1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.
#include <linux/hwspinlock.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
/* PMIC global registers definition */
#define SC2730_MODULE_EN 0x1808
#define SC2731_MODULE_EN 0xc08
#define SC27XX_MODULE_ADC_EN BIT(5)
#define SC2721_ARM_CLK_EN 0xc0c
#define SC2730_ARM_CLK_EN 0x180c
#define SC2731_ARM_CLK_EN 0xc10
#define SC27XX_CLK_ADC_EN BIT(5)
#define SC27XX_CLK_ADC_CLK_EN BIT(6)
/* ADC controller registers definition */
#define SC27XX_ADC_CTL 0x0
#define SC27XX_ADC_CH_CFG 0x4
#define SC27XX_ADC_DATA 0x4c
#define SC27XX_ADC_INT_EN 0x50
#define SC27XX_ADC_INT_CLR 0x54
#define SC27XX_ADC_INT_STS 0x58
#define SC27XX_ADC_INT_RAW 0x5c
/* Bits and mask definition for SC27XX_ADC_CTL register */
#define SC27XX_ADC_EN BIT(0)
#define SC27XX_ADC_CHN_RUN BIT(1)
#define SC27XX_ADC_12BIT_MODE BIT(2)
#define SC27XX_ADC_RUN_NUM_MASK GENMASK(7, 4)
#define SC27XX_ADC_RUN_NUM_SHIFT 4
/* Bits and mask definition for SC27XX_ADC_CH_CFG register */
#define SC27XX_ADC_CHN_ID_MASK GENMASK(4, 0)
#define SC27XX_ADC_SCALE_MASK GENMASK(10, 9)
#define SC2721_ADC_SCALE_MASK BIT(5)
#define SC27XX_ADC_SCALE_SHIFT 9
#define SC2721_ADC_SCALE_SHIFT 5
/* Bits definitions for SC27XX_ADC_INT_EN registers */
#define SC27XX_ADC_IRQ_EN BIT(0)
/* Bits definitions for SC27XX_ADC_INT_CLR registers */
#define SC27XX_ADC_IRQ_CLR BIT(0)
/* Bits definitions for SC27XX_ADC_INT_RAW registers */
#define SC27XX_ADC_IRQ_RAW BIT(0)
/* Mask definition for SC27XX_ADC_DATA register */
#define SC27XX_ADC_DATA_MASK GENMASK(11, 0)
/* Timeout (ms) for the trylock of hardware spinlocks */
#define SC27XX_ADC_HWLOCK_TIMEOUT 5000
/* Timeout (us) for ADC data conversion according to ADC datasheet */
#define SC27XX_ADC_RDY_TIMEOUT 1000000
#define SC27XX_ADC_POLL_RAW_STATUS 500
/* Maximum ADC channel number */
#define SC27XX_ADC_CHANNEL_MAX 32
/* ADC voltage ratio definition */
#define SC27XX_VOLT_RATIO(n, d) \
(((n) << SC27XX_RATIO_NUMERATOR_OFFSET) | (d))
#define SC27XX_RATIO_NUMERATOR_OFFSET 16
#define SC27XX_RATIO_DENOMINATOR_MASK GENMASK(15, 0)
/* ADC specific channel reference voltage 3.5V */
#define SC27XX_ADC_REFVOL_VDD35 3500000
/* ADC default channel reference voltage is 2.8V */
#define SC27XX_ADC_REFVOL_VDD28 2800000
struct sc27xx_adc_data {
struct device *dev;
struct regulator *volref;
struct regmap *regmap;
/*
* One hardware spinlock to synchronize between the multiple
* subsystems which will access the unique ADC controller.
*/
struct hwspinlock *hwlock;
int channel_scale[SC27XX_ADC_CHANNEL_MAX];
u32 base;
int irq;
const struct sc27xx_adc_variant_data *var_data;
};
/*
* Since different PMICs of SC27xx series can have different
* address and ratio, we should save ratio config and base
* in the device data structure.
*/
struct sc27xx_adc_variant_data {
u32 module_en;
u32 clk_en;
u32 scale_shift;
u32 scale_mask;
const struct sc27xx_adc_linear_graph *bscale_cal;
const struct sc27xx_adc_linear_graph *sscale_cal;
void (*init_scale)(struct sc27xx_adc_data *data);
int (*get_ratio)(int channel, int scale);
bool set_volref;
};
struct sc27xx_adc_linear_graph {
int volt0;
int adc0;
int volt1;
int adc1;
};
/*
* According to the datasheet, we can convert one ADC value to one voltage value
* through 2 points in the linear graph. If the voltage is less than 1.2v, we
* should use the small-scale graph, and if more than 1.2v, we should use the
* big-scale graph.
*/
static struct sc27xx_adc_linear_graph big_scale_graph = {
4200, 3310,
3600, 2832,
};
static struct sc27xx_adc_linear_graph small_scale_graph = {
1000, 3413,
100, 341,
};
static const struct sc27xx_adc_linear_graph sc2731_big_scale_graph_calib = {
4200, 850,
3600, 728,
};
static const struct sc27xx_adc_linear_graph sc2731_small_scale_graph_calib = {
1000, 838,
100, 84,
};
static const struct sc27xx_adc_linear_graph big_scale_graph_calib = {
4200, 856,
3600, 733,
};
static const struct sc27xx_adc_linear_graph small_scale_graph_calib = {
1000, 833,
100, 80,
};
static int sc27xx_adc_get_calib_data(u32 calib_data, int calib_adc)
{
return ((calib_data & 0xff) + calib_adc - 128) * 4;
}
/* get the adc nvmem cell calibration data */
static int adc_nvmem_cell_calib_data(struct sc27xx_adc_data *data, const char *cell_name)
{
struct nvmem_cell *cell;
void *buf;
u32 origin_calib_data = 0;
size_t len;
if (!data)
return -EINVAL;
cell = nvmem_cell_get(data->dev, cell_name);
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
if (IS_ERR(buf)) {
nvmem_cell_put(cell);
return PTR_ERR(buf);
}
memcpy(&origin_calib_data, buf, min(len, sizeof(u32)));
kfree(buf);
nvmem_cell_put(cell);
return origin_calib_data;
}
static int sc27xx_adc_scale_calibration(struct sc27xx_adc_data *data,
bool big_scale)
{
const struct sc27xx_adc_linear_graph *calib_graph;
struct sc27xx_adc_linear_graph *graph;
const char *cell_name;
u32 calib_data = 0;
if (big_scale) {
calib_graph = data->var_data->bscale_cal;
graph = &big_scale_graph;
cell_name = "big_scale_calib";
} else {
calib_graph = data->var_data->sscale_cal;
graph = &small_scale_graph;
cell_name = "small_scale_calib";
}
calib_data = adc_nvmem_cell_calib_data(data, cell_name);
/* Only need to calibrate the adc values in the linear graph. */
graph->adc0 = sc27xx_adc_get_calib_data(calib_data, calib_graph->adc0);
graph->adc1 = sc27xx_adc_get_calib_data(calib_data >> 8,
calib_graph->adc1);
return 0;
}
static int sc2720_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 14:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(68, 900);
case 1:
return SC27XX_VOLT_RATIO(68, 1760);
case 2:
return SC27XX_VOLT_RATIO(68, 2327);
case 3:
return SC27XX_VOLT_RATIO(68, 3654);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 16:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(48, 100);
case 1:
return SC27XX_VOLT_RATIO(480, 1955);
case 2:
return SC27XX_VOLT_RATIO(480, 2586);
case 3:
return SC27XX_VOLT_RATIO(48, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 21:
case 22:
case 23:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(3, 8);
case 1:
return SC27XX_VOLT_RATIO(375, 1955);
case 2:
return SC27XX_VOLT_RATIO(375, 2586);
case 3:
return SC27XX_VOLT_RATIO(300, 3248);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
default:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 1);
case 1:
return SC27XX_VOLT_RATIO(1000, 1955);
case 2:
return SC27XX_VOLT_RATIO(1000, 2586);
case 3:
return SC27XX_VOLT_RATIO(100, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2721_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 1:
case 2:
case 3:
case 4:
return scale ? SC27XX_VOLT_RATIO(400, 1025) :
SC27XX_VOLT_RATIO(1, 1);
case 5:
return SC27XX_VOLT_RATIO(7, 29);
case 7:
case 9:
return scale ? SC27XX_VOLT_RATIO(100, 125) :
SC27XX_VOLT_RATIO(1, 1);
case 14:
return SC27XX_VOLT_RATIO(68, 900);
case 16:
return SC27XX_VOLT_RATIO(48, 100);
case 19:
return SC27XX_VOLT_RATIO(1, 3);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2730_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 14:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(68, 900);
case 1:
return SC27XX_VOLT_RATIO(68, 1760);
case 2:
return SC27XX_VOLT_RATIO(68, 2327);
case 3:
return SC27XX_VOLT_RATIO(68, 3654);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 15:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 3);
case 1:
return SC27XX_VOLT_RATIO(1000, 5865);
case 2:
return SC27XX_VOLT_RATIO(500, 3879);
case 3:
return SC27XX_VOLT_RATIO(500, 6090);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 16:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(48, 100);
case 1:
return SC27XX_VOLT_RATIO(480, 1955);
case 2:
return SC27XX_VOLT_RATIO(480, 2586);
case 3:
return SC27XX_VOLT_RATIO(48, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 21:
case 22:
case 23:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(3, 8);
case 1:
return SC27XX_VOLT_RATIO(375, 1955);
case 2:
return SC27XX_VOLT_RATIO(375, 2586);
case 3:
return SC27XX_VOLT_RATIO(300, 3248);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
default:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 1);
case 1:
return SC27XX_VOLT_RATIO(1000, 1955);
case 2:
return SC27XX_VOLT_RATIO(1000, 2586);
case 3:
return SC27XX_VOLT_RATIO(1000, 4060);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2731_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 1:
case 2:
case 3:
case 4:
return scale ? SC27XX_VOLT_RATIO(400, 1025) :
SC27XX_VOLT_RATIO(1, 1);
case 5:
return SC27XX_VOLT_RATIO(7, 29);
case 6:
return SC27XX_VOLT_RATIO(375, 9000);
case 7:
case 8:
return scale ? SC27XX_VOLT_RATIO(100, 125) :
SC27XX_VOLT_RATIO(1, 1);
case 19:
return SC27XX_VOLT_RATIO(1, 3);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
return SC27XX_VOLT_RATIO(1, 1);
}
/*
* According to the datasheet set specific value on some channel.
*/
static void sc2720_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
data->channel_scale[i] = 3;
break;
case 7:
case 9:
data->channel_scale[i] = 2;
break;
case 13:
data->channel_scale[i] = 1;
break;
case 19:
case 30:
case 31:
data->channel_scale[i] = 3;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static void sc2730_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
case 10:
case 19:
case 30:
case 31:
data->channel_scale[i] = 3;
break;
case 7:
case 9:
data->channel_scale[i] = 2;
break;
case 13:
data->channel_scale[i] = 1;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static void sc2731_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
/*
* In the current software design, SC2731 support 2 scales,
* channels 5 uses big scale, others use smale.
*/
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
data->channel_scale[i] = 1;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static int sc27xx_adc_read(struct sc27xx_adc_data *data, int channel,
int scale, int *val)
{
int ret, ret_volref;
u32 tmp, value, status;
ret = hwspin_lock_timeout_raw(data->hwlock, SC27XX_ADC_HWLOCK_TIMEOUT);
if (ret) {
dev_err(data->dev, "timeout to get the hwspinlock\n");
return ret;
}
/*
* According to the sc2721 chip data sheet, the reference voltage of
* specific channel 30 and channel 31 in ADC module needs to be set from
* the default 2.8v to 3.5v.
*/
if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
ret = regulator_set_voltage(data->volref,
SC27XX_ADC_REFVOL_VDD35,
SC27XX_ADC_REFVOL_VDD35);
if (ret) {
dev_err(data->dev, "failed to set the volref 3.5v\n");
goto unlock_adc;
}
}
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_EN, SC27XX_ADC_EN);
if (ret)
goto regulator_restore;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_INT_CLR,
SC27XX_ADC_IRQ_CLR, SC27XX_ADC_IRQ_CLR);
if (ret)
goto disable_adc;
/* Configure the channel id and scale */
tmp = (scale << data->var_data->scale_shift) & data->var_data->scale_mask;
tmp |= channel & SC27XX_ADC_CHN_ID_MASK;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CH_CFG,
SC27XX_ADC_CHN_ID_MASK |
data->var_data->scale_mask,
tmp);
if (ret)
goto disable_adc;
/* Select 12bit conversion mode, and only sample 1 time */
tmp = SC27XX_ADC_12BIT_MODE;
tmp |= (0 << SC27XX_ADC_RUN_NUM_SHIFT) & SC27XX_ADC_RUN_NUM_MASK;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_RUN_NUM_MASK | SC27XX_ADC_12BIT_MODE,
tmp);
if (ret)
goto disable_adc;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_CHN_RUN, SC27XX_ADC_CHN_RUN);
if (ret)
goto disable_adc;
ret = regmap_read_poll_timeout(data->regmap,
data->base + SC27XX_ADC_INT_RAW,
status, (status & SC27XX_ADC_IRQ_RAW),
SC27XX_ADC_POLL_RAW_STATUS,
SC27XX_ADC_RDY_TIMEOUT);
if (ret) {
dev_err(data->dev, "read adc timeout, status = 0x%x\n", status);
goto disable_adc;
}
ret = regmap_read(data->regmap, data->base + SC27XX_ADC_DATA, &value);
if (ret)
goto disable_adc;
value &= SC27XX_ADC_DATA_MASK;
disable_adc:
regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_EN, 0);
regulator_restore:
if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
ret_volref = regulator_set_voltage(data->volref,
SC27XX_ADC_REFVOL_VDD28,
SC27XX_ADC_REFVOL_VDD28);
if (ret_volref) {
dev_err(data->dev, "failed to set the volref 2.8v,ret_volref = 0x%x\n",
ret_volref);
ret = ret || ret_volref;
}
}
unlock_adc:
hwspin_unlock_raw(data->hwlock);
if (!ret)
*val = value;
return ret;
}
static void sc27xx_adc_volt_ratio(struct sc27xx_adc_data *data, int channel, int scale,
struct u32_fract *fract)
{
u32 ratio;
ratio = data->var_data->get_ratio(channel, scale);
fract->numerator = ratio >> SC27XX_RATIO_NUMERATOR_OFFSET;
fract->denominator = ratio & SC27XX_RATIO_DENOMINATOR_MASK;
}
static int adc_to_volt(struct sc27xx_adc_linear_graph *graph,
int raw_adc)
{
int tmp;
tmp = (graph->volt0 - graph->volt1) * (raw_adc - graph->adc1);
tmp /= (graph->adc0 - graph->adc1);
tmp += graph->volt1;
return tmp;
}
static int sc27xx_adc_to_volt(struct sc27xx_adc_linear_graph *graph,
int raw_adc)
{
int tmp;
tmp = adc_to_volt(graph, raw_adc);
return tmp < 0 ? 0 : tmp;
}
static int sc27xx_adc_convert_volt(struct sc27xx_adc_data *data, int channel,
int scale, int raw_adc)
{
struct u32_fract fract;
u32 volt;
/*
* Convert ADC values to voltage values according to the linear graph,
* and channel 5 and channel 1 has been calibrated, so we can just
* return the voltage values calculated by the linear graph. But other
* channels need be calculated to the real voltage values with the
* voltage ratio.
*/
switch (channel) {
case 5:
return sc27xx_adc_to_volt(&big_scale_graph, raw_adc);
case 1:
return sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
default:
volt = sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
break;
}
sc27xx_adc_volt_ratio(data, channel, scale, &fract);
return DIV_ROUND_CLOSEST(volt * fract.denominator, fract.numerator);
}
static int sc27xx_adc_read_processed(struct sc27xx_adc_data *data,
int channel, int scale, int *val)
{
int ret, raw_adc;
ret = sc27xx_adc_read(data, channel, scale, &raw_adc);
if (ret)
return ret;
*val = sc27xx_adc_convert_volt(data, channel, scale, raw_adc);
return 0;
}
static int sc27xx_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct sc27xx_adc_data *data = iio_priv(indio_dev);
int scale = data->channel_scale[chan->channel];
int ret, tmp;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&indio_dev->mlock);
ret = sc27xx_adc_read(data, chan->channel, scale, &tmp);
mutex_unlock(&indio_dev->mlock);
if (ret)
return ret;
*val = tmp;
return IIO_VAL_INT;
case IIO_CHAN_INFO_PROCESSED:
mutex_lock(&indio_dev->mlock);
ret = sc27xx_adc_read_processed(data, chan->channel, scale,
&tmp);
mutex_unlock(&indio_dev->mlock);
if (ret)
return ret;
*val = tmp;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = scale;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int sc27xx_adc_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct sc27xx_adc_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
data->channel_scale[chan->channel] = val;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static const struct iio_info sc27xx_info = {
.read_raw = &sc27xx_adc_read_raw,
.write_raw = &sc27xx_adc_write_raw,
};
#define SC27XX_ADC_CHANNEL(index, mask) { \
.type = IIO_VOLTAGE, \
.channel = index, \
.info_mask_separate = mask | BIT(IIO_CHAN_INFO_SCALE), \
.datasheet_name = "CH##index", \
.indexed = 1, \
}
static const struct iio_chan_spec sc27xx_channels[] = {
SC27XX_ADC_CHANNEL(0, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(1, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(2, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(3, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(4, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(5, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(6, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(7, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(8, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(9, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(10, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(11, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(12, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(13, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(14, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(15, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(16, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(17, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(18, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(19, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(20, BIT(IIO_CHAN_INFO_RAW)),
SC27XX_ADC_CHANNEL(21, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(22, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(23, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(24, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(25, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(26, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(27, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(28, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(29, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(30, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(31, BIT(IIO_CHAN_INFO_PROCESSED)),
};
static int sc27xx_adc_enable(struct sc27xx_adc_data *data)
{
int ret;
ret = regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, SC27XX_MODULE_ADC_EN);
if (ret)
return ret;
/* Enable ADC work clock and controller clock */
ret = regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN);
if (ret)
goto disable_adc;
/* ADC channel scales' calibration from nvmem device */
ret = sc27xx_adc_scale_calibration(data, true);
if (ret)
goto disable_clk;
ret = sc27xx_adc_scale_calibration(data, false);
if (ret)
goto disable_clk;
return 0;
disable_clk:
regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
disable_adc:
regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, 0);
return ret;
}
static void sc27xx_adc_disable(void *_data)
{
struct sc27xx_adc_data *data = _data;
/* Disable ADC work clock and controller clock */
regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, 0);
}
static const struct sc27xx_adc_variant_data sc2731_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2731_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &sc2731_big_scale_graph_calib,
.sscale_cal = &sc2731_small_scale_graph_calib,
.init_scale = sc2731_adc_scale_init,
.get_ratio = sc2731_adc_get_ratio,
.set_volref = false,
};
static const struct sc27xx_adc_variant_data sc2730_data = {
.module_en = SC2730_MODULE_EN,
.clk_en = SC2730_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &big_scale_graph_calib,
.sscale_cal = &small_scale_graph_calib,
.init_scale = sc2730_adc_scale_init,
.get_ratio = sc2730_adc_get_ratio,
.set_volref = false,
};
static const struct sc27xx_adc_variant_data sc2721_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2721_ARM_CLK_EN,
.scale_shift = SC2721_ADC_SCALE_SHIFT,
.scale_mask = SC2721_ADC_SCALE_MASK,
.bscale_cal = &sc2731_big_scale_graph_calib,
.sscale_cal = &sc2731_small_scale_graph_calib,
.init_scale = sc2731_adc_scale_init,
.get_ratio = sc2721_adc_get_ratio,
.set_volref = true,
};
static const struct sc27xx_adc_variant_data sc2720_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2721_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &big_scale_graph_calib,
.sscale_cal = &small_scale_graph_calib,
.init_scale = sc2720_adc_scale_init,
.get_ratio = sc2720_adc_get_ratio,
.set_volref = false,
};
static int sc27xx_adc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct sc27xx_adc_data *sc27xx_data;
const struct sc27xx_adc_variant_data *pdata;
struct iio_dev *indio_dev;
int ret;
pdata = of_device_get_match_data(dev);
if (!pdata) {
dev_err(dev, "No matching driver data found\n");
return -EINVAL;
}
indio_dev = devm_iio_device_alloc(dev, sizeof(*sc27xx_data));
if (!indio_dev)
return -ENOMEM;
sc27xx_data = iio_priv(indio_dev);
sc27xx_data->regmap = dev_get_regmap(dev->parent, NULL);
if (!sc27xx_data->regmap) {
dev_err(dev, "failed to get ADC regmap\n");
return -ENODEV;
}
ret = of_property_read_u32(np, "reg", &sc27xx_data->base);
if (ret) {
dev_err(dev, "failed to get ADC base address\n");
return ret;
}
sc27xx_data->irq = platform_get_irq(pdev, 0);
if (sc27xx_data->irq < 0)
return sc27xx_data->irq;
ret = of_hwspin_lock_get_id(np, 0);
if (ret < 0) {
dev_err(dev, "failed to get hwspinlock id\n");
return ret;
}
sc27xx_data->hwlock = devm_hwspin_lock_request_specific(dev, ret);
if (!sc27xx_data->hwlock) {
dev_err(dev, "failed to request hwspinlock\n");
return -ENXIO;
}
sc27xx_data->dev = dev;
if (pdata->set_volref) {
sc27xx_data->volref = devm_regulator_get(dev, "vref");
if (IS_ERR(sc27xx_data->volref)) {
ret = PTR_ERR(sc27xx_data->volref);
return dev_err_probe(dev, ret, "failed to get ADC volref\n");
}
}
sc27xx_data->var_data = pdata;
sc27xx_data->var_data->init_scale(sc27xx_data);
ret = sc27xx_adc_enable(sc27xx_data);
if (ret) {
dev_err(dev, "failed to enable ADC module\n");
return ret;
}
ret = devm_add_action_or_reset(dev, sc27xx_adc_disable, sc27xx_data);
if (ret) {
dev_err(dev, "failed to add ADC disable action\n");
return ret;
}
indio_dev->name = dev_name(dev);
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &sc27xx_info;
indio_dev->channels = sc27xx_channels;
indio_dev->num_channels = ARRAY_SIZE(sc27xx_channels);
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
dev_err(dev, "could not register iio (ADC)");
return ret;
}
static const struct of_device_id sc27xx_adc_of_match[] = {
{ .compatible = "sprd,sc2731-adc", .data = &sc2731_data},
{ .compatible = "sprd,sc2730-adc", .data = &sc2730_data},
{ .compatible = "sprd,sc2721-adc", .data = &sc2721_data},
{ .compatible = "sprd,sc2720-adc", .data = &sc2720_data},
{ }
};
MODULE_DEVICE_TABLE(of, sc27xx_adc_of_match);
static struct platform_driver sc27xx_adc_driver = {
.probe = sc27xx_adc_probe,
.driver = {
.name = "sc27xx-adc",
.of_match_table = sc27xx_adc_of_match,
},
};
module_platform_driver(sc27xx_adc_driver);
MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
MODULE_DESCRIPTION("Spreadtrum SC27XX ADC Driver");
MODULE_LICENSE("GPL v2");
|