};
module_platform_driver(thunderbay_emmc_phy_driver);
MODULE_AUTHOR("Nandhini S <nandhini.srikandan@intel.com>");
MODULE_AUTHOR("Rashmi A <rashmi.a@intel.com>");
MODULE_DESCRIPTION("Intel Thunder Bay eMMC PHY driver");
MODULE_LICENSE("GPL v2");
|