1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 NXP.
*
* Scaling algorithms were contributed by Dzung Hoang <dzung.hoang@nxp.com>
*/
#include <linux/device.h>
#include <linux/slab.h>
#include "dcss-dev.h"
#define DCSS_SCALER_CTRL 0x00
#define SCALER_EN BIT(0)
#define REPEAT_EN BIT(4)
#define SCALE2MEM_EN BIT(8)
#define MEM2OFIFO_EN BIT(12)
#define DCSS_SCALER_OFIFO_CTRL 0x04
#define OFIFO_LOW_THRES_POS 0
#define OFIFO_LOW_THRES_MASK GENMASK(9, 0)
#define OFIFO_HIGH_THRES_POS 16
#define OFIFO_HIGH_THRES_MASK GENMASK(25, 16)
#define UNDERRUN_DETECT_CLR BIT(26)
#define LOW_THRES_DETECT_CLR BIT(27)
#define HIGH_THRES_DETECT_CLR BIT(28)
#define UNDERRUN_DETECT_EN BIT(29)
#define LOW_THRES_DETECT_EN BIT(30)
#define HIGH_THRES_DETECT_EN BIT(31)
#define DCSS_SCALER_SDATA_CTRL 0x08
#define YUV_EN BIT(0)
#define RTRAM_8LINES BIT(1)
#define Y_UV_BYTE_SWAP BIT(4)
#define A2R10G10B10_FORMAT_POS 8
#define A2R10G10B10_FORMAT_MASK GENMASK(11, 8)
#define DCSS_SCALER_BIT_DEPTH 0x0C
#define LUM_BIT_DEPTH_POS 0
#define LUM_BIT_DEPTH_MASK GENMASK(1, 0)
#define CHR_BIT_DEPTH_POS 4
#define CHR_BIT_DEPTH_MASK GENMASK(5, 4)
#define DCSS_SCALER_SRC_FORMAT 0x10
#define DCSS_SCALER_DST_FORMAT 0x14
#define FORMAT_MASK GENMASK(1, 0)
#define DCSS_SCALER_SRC_LUM_RES 0x18
#define DCSS_SCALER_SRC_CHR_RES 0x1C
#define DCSS_SCALER_DST_LUM_RES 0x20
#define DCSS_SCALER_DST_CHR_RES 0x24
#define WIDTH_POS 0
#define WIDTH_MASK GENMASK(11, 0)
#define HEIGHT_POS 16
#define HEIGHT_MASK GENMASK(27, 16)
#define DCSS_SCALER_V_LUM_START 0x48
#define V_START_MASK GENMASK(15, 0)
#define DCSS_SCALER_V_LUM_INC 0x4C
#define V_INC_MASK GENMASK(15, 0)
#define DCSS_SCALER_H_LUM_START 0x50
#define H_START_MASK GENMASK(18, 0)
#define DCSS_SCALER_H_LUM_INC 0x54
#define H_INC_MASK GENMASK(15, 0)
#define DCSS_SCALER_V_CHR_START 0x58
#define DCSS_SCALER_V_CHR_INC 0x5C
#define DCSS_SCALER_H_CHR_START 0x60
#define DCSS_SCALER_H_CHR_INC 0x64
#define DCSS_SCALER_COEF_VLUM 0x80
#define DCSS_SCALER_COEF_HLUM 0x140
#define DCSS_SCALER_COEF_VCHR 0x200
#define DCSS_SCALER_COEF_HCHR 0x300
struct dcss_scaler_ch {
void __iomem *base_reg;
u32 base_ofs;
struct dcss_scaler *scl;
u32 sdata_ctrl;
u32 scaler_ctrl;
bool scaler_ctrl_chgd;
u32 c_vstart;
u32 c_hstart;
bool use_nn_interpolation;
};
struct dcss_scaler {
struct device *dev;
struct dcss_ctxld *ctxld;
u32 ctx_id;
struct dcss_scaler_ch ch[3];
};
/* scaler coefficients generator */
#define PSC_FRAC_BITS 30
#define PSC_FRAC_SCALE BIT(PSC_FRAC_BITS)
#define PSC_BITS_FOR_PHASE 4
#define PSC_NUM_PHASES 16
#define PSC_STORED_PHASES (PSC_NUM_PHASES / 2 + 1)
#define PSC_NUM_TAPS 7
#define PSC_NUM_TAPS_RGBA 5
#define PSC_COEFF_PRECISION 10
#define PSC_PHASE_FRACTION_BITS 13
#define PSC_PHASE_MASK (PSC_NUM_PHASES - 1)
#define PSC_Q_FRACTION 19
#define PSC_Q_ROUND_OFFSET (1 << (PSC_Q_FRACTION - 1))
/**
* mult_q() - Performs fixed-point multiplication.
* @A: multiplier
* @B: multiplicand
*/
static int mult_q(int A, int B)
{
int result;
s64 temp;
temp = (int64_t)A * (int64_t)B;
temp += PSC_Q_ROUND_OFFSET;
result = (int)(temp >> PSC_Q_FRACTION);
return result;
}
/**
* div_q() - Performs fixed-point division.
* @A: dividend
* @B: divisor
*/
static int div_q(int A, int B)
{
int result;
s64 temp;
temp = (int64_t)A << PSC_Q_FRACTION;
if ((temp >= 0 && B >= 0) || (temp < 0 && B < 0))
temp += B / 2;
else
temp -= B / 2;
result = (int)(temp / B);
return result;
}
/**
* exp_approx_q() - Compute approximation to exp(x) function using Taylor
* series.
* @x: fixed-point argument of exp function
*/
static int exp_approx_q(int x)
{
int sum = 1 << PSC_Q_FRACTION;
int term = 1 << PSC_Q_FRACTION;
term = mult_q(term, div_q(x, 1 << PSC_Q_FRACTION));
sum += term;
term = mult_q(term, div_q(x, 2 << PSC_Q_FRACTION));
sum += term;
term = mult_q(term, div_q(x, 3 << PSC_Q_FRACTION));
sum += term;
term = mult_q(term, div_q(x, 4 << PSC_Q_FRACTION));
sum += term;
return sum;
}
/**
* dcss_scaler_gaussian_filter() - Generate gaussian prototype filter.
* @fc_q: fixed-point cutoff frequency normalized to range [0, 1]
* @use_5_taps: indicates whether to use 5 taps or 7 taps
* @coef: output filter coefficients
*/
static void dcss_scaler_gaussian_filter(int fc_q, bool use_5_taps,
bool phase0_identity,
int coef[][PSC_NUM_TAPS])
{
int sigma_q, g0_q, g1_q, g2_q;
int tap_cnt1, tap_cnt2, tap_idx, phase_cnt;
int mid;
int phase;
int i;
int taps;
if (use_5_taps)
for (phase = 0; phase < PSC_STORED_PHASES; phase++) {
coef[phase][0] = 0;
coef[phase][PSC_NUM_TAPS - 1] = 0;
}
/* seed coefficient scanner */
taps = use_5_taps ? PSC_NUM_TAPS_RGBA : PSC_NUM_TAPS;
mid = (PSC_NUM_PHASES * taps) / 2 - 1;
phase_cnt = (PSC_NUM_PHASES * (PSC_NUM_TAPS + 1)) / 2;
tap_cnt1 = (PSC_NUM_PHASES * PSC_NUM_TAPS) / 2;
tap_cnt2 = (PSC_NUM_PHASES * PSC_NUM_TAPS) / 2;
/* seed gaussian filter generator */
sigma_q = div_q(PSC_Q_ROUND_OFFSET, fc_q);
g0_q = 1 << PSC_Q_FRACTION;
g1_q = exp_approx_q(div_q(-PSC_Q_ROUND_OFFSET,
mult_q(sigma_q, sigma_q)));
g2_q = mult_q(g1_q, g1_q);
coef[phase_cnt & PSC_PHASE_MASK][tap_cnt1 >> PSC_BITS_FOR_PHASE] = g0_q;
for (i = 0; i < mid; i++) {
phase_cnt++;
tap_cnt1--;
tap_cnt2++;
g0_q = mult_q(g0_q, g1_q);
g1_q = mult_q(g1_q, g2_q);
if ((phase_cnt & PSC_PHASE_MASK) <= 8) {
tap_idx = tap_cnt1 >> PSC_BITS_FOR_PHASE;
coef[phase_cnt & PSC_PHASE_MASK][tap_idx] = g0_q;
}
if (((-phase_cnt) & PSC_PHASE_MASK) <= 8) {
tap_idx = tap_cnt2 >> PSC_BITS_FOR_PHASE;
coef[(-phase_cnt) & PSC_PHASE_MASK][tap_idx] = g0_q;
}
}
phase_cnt++;
tap_cnt1--;
coef[phase_cnt & PSC_PHASE_MASK][tap_cnt1 >> PSC_BITS_FOR_PHASE] = 0;
/* override phase 0 with identity filter if specified */
if (phase0_identity)
for (i = 0; i < PSC_NUM_TAPS; i++)
coef[0][i] = i == (PSC_NUM_TAPS >> 1) ?
(1 << PSC_COEFF_PRECISION) : 0;
/* normalize coef */
for (phase = 0; phase < PSC_STORED_PHASES; phase++) {
int sum = 0;
s64 ll_temp;
for (i = 0; i < PSC_NUM_TAPS; i++)
sum += coef[phase][i];
for (i = 0; i < PSC_NUM_TAPS; i++) {
ll_temp = coef[phase][i];
ll_temp <<= PSC_COEFF_PRECISION;
ll_temp += sum >> 1;
ll_temp /= sum;
coef[phase][i] = (int)ll_temp;
}
}
}
static void dcss_scaler_nearest_neighbor_filter(bool use_5_taps,
int coef[][PSC_NUM_TAPS])
{
int i, j;
for (i = 0; i < PSC_STORED_PHASES; i++)
for (j = 0; j < PSC_NUM_TAPS; j++)
coef[i][j] = j == PSC_NUM_TAPS >> 1 ?
(1 << PSC_COEFF_PRECISION) : 0;
}
/**
* dcss_scaler_filter_design() - Compute filter coefficients using
* Gaussian filter.
* @src_length: length of input
* @dst_length: length of output
* @use_5_taps: 0 for 7 taps per phase, 1 for 5 taps
* @coef: output coefficients
*/
static void dcss_scaler_filter_design(int src_length, int dst_length,
bool use_5_taps, bool phase0_identity,
int coef[][PSC_NUM_TAPS],
bool nn_interpolation)
{
int fc_q;
/* compute cutoff frequency */
if (dst_length >= src_length)
fc_q = div_q(1, PSC_NUM_PHASES);
else
fc_q = div_q(dst_length, src_length * PSC_NUM_PHASES);
if (nn_interpolation)
dcss_scaler_nearest_neighbor_filter(use_5_taps, coef);
else
/* compute gaussian filter coefficients */
dcss_scaler_gaussian_filter(fc_q, use_5_taps, phase0_identity, coef);
}
static void dcss_scaler_write(struct dcss_scaler_ch *ch, u32 val, u32 ofs)
{
struct dcss_scaler *scl = ch->scl;
dcss_ctxld_write(scl->ctxld, scl->ctx_id, val, ch->base_ofs + ofs);
}
static int dcss_scaler_ch_init_all(struct dcss_scaler *scl,
unsigned long scaler_base)
{
struct dcss_scaler_ch *ch;
int i;
for (i = 0; i < 3; i++) {
ch = &scl->ch[i];
ch->base_ofs = scaler_base + i * 0x400;
ch->base_reg = ioremap(ch->base_ofs, SZ_4K);
if (!ch->base_reg) {
dev_err(scl->dev, "scaler: unable to remap ch base\n");
return -ENOMEM;
}
ch->scl = scl;
}
return 0;
}
int dcss_scaler_init(struct dcss_dev *dcss, unsigned long scaler_base)
{
struct dcss_scaler *scaler;
scaler = kzalloc(sizeof(*scaler), GFP_KERNEL);
if (!scaler)
return -ENOMEM;
dcss->scaler = scaler;
scaler->dev = dcss->dev;
scaler->ctxld = dcss->ctxld;
scaler->ctx_id = CTX_SB_HP;
if (dcss_scaler_ch_init_all(scaler, scaler_base)) {
int i;
for (i = 0; i < 3; i++) {
if (scaler->ch[i].base_reg)
iounmap(scaler->ch[i].base_reg);
}
kfree(scaler);
return -ENOMEM;
}
return 0;
}
void dcss_scaler_exit(struct dcss_scaler *scl)
{
int ch_no;
for (ch_no = 0; ch_no < 3; ch_no++) {
struct dcss_scaler_ch *ch = &scl->ch[ch_no];
dcss_writel(0, ch->base_reg + DCSS_SCALER_CTRL);
if (ch->base_reg)
iounmap(ch->base_reg);
}
kfree(scl);
}
void dcss_scaler_ch_enable(struct dcss_scaler *scl, int ch_num, bool en)
{
struct dcss_scaler_ch *ch = &scl->ch[ch_num];
u32 scaler_ctrl;
scaler_ctrl = en ? SCALER_EN | REPEAT_EN : 0;
if (en)
dcss_scaler_write(ch, ch->sdata_ctrl, DCSS_SCALER_SDATA_CTRL);
if (ch->scaler_ctrl != scaler_ctrl)
ch->scaler_ctrl_chgd = true;
ch->scaler_ctrl = scaler_ctrl;
}
static void dcss_scaler_yuv_enable(struct dcss_scaler_ch *ch, bool en)
{
ch->sdata_ctrl &= ~YUV_EN;
ch->sdata_ctrl |= en ? YUV_EN : 0;
}
static void dcss_scaler_rtr_8lines_enable(struct dcss_scaler_ch *ch, bool en)
{
ch->sdata_ctrl &= ~RTRAM_8LINES;
ch->sdata_ctrl |= en ? RTRAM_8LINES : 0;
}
static void dcss_scaler_bit_depth_set(struct dcss_scaler_ch *ch, int depth)
{
u32 val;
val = depth == 30 ? 2 : 0;
dcss_scaler_write(ch,
((val << CHR_BIT_DEPTH_POS) & CHR_BIT_DEPTH_MASK) |
((val << LUM_BIT_DEPTH_POS) & LUM_BIT_DEPTH_MASK),
DCSS_SCALER_BIT_DEPTH);
}
enum buffer_format {
BUF_FMT_YUV420,
BUF_FMT_YUV422,
BUF_FMT_ARGB8888_YUV444,
};
enum chroma_location {
PSC_LOC_HORZ_0_VERT_1_OVER_4 = 0,
PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4 = 1,
PSC_LOC_HORZ_0_VERT_0 = 2,
PSC_LOC_HORZ_1_OVER_4_VERT_0 = 3,
PSC_LOC_HORZ_0_VERT_1_OVER_2 = 4,
PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2 = 5
};
static void dcss_scaler_format_set(struct dcss_scaler_ch *ch,
enum buffer_format src_fmt,
enum buffer_format dst_fmt)
{
dcss_scaler_write(ch, src_fmt, DCSS_SCALER_SRC_FORMAT);
dcss_scaler_write(ch, dst_fmt, DCSS_SCALER_DST_FORMAT);
}
static void dcss_scaler_res_set(struct dcss_scaler_ch *ch,
int src_xres, int src_yres,
int dst_xres, int dst_yres,
u32 pix_format, enum buffer_format dst_format)
{
u32 lsrc_xres, lsrc_yres, csrc_xres, csrc_yres;
u32 ldst_xres, ldst_yres, cdst_xres, cdst_yres;
bool src_is_444 = true;
lsrc_xres = src_xres;
csrc_xres = src_xres;
lsrc_yres = src_yres;
csrc_yres = src_yres;
ldst_xres = dst_xres;
cdst_xres = dst_xres;
ldst_yres = dst_yres;
cdst_yres = dst_yres;
if (pix_format == DRM_FORMAT_UYVY || pix_format == DRM_FORMAT_VYUY ||
pix_format == DRM_FORMAT_YUYV || pix_format == DRM_FORMAT_YVYU) {
csrc_xres >>= 1;
src_is_444 = false;
} else if (pix_format == DRM_FORMAT_NV12 ||
pix_format == DRM_FORMAT_NV21) {
csrc_xres >>= 1;
csrc_yres >>= 1;
src_is_444 = false;
}
if (dst_format == BUF_FMT_YUV422)
cdst_xres >>= 1;
/* for 4:4:4 to 4:2:2 conversion, source height should be 1 less */
if (src_is_444 && dst_format == BUF_FMT_YUV422) {
lsrc_yres--;
csrc_yres--;
}
dcss_scaler_write(ch, (((lsrc_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
(((lsrc_xres - 1) << WIDTH_POS) & WIDTH_MASK),
DCSS_SCALER_SRC_LUM_RES);
dcss_scaler_write(ch, (((csrc_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
(((csrc_xres - 1) << WIDTH_POS) & WIDTH_MASK),
DCSS_SCALER_SRC_CHR_RES);
dcss_scaler_write(ch, (((ldst_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
(((ldst_xres - 1) << WIDTH_POS) & WIDTH_MASK),
DCSS_SCALER_DST_LUM_RES);
dcss_scaler_write(ch, (((cdst_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
(((cdst_xres - 1) << WIDTH_POS) & WIDTH_MASK),
DCSS_SCALER_DST_CHR_RES);
}
#define downscale_fp(factor, fp_pos) ((factor) << (fp_pos))
#define upscale_fp(factor, fp_pos) ((1 << (fp_pos)) / (factor))
struct dcss_scaler_factors {
int downscale;
int upscale;
};
static const struct dcss_scaler_factors dcss_scaler_factors[] = {
{3, 8}, {5, 8}, {5, 8},
};
static void dcss_scaler_fractions_set(struct dcss_scaler_ch *ch,
int src_xres, int src_yres,
int dst_xres, int dst_yres,
u32 src_format, u32 dst_format,
enum chroma_location src_chroma_loc)
{
int src_c_xres, src_c_yres, dst_c_xres, dst_c_yres;
u32 l_vinc, l_hinc, c_vinc, c_hinc;
u32 c_vstart, c_hstart;
src_c_xres = src_xres;
src_c_yres = src_yres;
dst_c_xres = dst_xres;
dst_c_yres = dst_yres;
c_vstart = 0;
c_hstart = 0;
/* adjustments for source chroma location */
if (src_format == BUF_FMT_YUV420) {
/* vertical input chroma position adjustment */
switch (src_chroma_loc) {
case PSC_LOC_HORZ_0_VERT_1_OVER_4:
case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4:
/*
* move chroma up to first luma line
* (1/4 chroma input line spacing)
*/
c_vstart -= (1 << (PSC_PHASE_FRACTION_BITS - 2));
break;
case PSC_LOC_HORZ_0_VERT_1_OVER_2:
case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2:
/*
* move chroma up to first luma line
* (1/2 chroma input line spacing)
*/
c_vstart -= (1 << (PSC_PHASE_FRACTION_BITS - 1));
break;
default:
break;
}
/* horizontal input chroma position adjustment */
switch (src_chroma_loc) {
case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4:
case PSC_LOC_HORZ_1_OVER_4_VERT_0:
case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2:
/* move chroma left 1/4 chroma input sample spacing */
c_hstart -= (1 << (PSC_PHASE_FRACTION_BITS - 2));
break;
default:
break;
}
}
/* adjustments to chroma resolution */
if (src_format == BUF_FMT_YUV420) {
src_c_xres >>= 1;
src_c_yres >>= 1;
} else if (src_format == BUF_FMT_YUV422) {
src_c_xres >>= 1;
}
if (dst_format == BUF_FMT_YUV422)
dst_c_xres >>= 1;
l_vinc = ((src_yres << 13) + (dst_yres >> 1)) / dst_yres;
c_vinc = ((src_c_yres << 13) + (dst_c_yres >> 1)) / dst_c_yres;
l_hinc = ((src_xres << 13) + (dst_xres >> 1)) / dst_xres;
c_hinc = ((src_c_xres << 13) + (dst_c_xres >> 1)) / dst_c_xres;
/* save chroma start phase */
ch->c_vstart = c_vstart;
ch->c_hstart = c_hstart;
dcss_scaler_write(ch, 0, DCSS_SCALER_V_LUM_START);
dcss_scaler_write(ch, l_vinc, DCSS_SCALER_V_LUM_INC);
dcss_scaler_write(ch, 0, DCSS_SCALER_H_LUM_START);
dcss_scaler_write(ch, l_hinc, DCSS_SCALER_H_LUM_INC);
dcss_scaler_write(ch, c_vstart, DCSS_SCALER_V_CHR_START);
dcss_scaler_write(ch, c_vinc, DCSS_SCALER_V_CHR_INC);
dcss_scaler_write(ch, c_hstart, DCSS_SCALER_H_CHR_START);
dcss_scaler_write(ch, c_hinc, DCSS_SCALER_H_CHR_INC);
}
int dcss_scaler_get_min_max_ratios(struct dcss_scaler *scl, int ch_num,
int *min, int *max)
{
*min = upscale_fp(dcss_scaler_factors[ch_num].upscale, 16);
*max = downscale_fp(dcss_scaler_factors[ch_num].downscale, 16);
return 0;
}
static void dcss_scaler_program_5_coef_set(struct dcss_scaler_ch *ch,
int base_addr,
int coef[][PSC_NUM_TAPS])
{
int i, phase;
for (i = 0; i < PSC_STORED_PHASES; i++) {
dcss_scaler_write(ch, ((coef[i][1] & 0xfff) << 16 |
(coef[i][2] & 0xfff) << 4 |
(coef[i][3] & 0xf00) >> 8),
base_addr + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[i][3] & 0x0ff) << 20 |
(coef[i][4] & 0xfff) << 8 |
(coef[i][5] & 0xff0) >> 4),
base_addr + 0x40 + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[i][5] & 0x00f) << 24),
base_addr + 0x80 + i * sizeof(u32));
}
/* reverse both phase and tap orderings */
for (phase = (PSC_NUM_PHASES >> 1) - 1;
i < PSC_NUM_PHASES; i++, phase--) {
dcss_scaler_write(ch, ((coef[phase][5] & 0xfff) << 16 |
(coef[phase][4] & 0xfff) << 4 |
(coef[phase][3] & 0xf00) >> 8),
base_addr + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[phase][3] & 0x0ff) << 20 |
(coef[phase][2] & 0xfff) << 8 |
(coef[phase][1] & 0xff0) >> 4),
base_addr + 0x40 + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[phase][1] & 0x00f) << 24),
base_addr + 0x80 + i * sizeof(u32));
}
}
static void dcss_scaler_program_7_coef_set(struct dcss_scaler_ch *ch,
int base_addr,
int coef[][PSC_NUM_TAPS])
{
int i, phase;
for (i = 0; i < PSC_STORED_PHASES; i++) {
dcss_scaler_write(ch, ((coef[i][0] & 0xfff) << 16 |
(coef[i][1] & 0xfff) << 4 |
(coef[i][2] & 0xf00) >> 8),
base_addr + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[i][2] & 0x0ff) << 20 |
(coef[i][3] & 0xfff) << 8 |
(coef[i][4] & 0xff0) >> 4),
base_addr + 0x40 + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[i][4] & 0x00f) << 24 |
(coef[i][5] & 0xfff) << 12 |
(coef[i][6] & 0xfff)),
base_addr + 0x80 + i * sizeof(u32));
}
/* reverse both phase and tap orderings */
for (phase = (PSC_NUM_PHASES >> 1) - 1;
i < PSC_NUM_PHASES; i++, phase--) {
dcss_scaler_write(ch, ((coef[phase][6] & 0xfff) << 16 |
(coef[phase][5] & 0xfff) << 4 |
(coef[phase][4] & 0xf00) >> 8),
base_addr + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[phase][4] & 0x0ff) << 20 |
(coef[phase][3] & 0xfff) << 8 |
(coef[phase][2] & 0xff0) >> 4),
base_addr + 0x40 + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[phase][2] & 0x00f) << 24 |
(coef[phase][1] & 0xfff) << 12 |
(coef[phase][0] & 0xfff)),
base_addr + 0x80 + i * sizeof(u32));
}
}
static void dcss_scaler_yuv_coef_set(struct dcss_scaler_ch *ch,
enum buffer_format src_format,
enum buffer_format dst_format,
bool use_5_taps,
int src_xres, int src_yres, int dst_xres,
int dst_yres)
{
int coef[PSC_STORED_PHASES][PSC_NUM_TAPS];
bool program_5_taps = use_5_taps ||
(dst_format == BUF_FMT_YUV422 &&
src_format == BUF_FMT_ARGB8888_YUV444);
/* horizontal luma */
dcss_scaler_filter_design(src_xres, dst_xres, false,
src_xres == dst_xres, coef,
ch->use_nn_interpolation);
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HLUM, coef);
/* vertical luma */
dcss_scaler_filter_design(src_yres, dst_yres, program_5_taps,
src_yres == dst_yres, coef,
ch->use_nn_interpolation);
if (program_5_taps)
dcss_scaler_program_5_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
else
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
/* adjust chroma resolution */
if (src_format != BUF_FMT_ARGB8888_YUV444)
src_xres >>= 1;
if (src_format == BUF_FMT_YUV420)
src_yres >>= 1;
if (dst_format != BUF_FMT_ARGB8888_YUV444)
dst_xres >>= 1;
if (dst_format == BUF_FMT_YUV420) /* should not happen */
dst_yres >>= 1;
/* horizontal chroma */
dcss_scaler_filter_design(src_xres, dst_xres, false,
(src_xres == dst_xres) && (ch->c_hstart == 0),
coef, ch->use_nn_interpolation);
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HCHR, coef);
/* vertical chroma */
dcss_scaler_filter_design(src_yres, dst_yres, program_5_taps,
(src_yres == dst_yres) && (ch->c_vstart == 0),
coef, ch->use_nn_interpolation);
if (program_5_taps)
dcss_scaler_program_5_coef_set(ch, DCSS_SCALER_COEF_VCHR, coef);
else
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VCHR, coef);
}
static void dcss_scaler_rgb_coef_set(struct dcss_scaler_ch *ch,
int src_xres, int src_yres, int dst_xres,
int dst_yres)
{
int coef[PSC_STORED_PHASES][PSC_NUM_TAPS];
/* horizontal RGB */
dcss_scaler_filter_design(src_xres, dst_xres, false,
src_xres == dst_xres, coef,
ch->use_nn_interpolation);
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HLUM, coef);
/* vertical RGB */
dcss_scaler_filter_design(src_yres, dst_yres, false,
src_yres == dst_yres, coef,
ch->use_nn_interpolation);
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
}
static void dcss_scaler_set_rgb10_order(struct dcss_scaler_ch *ch,
const struct drm_format_info *format)
{
u32 a2r10g10b10_format;
if (format->is_yuv)
return;
ch->sdata_ctrl &= ~A2R10G10B10_FORMAT_MASK;
if (format->depth != 30)
return;
switch (format->format) {
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_XRGB2101010:
a2r10g10b10_format = 0;
break;
case DRM_FORMAT_ABGR2101010:
case DRM_FORMAT_XBGR2101010:
a2r10g10b10_format = 5;
break;
case DRM_FORMAT_RGBA1010102:
case DRM_FORMAT_RGBX1010102:
a2r10g10b10_format = 6;
break;
case DRM_FORMAT_BGRA1010102:
case DRM_FORMAT_BGRX1010102:
a2r10g10b10_format = 11;
break;
default:
a2r10g10b10_format = 0;
break;
}
ch->sdata_ctrl |= a2r10g10b10_format << A2R10G10B10_FORMAT_POS;
}
void dcss_scaler_set_filter(struct dcss_scaler *scl, int ch_num,
enum drm_scaling_filter scaling_filter)
{
struct dcss_scaler_ch *ch = &scl->ch[ch_num];
ch->use_nn_interpolation = scaling_filter == DRM_SCALING_FILTER_NEAREST_NEIGHBOR;
}
void dcss_scaler_setup(struct dcss_scaler *scl, int ch_num,
const struct drm_format_info *format,
int src_xres, int src_yres, int dst_xres, int dst_yres,
u32 vrefresh_hz)
{
struct dcss_scaler_ch *ch = &scl->ch[ch_num];
unsigned int pixel_depth = 0;
bool rtr_8line_en = false;
bool use_5_taps = false;
enum buffer_format src_format = BUF_FMT_ARGB8888_YUV444;
enum buffer_format dst_format = BUF_FMT_ARGB8888_YUV444;
u32 pix_format = format->format;
if (format->is_yuv) {
dcss_scaler_yuv_enable(ch, true);
if (pix_format == DRM_FORMAT_NV12 ||
pix_format == DRM_FORMAT_NV21) {
rtr_8line_en = true;
src_format = BUF_FMT_YUV420;
} else if (pix_format == DRM_FORMAT_UYVY ||
pix_format == DRM_FORMAT_VYUY ||
pix_format == DRM_FORMAT_YUYV ||
pix_format == DRM_FORMAT_YVYU) {
src_format = BUF_FMT_YUV422;
}
use_5_taps = !rtr_8line_en;
} else {
dcss_scaler_yuv_enable(ch, false);
pixel_depth = format->depth;
}
dcss_scaler_fractions_set(ch, src_xres, src_yres, dst_xres,
dst_yres, src_format, dst_format,
PSC_LOC_HORZ_0_VERT_1_OVER_4);
if (format->is_yuv)
dcss_scaler_yuv_coef_set(ch, src_format, dst_format,
use_5_taps, src_xres, src_yres,
dst_xres, dst_yres);
else
dcss_scaler_rgb_coef_set(ch, src_xres, src_yres,
dst_xres, dst_yres);
dcss_scaler_rtr_8lines_enable(ch, rtr_8line_en);
dcss_scaler_bit_depth_set(ch, pixel_depth);
dcss_scaler_set_rgb10_order(ch, format);
dcss_scaler_format_set(ch, src_format, dst_format);
dcss_scaler_res_set(ch, src_xres, src_yres, dst_xres, dst_yres,
pix_format, dst_format);
}
/* This function will be called from interrupt context. */
void dcss_scaler_write_sclctrl(struct dcss_scaler *scl)
{
int chnum;
dcss_ctxld_assert_locked(scl->ctxld);
for (chnum = 0; chnum < 3; chnum++) {
struct dcss_scaler_ch *ch = &scl->ch[chnum];
if (ch->scaler_ctrl_chgd) {
dcss_ctxld_write_irqsafe(scl->ctxld, scl->ctx_id,
ch->scaler_ctrl,
ch->base_ofs +
DCSS_SCALER_CTRL);
ch->scaler_ctrl_chgd = false;
}
}
}
|