1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
|
/* SPDX-License-Identifier: MIT */
/*
* Copyright (C) 2017 Google, Inc.
* Copyright _ 2017-2019, Intel Corporation.
*
* Authors:
* Sean Paul <seanpaul@chromium.org>
* Ramalingam C <ramalingam.c@intel.com>
*/
#include <linux/component.h>
#include <linux/i2c.h>
#include <linux/random.h>
#include <drm/display/drm_hdcp_helper.h>
#include <drm/i915_component.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_connector.h"
#include "intel_de.h"
#include "intel_display_power.h"
#include "intel_display_power_well.h"
#include "intel_display_types.h"
#include "intel_hdcp.h"
#include "intel_hdcp_regs.h"
#include "intel_pcode.h"
#define KEY_LOAD_TRIES 5
#define HDCP2_LC_RETRY_CNT 3
static int intel_conn_to_vcpi(struct intel_connector *connector)
{
struct drm_dp_mst_topology_mgr *mgr;
struct drm_dp_mst_atomic_payload *payload;
struct drm_dp_mst_topology_state *mst_state;
int vcpi = 0;
/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
if (!connector->port)
return 0;
mgr = connector->port->mgr;
drm_modeset_lock(&mgr->base.lock, NULL);
mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
if (drm_WARN_ON(mgr->dev, !payload))
goto out;
vcpi = payload->vcpi;
if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
vcpi = 0;
goto out;
}
out:
drm_modeset_unlock(&mgr->base.lock);
return vcpi;
}
/*
* intel_hdcp_required_content_stream selects the most highest common possible HDCP
* content_type for all streams in DP MST topology because security f/w doesn't
* have any provision to mark content_type for each stream separately, it marks
* all available streams with the content_type proivided at the time of port
* authentication. This may prohibit the userspace to use type1 content on
* HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
* DP MST topology. Though it is not compulsory, security fw should change its
* policy to mark different content_types for different streams.
*/
static int
intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
{
struct drm_connector_list_iter conn_iter;
struct intel_digital_port *conn_dig_port;
struct intel_connector *connector;
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
bool enforce_type0 = false;
int k;
data->k = 0;
if (dig_port->hdcp_auth_status)
return 0;
drm_connector_list_iter_begin(&i915->drm, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
if (connector->base.status == connector_status_disconnected)
continue;
if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
continue;
conn_dig_port = intel_attached_dig_port(connector);
if (conn_dig_port != dig_port)
continue;
if (!enforce_type0 && !dig_port->hdcp_mst_type1_capable)
enforce_type0 = true;
data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
data->k++;
/* if there is only one active stream */
if (dig_port->dp.active_mst_links <= 1)
break;
}
drm_connector_list_iter_end(&conn_iter);
if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
return -EINVAL;
/*
* Apply common protection level across all streams in DP MST Topology.
* Use highest supported content type for all streams in DP MST Topology.
*/
for (k = 0; k < data->k; k++)
data->streams[k].stream_type =
enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
return 0;
}
static int intel_hdcp_prepare_streams(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
data->k = 1;
data->streams[0].stream_type = hdcp->content_type;
} else {
ret = intel_hdcp_required_content_stream(dig_port);
if (ret)
return ret;
}
return 0;
}
static
bool intel_hdcp_is_ksv_valid(u8 *ksv)
{
int i, ones = 0;
/* KSV has 20 1's and 20 0's */
for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
ones += hweight8(ksv[i]);
if (ones != 20)
return false;
return true;
}
static
int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
const struct intel_hdcp_shim *shim, u8 *bksv)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
int ret, i, tries = 2;
/* HDCP spec states that we must retry the bksv if it is invalid */
for (i = 0; i < tries; i++) {
ret = shim->read_bksv(dig_port, bksv);
if (ret)
return ret;
if (intel_hdcp_is_ksv_valid(bksv))
break;
}
if (i == tries) {
drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
return -ENODEV;
}
return 0;
}
/* Is HDCP1.4 capable on Platform and Sink */
bool intel_hdcp_capable(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
const struct intel_hdcp_shim *shim = connector->hdcp.shim;
bool capable = false;
u8 bksv[5];
if (!shim)
return capable;
if (shim->hdcp_capable) {
shim->hdcp_capable(dig_port, &capable);
} else {
if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
capable = true;
}
return capable;
}
/* Is HDCP2.2 capable on Platform and Sink */
bool intel_hdcp2_capable(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
bool capable = false;
/* I915 support for HDCP2.2 */
if (!hdcp->hdcp2_supported)
return false;
/* MEI interface is solid */
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
if (!dev_priv->display.hdcp.comp_added || !dev_priv->display.hdcp.master) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return false;
}
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
/* Sink's capability for HDCP2.2 */
hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
return capable;
}
static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder, enum port port)
{
return intel_de_read(dev_priv,
HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
HDCP_STATUS_ENC;
}
static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder, enum port port)
{
return intel_de_read(dev_priv,
HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_ENCRYPTION_STATUS;
}
static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
const struct intel_hdcp_shim *shim)
{
int ret, read_ret;
bool ksv_ready;
/* Poll for ksv list ready (spec says max time allowed is 5s) */
ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
&ksv_ready),
read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
100 * 1000);
if (ret)
return ret;
if (read_ret)
return read_ret;
if (!ksv_ready)
return -ETIMEDOUT;
return 0;
}
static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
{
enum i915_power_well_id id;
intel_wakeref_t wakeref;
bool enabled = false;
/*
* On HSW and BDW, Display HW loads the Key as soon as Display resumes.
* On all BXT+, SW can load the keys only when the PW#1 is turned on.
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
id = HSW_DISP_PW_GLOBAL;
else
id = SKL_DISP_PW_1;
/* PG1 (power well #1) needs to be enabled */
with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
enabled = intel_display_power_well_is_enabled(dev_priv, id);
/*
* Another req for hdcp key loadability is enabled state of pll for
* cdclk. Without active crtc we wont land here. So we are assuming that
* cdclk is already on.
*/
return enabled;
}
static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
{
intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
intel_de_write(dev_priv, HDCP_KEY_STATUS,
HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
}
static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
{
int ret;
u32 val;
val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
return 0;
/*
* On HSW and BDW HW loads the HDCP1.4 Key when Display comes
* out of reset. So if Key is not already loaded, its an error state.
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
return -ENXIO;
/*
* Initiate loading the HDCP key from fuses.
*
* BXT+ platforms, HDCP key needs to be loaded by SW. Only display
* version 9 platforms (minus BXT) differ in the key load trigger
* process from other platforms. These platforms use the GT Driver
* Mailbox interface.
*/
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
if (ret) {
drm_err(&dev_priv->drm,
"Failed to initiate HDCP key load (%d)\n",
ret);
return ret;
}
} else {
intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
}
/* Wait for the keys to load (500us) */
ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
10, 1, &val);
if (ret)
return ret;
else if (!(val & HDCP_KEY_LOAD_STATUS))
return -ENXIO;
/* Send Aksv over to PCH display for use in authentication */
intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
return 0;
}
/* Returns updated SHA-1 index */
static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
{
intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
return -ETIMEDOUT;
}
return 0;
}
static
u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder, enum port port)
{
if (DISPLAY_VER(dev_priv) >= 12) {
switch (cpu_transcoder) {
case TRANSCODER_A:
return HDCP_TRANSA_REP_PRESENT |
HDCP_TRANSA_SHA1_M0;
case TRANSCODER_B:
return HDCP_TRANSB_REP_PRESENT |
HDCP_TRANSB_SHA1_M0;
case TRANSCODER_C:
return HDCP_TRANSC_REP_PRESENT |
HDCP_TRANSC_SHA1_M0;
case TRANSCODER_D:
return HDCP_TRANSD_REP_PRESENT |
HDCP_TRANSD_SHA1_M0;
default:
drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
cpu_transcoder);
return -EINVAL;
}
}
switch (port) {
case PORT_A:
return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
case PORT_B:
return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
case PORT_C:
return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
case PORT_D:
return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
case PORT_E:
return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
default:
drm_err(&dev_priv->drm, "Unknown port %d\n", port);
return -EINVAL;
}
}
static
int intel_hdcp_validate_v_prime(struct intel_connector *connector,
const struct intel_hdcp_shim *shim,
u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
enum port port = dig_port->base.port;
u32 vprime, sha_text, sha_leftovers, rep_ctl;
int ret, i, j, sha_idx;
/* Process V' values from the receiver */
for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
ret = shim->read_v_prime_part(dig_port, i, &vprime);
if (ret)
return ret;
intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
}
/*
* We need to write the concatenation of all device KSVs, BINFO (DP) ||
* BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
* stream is written via the HDCP_SHA_TEXT register in 32-bit
* increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
* index will keep track of our progress through the 64 bytes as well as
* helping us work the 40-bit KSVs through our 32-bit register.
*
* NOTE: data passed via HDCP_SHA_TEXT should be big-endian
*/
sha_idx = 0;
sha_text = 0;
sha_leftovers = 0;
rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
for (i = 0; i < num_downstream; i++) {
unsigned int sha_empty;
u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
/* Fill up the empty slots in sha_text and write it out */
sha_empty = sizeof(sha_text) - sha_leftovers;
for (j = 0; j < sha_empty; j++) {
u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
sha_text |= ksv[j] << off;
}
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
/* Programming guide writes this every 64 bytes */
sha_idx += sizeof(sha_text);
if (!(sha_idx % 64))
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_32);
/* Store the leftover bytes from the ksv in sha_text */
sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
sha_text = 0;
for (j = 0; j < sha_leftovers; j++)
sha_text |= ksv[sha_empty + j] <<
((sizeof(sha_text) - j - 1) * 8);
/*
* If we still have room in sha_text for more data, continue.
* Otherwise, write it out immediately.
*/
if (sizeof(sha_text) > sha_leftovers)
continue;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_leftovers = 0;
sha_text = 0;
sha_idx += sizeof(sha_text);
}
/*
* We need to write BINFO/BSTATUS, and M0 now. Depending on how many
* bytes are leftover from the last ksv, we might be able to fit them
* all in sha_text (first 2 cases), or we might need to split them up
* into 2 writes (last 2 cases).
*/
if (sha_leftovers == 0) {
/* Write 16 bits of text, 16 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_16);
ret = intel_write_sha_text(dev_priv,
bstatus[0] << 8 | bstatus[1]);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 16 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_16);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else if (sha_leftovers == 1) {
/* Write 24 bits of text, 8 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_24);
sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
/* Only 24-bits of data, must be in the LSB */
sha_text = (sha_text & 0xffffff00) >> 8;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 24 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_8);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else if (sha_leftovers == 2) {
/* Write 32 bits of text */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_32);
sha_text |= bstatus[0] << 8 | bstatus[1];
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 64 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_0);
for (i = 0; i < 2; i++) {
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
}
/*
* Terminate the SHA-1 stream by hand. For the other leftover
* cases this is appended by the hardware.
*/
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_32);
sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else if (sha_leftovers == 3) {
/* Write 32 bits of text (filled from LSB) */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_32);
sha_text |= bstatus[0];
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_8);
ret = intel_write_sha_text(dev_priv, bstatus[1]);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 8 bits of M0 */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_TEXT_24);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else {
drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
sha_leftovers);
return -EINVAL;
}
intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
}
/*
* Last write gets the length of the concatenation in bits. That is:
* - 5 bytes per device
* - 10 bytes for BINFO/BSTATUS(2), M0(8)
*/
sha_text = (num_downstream * 5 + 10) * 8;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
/* Tell the HW we're done with the hash and wait for it to ACK */
intel_de_write(dev_priv, HDCP_REP_CTL,
rep_ctl | HDCP_SHA1_COMPLETE_HASH);
if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
HDCP_SHA1_COMPLETE, 1)) {
drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
return -ETIMEDOUT;
}
if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
return -ENXIO;
}
return 0;
}
/* Implements Part 2 of the HDCP authorization procedure */
static
int intel_hdcp_auth_downstream(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
const struct intel_hdcp_shim *shim = connector->hdcp.shim;
u8 bstatus[2], num_downstream, *ksv_fifo;
int ret, i, tries = 3;
ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"KSV list failed to become ready (%d)\n", ret);
return ret;
}
ret = shim->read_bstatus(dig_port, bstatus);
if (ret)
return ret;
if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
return -EPERM;
}
/*
* When repeater reports 0 device count, HDCP1.4 spec allows disabling
* the HDCP encryption. That implies that repeater can't have its own
* display. As there is no consumption of encrypted content in the
* repeater with 0 downstream devices, we are failing the
* authentication.
*/
num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
if (num_downstream == 0) {
drm_dbg_kms(&dev_priv->drm,
"Repeater with zero downstream devices\n");
return -EINVAL;
}
ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
if (!ksv_fifo) {
drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
return -ENOMEM;
}
ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
if (ret)
goto err;
if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
num_downstream) > 0) {
drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
ret = -EPERM;
goto err;
}
/*
* When V prime mismatches, DP Spec mandates re-read of
* V prime atleast twice.
*/
for (i = 0; i < tries; i++) {
ret = intel_hdcp_validate_v_prime(connector, shim,
ksv_fifo, num_downstream,
bstatus);
if (!ret)
break;
}
if (i == tries) {
drm_dbg_kms(&dev_priv->drm,
"V Prime validation failed.(%d)\n", ret);
goto err;
}
drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
num_downstream);
ret = 0;
err:
kfree(ksv_fifo);
return ret;
}
/* Implements Part 1 of the HDCP authorization procedure */
static int intel_hdcp_auth(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
const struct intel_hdcp_shim *shim = hdcp->shim;
enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
enum port port = dig_port->base.port;
unsigned long r0_prime_gen_start;
int ret, i, tries = 2;
union {
u32 reg[2];
u8 shim[DRM_HDCP_AN_LEN];
} an;
union {
u32 reg[2];
u8 shim[DRM_HDCP_KSV_LEN];
} bksv;
union {
u32 reg;
u8 shim[DRM_HDCP_RI_LEN];
} ri;
bool repeater_present, hdcp_capable;
/*
* Detects whether the display is HDCP capable. Although we check for
* valid Bksv below, the HDCP over DP spec requires that we check
* whether the display supports HDCP before we write An. For HDMI
* displays, this is not necessary.
*/
if (shim->hdcp_capable) {
ret = shim->hdcp_capable(dig_port, &hdcp_capable);
if (ret)
return ret;
if (!hdcp_capable) {
drm_dbg_kms(&dev_priv->drm,
"Panel is not HDCP capable\n");
return -EINVAL;
}
}
/* Initialize An with 2 random values and acquire it */
for (i = 0; i < 2; i++)
intel_de_write(dev_priv,
HDCP_ANINIT(dev_priv, cpu_transcoder, port),
get_random_u32());
intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
HDCP_CONF_CAPTURE_AN);
/* Wait for An to be acquired */
if (intel_de_wait_for_set(dev_priv,
HDCP_STATUS(dev_priv, cpu_transcoder, port),
HDCP_STATUS_AN_READY, 1)) {
drm_err(&dev_priv->drm, "Timed out waiting for An\n");
return -ETIMEDOUT;
}
an.reg[0] = intel_de_read(dev_priv,
HDCP_ANLO(dev_priv, cpu_transcoder, port));
an.reg[1] = intel_de_read(dev_priv,
HDCP_ANHI(dev_priv, cpu_transcoder, port));
ret = shim->write_an_aksv(dig_port, an.shim);
if (ret)
return ret;
r0_prime_gen_start = jiffies;
memset(&bksv, 0, sizeof(bksv));
ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
if (ret < 0)
return ret;
if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
drm_err(&dev_priv->drm, "BKSV is revoked\n");
return -EPERM;
}
intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
bksv.reg[0]);
intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
bksv.reg[1]);
ret = shim->repeater_present(dig_port, &repeater_present);
if (ret)
return ret;
if (repeater_present)
intel_de_write(dev_priv, HDCP_REP_CTL,
intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
if (ret)
return ret;
intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
HDCP_CONF_AUTH_AND_ENC);
/* Wait for R0 ready */
if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
(HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
return -ETIMEDOUT;
}
/*
* Wait for R0' to become available. The spec says 100ms from Aksv, but
* some monitors can take longer than this. We'll set the timeout at
* 300ms just to be sure.
*
* On DP, there's an R0_READY bit available but no such bit
* exists on HDMI. Since the upper-bound is the same, we'll just do
* the stupid thing instead of polling on one and not the other.
*/
wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
tries = 3;
/*
* DP HDCP Spec mandates the two more reattempt to read R0, incase
* of R0 mismatch.
*/
for (i = 0; i < tries; i++) {
ri.reg = 0;
ret = shim->read_ri_prime(dig_port, ri.shim);
if (ret)
return ret;
intel_de_write(dev_priv,
HDCP_RPRIME(dev_priv, cpu_transcoder, port),
ri.reg);
/* Wait for Ri prime match */
if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
(HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
break;
}
if (i == tries) {
drm_dbg_kms(&dev_priv->drm,
"Timed out waiting for Ri prime match (%x)\n",
intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
cpu_transcoder, port)));
return -ETIMEDOUT;
}
/* Wait for encryption confirmation */
if (intel_de_wait_for_set(dev_priv,
HDCP_STATUS(dev_priv, cpu_transcoder, port),
HDCP_STATUS_ENC,
HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
return -ETIMEDOUT;
}
/* DP MST Auth Part 1 Step 2.a and Step 2.b */
if (shim->stream_encryption) {
ret = shim->stream_encryption(connector, true);
if (ret) {
drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
connector->base.name, connector->base.base.id);
return ret;
}
drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
transcoder_name(hdcp->stream_transcoder));
}
if (repeater_present)
return intel_hdcp_auth_downstream(connector);
drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
return 0;
}
static int _intel_hdcp_disable(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = dig_port->base.port;
enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
u32 repeater_ctl;
int ret;
drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
connector->base.name, connector->base.base.id);
if (hdcp->shim->stream_encryption) {
ret = hdcp->shim->stream_encryption(connector, false);
if (ret) {
drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
connector->base.name, connector->base.base.id);
return ret;
}
drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
transcoder_name(hdcp->stream_transcoder));
/*
* If there are other connectors on this port using HDCP,
* don't disable it until it disabled HDCP encryption for
* all connectors in MST topology.
*/
if (dig_port->num_hdcp_streams > 0)
return 0;
}
hdcp->hdcp_encrypted = false;
intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
if (intel_de_wait_for_clear(dev_priv,
HDCP_STATUS(dev_priv, cpu_transcoder, port),
~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
drm_err(&dev_priv->drm,
"Failed to disable HDCP, timeout clearing status\n");
return -ETIMEDOUT;
}
repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
port);
intel_de_write(dev_priv, HDCP_REP_CTL,
intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
if (ret) {
drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
return ret;
}
drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
return 0;
}
static int _intel_hdcp_enable(struct intel_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
int i, ret, tries = 3;
drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
connector->base.name, connector->base.base.id);
if (!hdcp_key_loadable(dev_priv)) {
drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
return -ENXIO;
}
for (i = 0; i < KEY_LOAD_TRIES; i++) {
ret = intel_hdcp_load_keys(dev_priv);
if (!ret)
break;
intel_hdcp_clear_keys(dev_priv);
}
if (ret) {
drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
ret);
return ret;
}
/* Incase of authentication failures, HDCP spec expects reauth. */
for (i = 0; i < tries; i++) {
ret = intel_hdcp_auth(connector);
if (!ret) {
hdcp->hdcp_encrypted = true;
return 0;
}
drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
/* Ensuring HDCP encryption and signalling are stopped. */
_intel_hdcp_disable(connector);
}
drm_dbg_kms(&dev_priv->drm,
"HDCP authentication failed (%d tries/%d)\n", tries, ret);
return ret;
}
static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
{
return container_of(hdcp, struct intel_connector, hdcp);
}
static void intel_hdcp_update_value(struct intel_connector *connector,
u64 value, bool update_property)
{
struct drm_device *dev = connector->base.dev;
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
if (hdcp->value == value)
return;
drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
dig_port->num_hdcp_streams--;
} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
dig_port->num_hdcp_streams++;
}
hdcp->value = value;
if (update_property) {
drm_connector_get(&connector->base);
schedule_work(&hdcp->prop_work);
}
}
/* Implements Part 3 of the HDCP authorization procedure */
static int intel_hdcp_check_link(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = dig_port->base.port;
enum transcoder cpu_transcoder;
int ret = 0;
mutex_lock(&hdcp->mutex);
mutex_lock(&dig_port->hdcp_mutex);
cpu_transcoder = hdcp->cpu_transcoder;
/* Check_link valid only when HDCP1.4 is enabled */
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
!hdcp->hdcp_encrypted) {
ret = -EINVAL;
goto out;
}
if (drm_WARN_ON(&dev_priv->drm,
!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
drm_err(&dev_priv->drm,
"%s:%d HDCP link stopped encryption,%x\n",
connector->base.name, connector->base.base.id,
intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
ret = -ENXIO;
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_DESIRED,
true);
goto out;
}
if (hdcp->shim->check_link(dig_port, connector)) {
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
}
goto out;
}
drm_dbg_kms(&dev_priv->drm,
"[%s:%d] HDCP link failed, retrying authentication\n",
connector->base.name, connector->base.base.id);
ret = _intel_hdcp_disable(connector);
if (ret) {
drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_DESIRED,
true);
goto out;
}
ret = _intel_hdcp_enable(connector);
if (ret) {
drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_DESIRED,
true);
goto out;
}
out:
mutex_unlock(&dig_port->hdcp_mutex);
mutex_unlock(&hdcp->mutex);
return ret;
}
static void intel_hdcp_prop_work(struct work_struct *work)
{
struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
prop_work);
struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
mutex_lock(&hdcp->mutex);
/*
* This worker is only used to flip between ENABLED/DESIRED. Either of
* those to UNDESIRED is handled by core. If value == UNDESIRED,
* we're running just after hdcp has been disabled, so just exit
*/
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
drm_hdcp_update_content_protection(&connector->base,
hdcp->value);
mutex_unlock(&hdcp->mutex);
drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
drm_connector_put(&connector->base);
}
bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
{
return RUNTIME_INFO(dev_priv)->has_hdcp &&
(DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
}
static int
hdcp2_prepare_ake_init(struct intel_connector *connector,
struct hdcp2_ake_init *ake_data)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
if (ret)
drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
struct hdcp2_ake_send_cert *rx_cert,
bool *paired,
struct hdcp2_ake_no_stored_km *ek_pub_km,
size_t *msg_sz)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
rx_cert, paired,
ek_pub_km, msg_sz);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int hdcp2_verify_hprime(struct intel_connector *connector,
struct hdcp2_ake_send_hprime *rx_hprime)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int
hdcp2_store_pairing_info(struct intel_connector *connector,
struct hdcp2_ake_send_pairing_info *pairing_info)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int
hdcp2_prepare_lc_init(struct intel_connector *connector,
struct hdcp2_lc_init *lc_init)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int
hdcp2_verify_lprime(struct intel_connector *connector,
struct hdcp2_lc_send_lprime *rx_lprime)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int hdcp2_prepare_skey(struct intel_connector *connector,
struct hdcp2_ske_send_eks *ske_data)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
struct hdcp2_rep_send_receiverid_list
*rep_topology,
struct hdcp2_rep_send_ack *rep_send_ack)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
rep_topology,
rep_send_ack);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm,
"Verify rep topology failed. %d\n", ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int
hdcp2_verify_mprime(struct intel_connector *connector,
struct hdcp2_rep_stream_ready *stream_ready)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int hdcp2_authenticate_port(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
if (ret < 0)
drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
ret);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int hdcp2_close_mei_session(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
comp = dev_priv->display.hdcp.master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return -EINVAL;
}
ret = comp->ops->close_hdcp_session(comp->mei_dev,
&dig_port->hdcp_port_data);
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return ret;
}
static int hdcp2_deauthenticate_port(struct intel_connector *connector)
{
return hdcp2_close_mei_session(connector);
}
/* Authentication flow starts from here */
static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
union {
struct hdcp2_ake_init ake_init;
struct hdcp2_ake_send_cert send_cert;
struct hdcp2_ake_no_stored_km no_stored_km;
struct hdcp2_ake_send_hprime send_hprime;
struct hdcp2_ake_send_pairing_info pairing_info;
} msgs;
const struct intel_hdcp_shim *shim = hdcp->shim;
size_t size;
int ret;
/* Init for seq_num */
hdcp->seq_num_v = 0;
hdcp->seq_num_m = 0;
ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
if (ret < 0)
return ret;
ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
sizeof(msgs.ake_init));
if (ret < 0)
return ret;
ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
&msgs.send_cert, sizeof(msgs.send_cert));
if (ret < 0)
return ret;
if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
return -EINVAL;
}
hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
msgs.send_cert.cert_rx.receiver_id,
1) > 0) {
drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
return -EPERM;
}
/*
* Here msgs.no_stored_km will hold msgs corresponding to the km
* stored also.
*/
ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
&hdcp->is_paired,
&msgs.no_stored_km, &size);
if (ret < 0)
return ret;
ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
if (ret < 0)
return ret;
ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
&msgs.send_hprime, sizeof(msgs.send_hprime));
if (ret < 0)
return ret;
ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
if (ret < 0)
return ret;
if (!hdcp->is_paired) {
/* Pairing is required */
ret = shim->read_2_2_msg(dig_port,
HDCP_2_2_AKE_SEND_PAIRING_INFO,
&msgs.pairing_info,
sizeof(msgs.pairing_info));
if (ret < 0)
return ret;
ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
if (ret < 0)
return ret;
hdcp->is_paired = true;
}
return 0;
}
static int hdcp2_locality_check(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
union {
struct hdcp2_lc_init lc_init;
struct hdcp2_lc_send_lprime send_lprime;
} msgs;
const struct intel_hdcp_shim *shim = hdcp->shim;
int tries = HDCP2_LC_RETRY_CNT, ret, i;
for (i = 0; i < tries; i++) {
ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
if (ret < 0)
continue;
ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
sizeof(msgs.lc_init));
if (ret < 0)
continue;
ret = shim->read_2_2_msg(dig_port,
HDCP_2_2_LC_SEND_LPRIME,
&msgs.send_lprime,
sizeof(msgs.send_lprime));
if (ret < 0)
continue;
ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
if (!ret)
break;
}
return ret;
}
static int hdcp2_session_key_exchange(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
struct hdcp2_ske_send_eks send_eks;
int ret;
ret = hdcp2_prepare_skey(connector, &send_eks);
if (ret < 0)
return ret;
ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
sizeof(send_eks));
if (ret < 0)
return ret;
return 0;
}
static
int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct intel_hdcp *hdcp = &connector->hdcp;
union {
struct hdcp2_rep_stream_manage stream_manage;
struct hdcp2_rep_stream_ready stream_ready;
} msgs;
const struct intel_hdcp_shim *shim = hdcp->shim;
int ret, streams_size_delta, i;
if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
return -ERANGE;
/* Prepare RepeaterAuth_Stream_Manage msg */
msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
msgs.stream_manage.k = cpu_to_be16(data->k);
for (i = 0; i < data->k; i++) {
msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
}
streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
sizeof(struct hdcp2_streamid_type);
/* Send it to Repeater */
ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
sizeof(msgs.stream_manage) - streams_size_delta);
if (ret < 0)
goto out;
ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
&msgs.stream_ready, sizeof(msgs.stream_ready));
if (ret < 0)
goto out;
data->seq_num_m = hdcp->seq_num_m;
ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
out:
hdcp->seq_num_m++;
return ret;
}
static
int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
union {
struct hdcp2_rep_send_receiverid_list recvid_list;
struct hdcp2_rep_send_ack rep_ack;
} msgs;
const struct intel_hdcp_shim *shim = hdcp->shim;
u32 seq_num_v, device_cnt;
u8 *rx_info;
int ret;
ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
&msgs.recvid_list, sizeof(msgs.recvid_list));
if (ret < 0)
return ret;
rx_info = msgs.recvid_list.rx_info;
if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
return -EINVAL;
}
/*
* MST topology is not Type 1 capable if it contains a downstream
* device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
*/
dig_port->hdcp_mst_type1_capable =
!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
/* Converting and Storing the seq_num_v to local variable as DWORD */
seq_num_v =
drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
if (!hdcp->hdcp2_encrypted && seq_num_v) {
drm_dbg_kms(&dev_priv->drm,
"Non zero Seq_num_v at first RecvId_List msg\n");
return -EINVAL;
}
if (seq_num_v < hdcp->seq_num_v) {
/* Roll over of the seq_num_v from repeater. Reauthenticate. */
drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
return -EINVAL;
}
device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
msgs.recvid_list.receiver_ids,
device_cnt) > 0) {
drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
return -EPERM;
}
ret = hdcp2_verify_rep_topology_prepare_ack(connector,
&msgs.recvid_list,
&msgs.rep_ack);
if (ret < 0)
return ret;
hdcp->seq_num_v = seq_num_v;
ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
sizeof(msgs.rep_ack));
if (ret < 0)
return ret;
return 0;
}
static int hdcp2_authenticate_sink(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
const struct intel_hdcp_shim *shim = hdcp->shim;
int ret;
ret = hdcp2_authentication_key_exchange(connector);
if (ret < 0) {
drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
return ret;
}
ret = hdcp2_locality_check(connector);
if (ret < 0) {
drm_dbg_kms(&i915->drm,
"Locality Check failed. Err : %d\n", ret);
return ret;
}
ret = hdcp2_session_key_exchange(connector);
if (ret < 0) {
drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
return ret;
}
if (shim->config_stream_type) {
ret = shim->config_stream_type(dig_port,
hdcp->is_repeater,
hdcp->content_type);
if (ret < 0)
return ret;
}
if (hdcp->is_repeater) {
ret = hdcp2_authenticate_repeater_topology(connector);
if (ret < 0) {
drm_dbg_kms(&i915->drm,
"Repeater Auth Failed. Err: %d\n", ret);
return ret;
}
}
return ret;
}
static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct intel_hdcp *hdcp = &connector->hdcp;
enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
enum port port = dig_port->base.port;
int ret = 0;
if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_ENCRYPTION_STATUS)) {
drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
connector->base.name, connector->base.base.id);
ret = -EPERM;
goto link_recover;
}
if (hdcp->shim->stream_2_2_encryption) {
ret = hdcp->shim->stream_2_2_encryption(connector, true);
if (ret) {
drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
connector->base.name, connector->base.base.id);
return ret;
}
drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
transcoder_name(hdcp->stream_transcoder));
}
return 0;
link_recover:
if (hdcp2_deauthenticate_port(connector) < 0)
drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
dig_port->hdcp_auth_status = false;
data->k = 0;
return ret;
}
static int hdcp2_enable_encryption(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = dig_port->base.port;
enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
int ret;
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_ENCRYPTION_STATUS);
if (hdcp->shim->toggle_signalling) {
ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
true);
if (ret) {
drm_err(&dev_priv->drm,
"Failed to enable HDCP signalling. %d\n",
ret);
return ret;
}
}
if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_AUTH_STATUS) {
/* Link is Authenticated. Now set for Encryption */
intel_de_write(dev_priv,
HDCP2_CTL(dev_priv, cpu_transcoder, port),
intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
}
ret = intel_de_wait_for_set(dev_priv,
HDCP2_STATUS(dev_priv, cpu_transcoder,
port),
LINK_ENCRYPTION_STATUS,
HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
dig_port->hdcp_auth_status = true;
return ret;
}
static int hdcp2_disable_encryption(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = dig_port->base.port;
enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
int ret;
drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_ENCRYPTION_STATUS));
intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
ret = intel_de_wait_for_clear(dev_priv,
HDCP2_STATUS(dev_priv, cpu_transcoder,
port),
LINK_ENCRYPTION_STATUS,
HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
if (ret == -ETIMEDOUT)
drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
if (hdcp->shim->toggle_signalling) {
ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
false);
if (ret) {
drm_err(&dev_priv->drm,
"Failed to disable HDCP signalling. %d\n",
ret);
return ret;
}
}
return ret;
}
static int
hdcp2_propagate_stream_management_info(struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
int i, tries = 3, ret;
if (!connector->hdcp.is_repeater)
return 0;
for (i = 0; i < tries; i++) {
ret = _hdcp2_propagate_stream_management_info(connector);
if (!ret)
break;
/* Lets restart the auth incase of seq_num_m roll over */
if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
drm_dbg_kms(&i915->drm,
"seq_num_m roll over.(%d)\n", ret);
break;
}
drm_dbg_kms(&i915->drm,
"HDCP2 stream management %d of %d Failed.(%d)\n",
i + 1, tries, ret);
}
return ret;
}
static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *i915 = to_i915(connector->base.dev);
int ret = 0, i, tries = 3;
for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
ret = hdcp2_authenticate_sink(connector);
if (!ret) {
ret = intel_hdcp_prepare_streams(connector);
if (ret) {
drm_dbg_kms(&i915->drm,
"Prepare streams failed.(%d)\n",
ret);
break;
}
ret = hdcp2_propagate_stream_management_info(connector);
if (ret) {
drm_dbg_kms(&i915->drm,
"Stream management failed.(%d)\n",
ret);
break;
}
ret = hdcp2_authenticate_port(connector);
if (!ret)
break;
drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
ret);
}
/* Clearing the mei hdcp session */
drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
i + 1, tries, ret);
if (hdcp2_deauthenticate_port(connector) < 0)
drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
}
if (!ret && !dig_port->hdcp_auth_status) {
/*
* Ensuring the required 200mSec min time interval between
* Session Key Exchange and encryption.
*/
msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
ret = hdcp2_enable_encryption(connector);
if (ret < 0) {
drm_dbg_kms(&i915->drm,
"Encryption Enable Failed.(%d)\n", ret);
if (hdcp2_deauthenticate_port(connector) < 0)
drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
}
}
if (!ret)
ret = hdcp2_enable_stream_encryption(connector);
return ret;
}
static int _intel_hdcp2_enable(struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
connector->base.name, connector->base.base.id,
hdcp->content_type);
ret = hdcp2_authenticate_and_encrypt(connector);
if (ret) {
drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
hdcp->content_type, ret);
return ret;
}
drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
connector->base.name, connector->base.base.id,
hdcp->content_type);
hdcp->hdcp2_encrypted = true;
return 0;
}
static int
_intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
connector->base.name, connector->base.base.id);
if (hdcp->shim->stream_2_2_encryption) {
ret = hdcp->shim->stream_2_2_encryption(connector, false);
if (ret) {
drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
connector->base.name, connector->base.base.id);
return ret;
}
drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
transcoder_name(hdcp->stream_transcoder));
if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
return 0;
}
ret = hdcp2_disable_encryption(connector);
if (hdcp2_deauthenticate_port(connector) < 0)
drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
connector->hdcp.hdcp2_encrypted = false;
dig_port->hdcp_auth_status = false;
data->k = 0;
return ret;
}
/* Implements the Link Integrity Check for HDCP2.2 */
static int intel_hdcp2_check_link(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = dig_port->base.port;
enum transcoder cpu_transcoder;
int ret = 0;
mutex_lock(&hdcp->mutex);
mutex_lock(&dig_port->hdcp_mutex);
cpu_transcoder = hdcp->cpu_transcoder;
/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
!hdcp->hdcp2_encrypted) {
ret = -EINVAL;
goto out;
}
if (drm_WARN_ON(&dev_priv->drm,
!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
drm_err(&dev_priv->drm,
"HDCP2.2 link stopped the encryption, %x\n",
intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
ret = -ENXIO;
_intel_hdcp2_disable(connector, true);
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_DESIRED,
true);
goto out;
}
ret = hdcp->shim->check_2_2_link(dig_port, connector);
if (ret == HDCP_LINK_PROTECTED) {
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_ENABLED,
true);
}
goto out;
}
if (ret == HDCP_TOPOLOGY_CHANGE) {
if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
goto out;
drm_dbg_kms(&dev_priv->drm,
"HDCP2.2 Downstream topology change\n");
ret = hdcp2_authenticate_repeater_topology(connector);
if (!ret) {
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_ENABLED,
true);
goto out;
}
drm_dbg_kms(&dev_priv->drm,
"[%s:%d] Repeater topology auth failed.(%d)\n",
connector->base.name, connector->base.base.id,
ret);
} else {
drm_dbg_kms(&dev_priv->drm,
"[%s:%d] HDCP2.2 link failed, retrying auth\n",
connector->base.name, connector->base.base.id);
}
ret = _intel_hdcp2_disable(connector, true);
if (ret) {
drm_err(&dev_priv->drm,
"[%s:%d] Failed to disable hdcp2.2 (%d)\n",
connector->base.name, connector->base.base.id, ret);
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
goto out;
}
ret = _intel_hdcp2_enable(connector);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"[%s:%d] Failed to enable hdcp2.2 (%d)\n",
connector->base.name, connector->base.base.id,
ret);
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_DESIRED,
true);
goto out;
}
out:
mutex_unlock(&dig_port->hdcp_mutex);
mutex_unlock(&hdcp->mutex);
return ret;
}
static void intel_hdcp_check_work(struct work_struct *work)
{
struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
struct intel_hdcp,
check_work);
struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
if (drm_connector_is_unregistered(&connector->base))
return;
if (!intel_hdcp2_check_link(connector))
schedule_delayed_work(&hdcp->check_work,
DRM_HDCP2_CHECK_PERIOD_MS);
else if (!intel_hdcp_check_link(connector))
schedule_delayed_work(&hdcp->check_work,
DRM_HDCP_CHECK_PERIOD_MS);
}
static int i915_hdcp_component_bind(struct device *i915_kdev,
struct device *mei_kdev, void *data)
{
struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
dev_priv->display.hdcp.master = (struct i915_hdcp_comp_master *)data;
dev_priv->display.hdcp.master->mei_dev = mei_kdev;
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return 0;
}
static void i915_hdcp_component_unbind(struct device *i915_kdev,
struct device *mei_kdev, void *data)
{
struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
dev_priv->display.hdcp.master = NULL;
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
}
static const struct component_ops i915_hdcp_component_ops = {
.bind = i915_hdcp_component_bind,
.unbind = i915_hdcp_component_unbind,
};
static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
{
switch (port) {
case PORT_A:
return MEI_DDI_A;
case PORT_B ... PORT_F:
return (enum mei_fw_ddi)port;
default:
return MEI_DDI_INVALID_PORT;
}
}
static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
{
switch (cpu_transcoder) {
case TRANSCODER_A ... TRANSCODER_D:
return (enum mei_fw_tc)(cpu_transcoder | 0x10);
default: /* eDP, DSI TRANSCODERS are non HDCP capable */
return MEI_INVALID_TRANSCODER;
}
}
static int initialize_hdcp_port_data(struct intel_connector *connector,
struct intel_digital_port *dig_port,
const struct intel_hdcp_shim *shim)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = dig_port->base.port;
if (DISPLAY_VER(dev_priv) < 12)
data->fw_ddi = intel_get_mei_fw_ddi_index(port);
else
/*
* As per ME FW API expectation, for GEN 12+, fw_ddi is filled
* with zero(INVALID PORT index).
*/
data->fw_ddi = MEI_DDI_INVALID_PORT;
/*
* As associated transcoder is set and modified at modeset, here fw_tc
* is initialized to zero (invalid transcoder index). This will be
* retained for <Gen12 forever.
*/
data->fw_tc = MEI_INVALID_TRANSCODER;
data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
data->protocol = (u8)shim->protocol;
if (!data->streams)
data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
sizeof(struct hdcp2_streamid_type),
GFP_KERNEL);
if (!data->streams) {
drm_err(&dev_priv->drm, "Out of Memory\n");
return -ENOMEM;
}
/* For SST */
data->streams[0].stream_id = 0;
data->streams[0].stream_type = hdcp->content_type;
return 0;
}
static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
{
if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
return false;
return (DISPLAY_VER(dev_priv) >= 10 ||
IS_KABYLAKE(dev_priv) ||
IS_COFFEELAKE(dev_priv) ||
IS_COMETLAKE(dev_priv));
}
void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
{
int ret;
if (!is_hdcp2_supported(dev_priv))
return;
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
drm_WARN_ON(&dev_priv->drm, dev_priv->display.hdcp.comp_added);
dev_priv->display.hdcp.comp_added = true;
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
I915_COMPONENT_HDCP);
if (ret < 0) {
drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
ret);
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
dev_priv->display.hdcp.comp_added = false;
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return;
}
}
static void intel_hdcp2_init(struct intel_connector *connector,
struct intel_digital_port *dig_port,
const struct intel_hdcp_shim *shim)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
ret = initialize_hdcp_port_data(connector, dig_port, shim);
if (ret) {
drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
return;
}
hdcp->hdcp2_supported = true;
}
int intel_hdcp_init(struct intel_connector *connector,
struct intel_digital_port *dig_port,
const struct intel_hdcp_shim *shim)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
if (!shim)
return -EINVAL;
if (is_hdcp2_supported(dev_priv))
intel_hdcp2_init(connector, dig_port, shim);
ret =
drm_connector_attach_content_protection_property(&connector->base,
hdcp->hdcp2_supported);
if (ret) {
hdcp->hdcp2_supported = false;
kfree(dig_port->hdcp_port_data.streams);
return ret;
}
hdcp->shim = shim;
mutex_init(&hdcp->mutex);
INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
init_waitqueue_head(&hdcp->cp_irq_queue);
return 0;
}
int intel_hdcp_enable(struct intel_connector *connector,
const struct intel_crtc_state *pipe_config, u8 content_type)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
int ret = -EINVAL;
if (!hdcp->shim)
return -ENOENT;
if (!connector->encoder) {
drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
connector->base.name, connector->base.base.id);
return -ENODEV;
}
mutex_lock(&hdcp->mutex);
mutex_lock(&dig_port->hdcp_mutex);
drm_WARN_ON(&dev_priv->drm,
hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
hdcp->content_type = content_type;
if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
hdcp->stream_transcoder = pipe_config->cpu_transcoder;
} else {
hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
hdcp->stream_transcoder = INVALID_TRANSCODER;
}
if (DISPLAY_VER(dev_priv) >= 12)
dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
/*
* Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
* is capable of HDCP2.2, it is preferred to use HDCP2.2.
*/
if (intel_hdcp2_capable(connector)) {
ret = _intel_hdcp2_enable(connector);
if (!ret)
check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
}
/*
* When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
* be attempted.
*/
if (ret && intel_hdcp_capable(connector) &&
hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
ret = _intel_hdcp_enable(connector);
}
if (!ret) {
schedule_delayed_work(&hdcp->check_work, check_link_interval);
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_ENABLED,
true);
}
mutex_unlock(&dig_port->hdcp_mutex);
mutex_unlock(&hdcp->mutex);
return ret;
}
int intel_hdcp_disable(struct intel_connector *connector)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
int ret = 0;
if (!hdcp->shim)
return -ENOENT;
mutex_lock(&hdcp->mutex);
mutex_lock(&dig_port->hdcp_mutex);
if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
goto out;
intel_hdcp_update_value(connector,
DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
if (hdcp->hdcp2_encrypted)
ret = _intel_hdcp2_disable(connector, false);
else if (hdcp->hdcp_encrypted)
ret = _intel_hdcp_disable(connector);
out:
mutex_unlock(&dig_port->hdcp_mutex);
mutex_unlock(&hdcp->mutex);
cancel_delayed_work_sync(&hdcp->check_work);
return ret;
}
void intel_hdcp_update_pipe(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
struct intel_hdcp *hdcp = &connector->hdcp;
bool content_protection_type_changed, desired_and_not_enabled = false;
if (!connector->hdcp.shim)
return;
content_protection_type_changed =
(conn_state->hdcp_content_type != hdcp->content_type &&
conn_state->content_protection !=
DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
/*
* During the HDCP encryption session if Type change is requested,
* disable the HDCP and reenable it with new TYPE value.
*/
if (conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
content_protection_type_changed)
intel_hdcp_disable(connector);
/*
* Mark the hdcp state as DESIRED after the hdcp disable of type
* change procedure.
*/
if (content_protection_type_changed) {
mutex_lock(&hdcp->mutex);
hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
drm_connector_get(&connector->base);
schedule_work(&hdcp->prop_work);
mutex_unlock(&hdcp->mutex);
}
if (conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_DESIRED) {
mutex_lock(&hdcp->mutex);
/* Avoid enabling hdcp, if it already ENABLED */
desired_and_not_enabled =
hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
mutex_unlock(&hdcp->mutex);
/*
* If HDCP already ENABLED and CP property is DESIRED, schedule
* prop_work to update correct CP property to user space.
*/
if (!desired_and_not_enabled && !content_protection_type_changed) {
drm_connector_get(&connector->base);
schedule_work(&hdcp->prop_work);
}
}
if (desired_and_not_enabled || content_protection_type_changed)
intel_hdcp_enable(connector,
crtc_state,
(u8)conn_state->hdcp_content_type);
}
void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
{
mutex_lock(&dev_priv->display.hdcp.comp_mutex);
if (!dev_priv->display.hdcp.comp_added) {
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
return;
}
dev_priv->display.hdcp.comp_added = false;
mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
}
void intel_hdcp_cleanup(struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
if (!hdcp->shim)
return;
/*
* If the connector is registered, it's possible userspace could kick
* off another HDCP enable, which would re-spawn the workers.
*/
drm_WARN_ON(connector->base.dev,
connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
/*
* Now that the connector is not registered, check_work won't be run,
* but cancel any outstanding instances of it
*/
cancel_delayed_work_sync(&hdcp->check_work);
/*
* We don't cancel prop_work in the same way as check_work since it
* requires connection_mutex which could be held while calling this
* function. Instead, we rely on the connector references grabbed before
* scheduling prop_work to ensure the connector is alive when prop_work
* is run. So if we're in the destroy path (which is where this
* function should be called), we're "guaranteed" that prop_work is not
* active (tl;dr This Should Never Happen).
*/
drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
mutex_lock(&hdcp->mutex);
hdcp->shim = NULL;
mutex_unlock(&hdcp->mutex);
}
void intel_hdcp_atomic_check(struct drm_connector *connector,
struct drm_connector_state *old_state,
struct drm_connector_state *new_state)
{
u64 old_cp = old_state->content_protection;
u64 new_cp = new_state->content_protection;
struct drm_crtc_state *crtc_state;
if (!new_state->crtc) {
/*
* If the connector is being disabled with CP enabled, mark it
* desired so it's re-enabled when the connector is brought back
*/
if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
new_state->content_protection =
DRM_MODE_CONTENT_PROTECTION_DESIRED;
return;
}
crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
new_state->crtc);
/*
* Fix the HDCP uapi content protection state in case of modeset.
* FIXME: As per HDCP content protection property uapi doc, an uevent()
* need to be sent if there is transition from ENABLED->DESIRED.
*/
if (drm_atomic_crtc_needs_modeset(crtc_state) &&
(old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
new_state->content_protection =
DRM_MODE_CONTENT_PROTECTION_DESIRED;
/*
* Nothing to do if the state didn't change, or HDCP was activated since
* the last commit. And also no change in hdcp content type.
*/
if (old_cp == new_cp ||
(old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
if (old_state->hdcp_content_type ==
new_state->hdcp_content_type)
return;
}
crtc_state->mode_changed = true;
}
/* Handles the CP_IRQ raised from the DP HDCP sink */
void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
if (!hdcp->shim)
return;
atomic_inc(&connector->hdcp.cp_irq_count);
wake_up_all(&connector->hdcp.cp_irq_queue);
schedule_delayed_work(&hdcp->check_work, 0);
}
|