1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*/
#include "noise.h"
#include "device.h"
#include "peer.h"
#include "messages.h"
#include "queueing.h"
#include "peerlookup.h"
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/bitmap.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <crypto/algapi.h>
/* This implements Noise_IKpsk2:
*
* <- s
* ******
* -> e, es, s, ss, {t}
* <- e, ee, se, psk, {}
*/
static const u8 handshake_name[37] = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
static const u8 identifier_name[34] = "WireGuard v1 zx2c4 Jason@zx2c4.com";
static u8 handshake_init_hash[NOISE_HASH_LEN] __ro_after_init;
static u8 handshake_init_chaining_key[NOISE_HASH_LEN] __ro_after_init;
static atomic64_t keypair_counter = ATOMIC64_INIT(0);
void __init wg_noise_init(void)
{
struct blake2s_state blake;
blake2s(handshake_init_chaining_key, handshake_name, NULL,
NOISE_HASH_LEN, sizeof(handshake_name), 0);
blake2s_init(&blake, NOISE_HASH_LEN);
blake2s_update(&blake, handshake_init_chaining_key, NOISE_HASH_LEN);
blake2s_update(&blake, identifier_name, sizeof(identifier_name));
blake2s_final(&blake, handshake_init_hash);
}
/* Must hold peer->handshake.static_identity->lock */
void wg_noise_precompute_static_static(struct wg_peer *peer)
{
down_write(&peer->handshake.lock);
if (!peer->handshake.static_identity->has_identity ||
!curve25519(peer->handshake.precomputed_static_static,
peer->handshake.static_identity->static_private,
peer->handshake.remote_static))
memset(peer->handshake.precomputed_static_static, 0,
NOISE_PUBLIC_KEY_LEN);
up_write(&peer->handshake.lock);
}
void wg_noise_handshake_init(struct noise_handshake *handshake,
struct noise_static_identity *static_identity,
const u8 peer_public_key[NOISE_PUBLIC_KEY_LEN],
const u8 peer_preshared_key[NOISE_SYMMETRIC_KEY_LEN],
struct wg_peer *peer)
{
memset(handshake, 0, sizeof(*handshake));
init_rwsem(&handshake->lock);
handshake->entry.type = INDEX_HASHTABLE_HANDSHAKE;
handshake->entry.peer = peer;
memcpy(handshake->remote_static, peer_public_key, NOISE_PUBLIC_KEY_LEN);
if (peer_preshared_key)
memcpy(handshake->preshared_key, peer_preshared_key,
NOISE_SYMMETRIC_KEY_LEN);
handshake->static_identity = static_identity;
handshake->state = HANDSHAKE_ZEROED;
wg_noise_precompute_static_static(peer);
}
static void handshake_zero(struct noise_handshake *handshake)
{
memset(&handshake->ephemeral_private, 0, NOISE_PUBLIC_KEY_LEN);
memset(&handshake->remote_ephemeral, 0, NOISE_PUBLIC_KEY_LEN);
memset(&handshake->hash, 0, NOISE_HASH_LEN);
memset(&handshake->chaining_key, 0, NOISE_HASH_LEN);
handshake->remote_index = 0;
handshake->state = HANDSHAKE_ZEROED;
}
void wg_noise_handshake_clear(struct noise_handshake *handshake)
{
down_write(&handshake->lock);
wg_index_hashtable_remove(
handshake->entry.peer->device->index_hashtable,
&handshake->entry);
handshake_zero(handshake);
up_write(&handshake->lock);
}
static struct noise_keypair *keypair_create(struct wg_peer *peer)
{
struct noise_keypair *keypair = kzalloc(sizeof(*keypair), GFP_KERNEL);
if (unlikely(!keypair))
return NULL;
spin_lock_init(&keypair->receiving_counter.lock);
keypair->internal_id = atomic64_inc_return(&keypair_counter);
keypair->entry.type = INDEX_HASHTABLE_KEYPAIR;
keypair->entry.peer = peer;
kref_init(&keypair->refcount);
return keypair;
}
static void keypair_free_rcu(struct rcu_head *rcu)
{
kfree_sensitive(container_of(rcu, struct noise_keypair, rcu));
}
static void keypair_free_kref(struct kref *kref)
{
struct noise_keypair *keypair =
container_of(kref, struct noise_keypair, refcount);
net_dbg_ratelimited("%s: Keypair %llu destroyed for peer %llu\n",
keypair->entry.peer->device->dev->name,
keypair->internal_id,
keypair->entry.peer->internal_id);
wg_index_hashtable_remove(keypair->entry.peer->device->index_hashtable,
&keypair->entry);
call_rcu(&keypair->rcu, keypair_free_rcu);
}
void wg_noise_keypair_put(struct noise_keypair *keypair, bool unreference_now)
{
if (unlikely(!keypair))
return;
if (unlikely(unreference_now))
wg_index_hashtable_remove(
keypair->entry.peer->device->index_hashtable,
&keypair->entry);
kref_put(&keypair->refcount, keypair_free_kref);
}
struct noise_keypair *wg_noise_keypair_get(struct noise_keypair *keypair)
{
RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(),
"Taking noise keypair reference without holding the RCU BH read lock");
if (unlikely(!keypair || !kref_get_unless_zero(&keypair->refcount)))
return NULL;
return keypair;
}
void wg_noise_keypairs_clear(struct noise_keypairs *keypairs)
{
struct noise_keypair *old;
spin_lock_bh(&keypairs->keypair_update_lock);
/* We zero the next_keypair before zeroing the others, so that
* wg_noise_received_with_keypair returns early before subsequent ones
* are zeroed.
*/
old = rcu_dereference_protected(keypairs->next_keypair,
lockdep_is_held(&keypairs->keypair_update_lock));
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
wg_noise_keypair_put(old, true);
old = rcu_dereference_protected(keypairs->previous_keypair,
lockdep_is_held(&keypairs->keypair_update_lock));
RCU_INIT_POINTER(keypairs->previous_keypair, NULL);
wg_noise_keypair_put(old, true);
old = rcu_dereference_protected(keypairs->current_keypair,
lockdep_is_held(&keypairs->keypair_update_lock));
RCU_INIT_POINTER(keypairs->current_keypair, NULL);
wg_noise_keypair_put(old, true);
spin_unlock_bh(&keypairs->keypair_update_lock);
}
void wg_noise_expire_current_peer_keypairs(struct wg_peer *peer)
{
struct noise_keypair *keypair;
wg_noise_handshake_clear(&peer->handshake);
wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake);
spin_lock_bh(&peer->keypairs.keypair_update_lock);
keypair = rcu_dereference_protected(peer->keypairs.next_keypair,
lockdep_is_held(&peer->keypairs.keypair_update_lock));
if (keypair)
keypair->sending.is_valid = false;
keypair = rcu_dereference_protected(peer->keypairs.current_keypair,
lockdep_is_held(&peer->keypairs.keypair_update_lock));
if (keypair)
keypair->sending.is_valid = false;
spin_unlock_bh(&peer->keypairs.keypair_update_lock);
}
static void add_new_keypair(struct noise_keypairs *keypairs,
struct noise_keypair *new_keypair)
{
struct noise_keypair *previous_keypair, *next_keypair, *current_keypair;
spin_lock_bh(&keypairs->keypair_update_lock);
previous_keypair = rcu_dereference_protected(keypairs->previous_keypair,
lockdep_is_held(&keypairs->keypair_update_lock));
next_keypair = rcu_dereference_protected(keypairs->next_keypair,
lockdep_is_held(&keypairs->keypair_update_lock));
current_keypair = rcu_dereference_protected(keypairs->current_keypair,
lockdep_is_held(&keypairs->keypair_update_lock));
if (new_keypair->i_am_the_initiator) {
/* If we're the initiator, it means we've sent a handshake, and
* received a confirmation response, which means this new
* keypair can now be used.
*/
if (next_keypair) {
/* If there already was a next keypair pending, we
* demote it to be the previous keypair, and free the
* existing current. Note that this means KCI can result
* in this transition. It would perhaps be more sound to
* always just get rid of the unused next keypair
* instead of putting it in the previous slot, but this
* might be a bit less robust. Something to think about
* for the future.
*/
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
rcu_assign_pointer(keypairs->previous_keypair,
next_keypair);
wg_noise_keypair_put(current_keypair, true);
} else /* If there wasn't an existing next keypair, we replace
* the previous with the current one.
*/
rcu_assign_pointer(keypairs->previous_keypair,
current_keypair);
/* At this point we can get rid of the old previous keypair, and
* set up the new keypair.
*/
wg_noise_keypair_put(previous_keypair, true);
rcu_assign_pointer(keypairs->current_keypair, new_keypair);
} else {
/* If we're the responder, it means we can't use the new keypair
* until we receive confirmation via the first data packet, so
* we get rid of the existing previous one, the possibly
* existing next one, and slide in the new next one.
*/
rcu_assign_pointer(keypairs->next_keypair, new_keypair);
wg_noise_keypair_put(next_keypair, true);
RCU_INIT_POINTER(keypairs->previous_keypair, NULL);
wg_noise_keypair_put(previous_keypair, true);
}
spin_unlock_bh(&keypairs->keypair_update_lock);
}
bool wg_noise_received_with_keypair(struct noise_keypairs *keypairs,
struct noise_keypair *received_keypair)
{
struct noise_keypair *old_keypair;
bool key_is_new;
/* We first check without taking the spinlock. */
key_is_new = received_keypair ==
rcu_access_pointer(keypairs->next_keypair);
if (likely(!key_is_new))
return false;
spin_lock_bh(&keypairs->keypair_update_lock);
/* After locking, we double check that things didn't change from
* beneath us.
*/
if (unlikely(received_keypair !=
rcu_dereference_protected(keypairs->next_keypair,
lockdep_is_held(&keypairs->keypair_update_lock)))) {
spin_unlock_bh(&keypairs->keypair_update_lock);
return false;
}
/* When we've finally received the confirmation, we slide the next
* into the current, the current into the previous, and get rid of
* the old previous.
*/
old_keypair = rcu_dereference_protected(keypairs->previous_keypair,
lockdep_is_held(&keypairs->keypair_update_lock));
rcu_assign_pointer(keypairs->previous_keypair,
rcu_dereference_protected(keypairs->current_keypair,
lockdep_is_held(&keypairs->keypair_update_lock)));
wg_noise_keypair_put(old_keypair, true);
rcu_assign_pointer(keypairs->current_keypair, received_keypair);
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
spin_unlock_bh(&keypairs->keypair_update_lock);
return true;
}
/* Must hold static_identity->lock */
void wg_noise_set_static_identity_private_key(
struct noise_static_identity *static_identity,
const u8 private_key[NOISE_PUBLIC_KEY_LEN])
{
memcpy(static_identity->static_private, private_key,
NOISE_PUBLIC_KEY_LEN);
curve25519_clamp_secret(static_identity->static_private);
static_identity->has_identity = curve25519_generate_public(
static_identity->static_public, private_key);
}
static void hmac(u8 *out, const u8 *in, const u8 *key, const size_t inlen, const size_t keylen)
{
struct blake2s_state state;
u8 x_key[BLAKE2S_BLOCK_SIZE] __aligned(__alignof__(u32)) = { 0 };
u8 i_hash[BLAKE2S_HASH_SIZE] __aligned(__alignof__(u32));
int i;
if (keylen > BLAKE2S_BLOCK_SIZE) {
blake2s_init(&state, BLAKE2S_HASH_SIZE);
blake2s_update(&state, key, keylen);
blake2s_final(&state, x_key);
} else
memcpy(x_key, key, keylen);
for (i = 0; i < BLAKE2S_BLOCK_SIZE; ++i)
x_key[i] ^= 0x36;
blake2s_init(&state, BLAKE2S_HASH_SIZE);
blake2s_update(&state, x_key, BLAKE2S_BLOCK_SIZE);
blake2s_update(&state, in, inlen);
blake2s_final(&state, i_hash);
for (i = 0; i < BLAKE2S_BLOCK_SIZE; ++i)
x_key[i] ^= 0x5c ^ 0x36;
blake2s_init(&state, BLAKE2S_HASH_SIZE);
blake2s_update(&state, x_key, BLAKE2S_BLOCK_SIZE);
blake2s_update(&state, i_hash, BLAKE2S_HASH_SIZE);
blake2s_final(&state, i_hash);
memcpy(out, i_hash, BLAKE2S_HASH_SIZE);
memzero_explicit(x_key, BLAKE2S_BLOCK_SIZE);
memzero_explicit(i_hash, BLAKE2S_HASH_SIZE);
}
/* This is Hugo Krawczyk's HKDF:
* - https://eprint.iacr.org/2010/264.pdf
* - https://tools.ietf.org/html/rfc5869
*/
static void kdf(u8 *first_dst, u8 *second_dst, u8 *third_dst, const u8 *data,
size_t first_len, size_t second_len, size_t third_len,
size_t data_len, const u8 chaining_key[NOISE_HASH_LEN])
{
u8 output[BLAKE2S_HASH_SIZE + 1];
u8 secret[BLAKE2S_HASH_SIZE];
WARN_ON(IS_ENABLED(DEBUG) &&
(first_len > BLAKE2S_HASH_SIZE ||
second_len > BLAKE2S_HASH_SIZE ||
third_len > BLAKE2S_HASH_SIZE ||
((second_len || second_dst || third_len || third_dst) &&
(!first_len || !first_dst)) ||
((third_len || third_dst) && (!second_len || !second_dst))));
/* Extract entropy from data into secret */
hmac(secret, data, chaining_key, data_len, NOISE_HASH_LEN);
if (!first_dst || !first_len)
goto out;
/* Expand first key: key = secret, data = 0x1 */
output[0] = 1;
hmac(output, output, secret, 1, BLAKE2S_HASH_SIZE);
memcpy(first_dst, output, first_len);
if (!second_dst || !second_len)
goto out;
/* Expand second key: key = secret, data = first-key || 0x2 */
output[BLAKE2S_HASH_SIZE] = 2;
hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1, BLAKE2S_HASH_SIZE);
memcpy(second_dst, output, second_len);
if (!third_dst || !third_len)
goto out;
/* Expand third key: key = secret, data = second-key || 0x3 */
output[BLAKE2S_HASH_SIZE] = 3;
hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1, BLAKE2S_HASH_SIZE);
memcpy(third_dst, output, third_len);
out:
/* Clear sensitive data from stack */
memzero_explicit(secret, BLAKE2S_HASH_SIZE);
memzero_explicit(output, BLAKE2S_HASH_SIZE + 1);
}
static void derive_keys(struct noise_symmetric_key *first_dst,
struct noise_symmetric_key *second_dst,
const u8 chaining_key[NOISE_HASH_LEN])
{
u64 birthdate = ktime_get_coarse_boottime_ns();
kdf(first_dst->key, second_dst->key, NULL, NULL,
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
chaining_key);
first_dst->birthdate = second_dst->birthdate = birthdate;
first_dst->is_valid = second_dst->is_valid = true;
}
static bool __must_check mix_dh(u8 chaining_key[NOISE_HASH_LEN],
u8 key[NOISE_SYMMETRIC_KEY_LEN],
const u8 private[NOISE_PUBLIC_KEY_LEN],
const u8 public[NOISE_PUBLIC_KEY_LEN])
{
u8 dh_calculation[NOISE_PUBLIC_KEY_LEN];
if (unlikely(!curve25519(dh_calculation, private, public)))
return false;
kdf(chaining_key, key, NULL, dh_calculation, NOISE_HASH_LEN,
NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, chaining_key);
memzero_explicit(dh_calculation, NOISE_PUBLIC_KEY_LEN);
return true;
}
static bool __must_check mix_precomputed_dh(u8 chaining_key[NOISE_HASH_LEN],
u8 key[NOISE_SYMMETRIC_KEY_LEN],
const u8 precomputed[NOISE_PUBLIC_KEY_LEN])
{
static u8 zero_point[NOISE_PUBLIC_KEY_LEN];
if (unlikely(!crypto_memneq(precomputed, zero_point, NOISE_PUBLIC_KEY_LEN)))
return false;
kdf(chaining_key, key, NULL, precomputed, NOISE_HASH_LEN,
NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN,
chaining_key);
return true;
}
static void mix_hash(u8 hash[NOISE_HASH_LEN], const u8 *src, size_t src_len)
{
struct blake2s_state blake;
blake2s_init(&blake, NOISE_HASH_LEN);
blake2s_update(&blake, hash, NOISE_HASH_LEN);
blake2s_update(&blake, src, src_len);
blake2s_final(&blake, hash);
}
static void mix_psk(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN],
u8 key[NOISE_SYMMETRIC_KEY_LEN],
const u8 psk[NOISE_SYMMETRIC_KEY_LEN])
{
u8 temp_hash[NOISE_HASH_LEN];
kdf(chaining_key, temp_hash, key, psk, NOISE_HASH_LEN, NOISE_HASH_LEN,
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, chaining_key);
mix_hash(hash, temp_hash, NOISE_HASH_LEN);
memzero_explicit(temp_hash, NOISE_HASH_LEN);
}
static void handshake_init(u8 chaining_key[NOISE_HASH_LEN],
u8 hash[NOISE_HASH_LEN],
const u8 remote_static[NOISE_PUBLIC_KEY_LEN])
{
memcpy(hash, handshake_init_hash, NOISE_HASH_LEN);
memcpy(chaining_key, handshake_init_chaining_key, NOISE_HASH_LEN);
mix_hash(hash, remote_static, NOISE_PUBLIC_KEY_LEN);
}
static void message_encrypt(u8 *dst_ciphertext, const u8 *src_plaintext,
size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN],
u8 hash[NOISE_HASH_LEN])
{
chacha20poly1305_encrypt(dst_ciphertext, src_plaintext, src_len, hash,
NOISE_HASH_LEN,
0 /* Always zero for Noise_IK */, key);
mix_hash(hash, dst_ciphertext, noise_encrypted_len(src_len));
}
static bool message_decrypt(u8 *dst_plaintext, const u8 *src_ciphertext,
size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN],
u8 hash[NOISE_HASH_LEN])
{
if (!chacha20poly1305_decrypt(dst_plaintext, src_ciphertext, src_len,
hash, NOISE_HASH_LEN,
0 /* Always zero for Noise_IK */, key))
return false;
mix_hash(hash, src_ciphertext, src_len);
return true;
}
static void message_ephemeral(u8 ephemeral_dst[NOISE_PUBLIC_KEY_LEN],
const u8 ephemeral_src[NOISE_PUBLIC_KEY_LEN],
u8 chaining_key[NOISE_HASH_LEN],
u8 hash[NOISE_HASH_LEN])
{
if (ephemeral_dst != ephemeral_src)
memcpy(ephemeral_dst, ephemeral_src, NOISE_PUBLIC_KEY_LEN);
mix_hash(hash, ephemeral_src, NOISE_PUBLIC_KEY_LEN);
kdf(chaining_key, NULL, NULL, ephemeral_src, NOISE_HASH_LEN, 0, 0,
NOISE_PUBLIC_KEY_LEN, chaining_key);
}
static void tai64n_now(u8 output[NOISE_TIMESTAMP_LEN])
{
struct timespec64 now;
ktime_get_real_ts64(&now);
/* In order to prevent some sort of infoleak from precise timers, we
* round down the nanoseconds part to the closest rounded-down power of
* two to the maximum initiations per second allowed anyway by the
* implementation.
*/
now.tv_nsec = ALIGN_DOWN(now.tv_nsec,
rounddown_pow_of_two(NSEC_PER_SEC / INITIATIONS_PER_SECOND));
/* https://cr.yp.to/libtai/tai64.html */
*(__be64 *)output = cpu_to_be64(0x400000000000000aULL + now.tv_sec);
*(__be32 *)(output + sizeof(__be64)) = cpu_to_be32(now.tv_nsec);
}
bool
wg_noise_handshake_create_initiation(struct message_handshake_initiation *dst,
struct noise_handshake *handshake)
{
u8 timestamp[NOISE_TIMESTAMP_LEN];
u8 key[NOISE_SYMMETRIC_KEY_LEN];
bool ret = false;
/* We need to wait for crng _before_ taking any locks, since
* curve25519_generate_secret uses get_random_bytes_wait.
*/
wait_for_random_bytes();
down_read(&handshake->static_identity->lock);
down_write(&handshake->lock);
if (unlikely(!handshake->static_identity->has_identity))
goto out;
dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION);
handshake_init(handshake->chaining_key, handshake->hash,
handshake->remote_static);
/* e */
curve25519_generate_secret(handshake->ephemeral_private);
if (!curve25519_generate_public(dst->unencrypted_ephemeral,
handshake->ephemeral_private))
goto out;
message_ephemeral(dst->unencrypted_ephemeral,
dst->unencrypted_ephemeral, handshake->chaining_key,
handshake->hash);
/* es */
if (!mix_dh(handshake->chaining_key, key, handshake->ephemeral_private,
handshake->remote_static))
goto out;
/* s */
message_encrypt(dst->encrypted_static,
handshake->static_identity->static_public,
NOISE_PUBLIC_KEY_LEN, key, handshake->hash);
/* ss */
if (!mix_precomputed_dh(handshake->chaining_key, key,
handshake->precomputed_static_static))
goto out;
/* {t} */
tai64n_now(timestamp);
message_encrypt(dst->encrypted_timestamp, timestamp,
NOISE_TIMESTAMP_LEN, key, handshake->hash);
dst->sender_index = wg_index_hashtable_insert(
handshake->entry.peer->device->index_hashtable,
&handshake->entry);
handshake->state = HANDSHAKE_CREATED_INITIATION;
ret = true;
out:
up_write(&handshake->lock);
up_read(&handshake->static_identity->lock);
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
return ret;
}
struct wg_peer *
wg_noise_handshake_consume_initiation(struct message_handshake_initiation *src,
struct wg_device *wg)
{
struct wg_peer *peer = NULL, *ret_peer = NULL;
struct noise_handshake *handshake;
bool replay_attack, flood_attack;
u8 key[NOISE_SYMMETRIC_KEY_LEN];
u8 chaining_key[NOISE_HASH_LEN];
u8 hash[NOISE_HASH_LEN];
u8 s[NOISE_PUBLIC_KEY_LEN];
u8 e[NOISE_PUBLIC_KEY_LEN];
u8 t[NOISE_TIMESTAMP_LEN];
u64 initiation_consumption;
down_read(&wg->static_identity.lock);
if (unlikely(!wg->static_identity.has_identity))
goto out;
handshake_init(chaining_key, hash, wg->static_identity.static_public);
/* e */
message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash);
/* es */
if (!mix_dh(chaining_key, key, wg->static_identity.static_private, e))
goto out;
/* s */
if (!message_decrypt(s, src->encrypted_static,
sizeof(src->encrypted_static), key, hash))
goto out;
/* Lookup which peer we're actually talking to */
peer = wg_pubkey_hashtable_lookup(wg->peer_hashtable, s);
if (!peer)
goto out;
handshake = &peer->handshake;
/* ss */
if (!mix_precomputed_dh(chaining_key, key,
handshake->precomputed_static_static))
goto out;
/* {t} */
if (!message_decrypt(t, src->encrypted_timestamp,
sizeof(src->encrypted_timestamp), key, hash))
goto out;
down_read(&handshake->lock);
replay_attack = memcmp(t, handshake->latest_timestamp,
NOISE_TIMESTAMP_LEN) <= 0;
flood_attack = (s64)handshake->last_initiation_consumption +
NSEC_PER_SEC / INITIATIONS_PER_SECOND >
(s64)ktime_get_coarse_boottime_ns();
up_read(&handshake->lock);
if (replay_attack || flood_attack)
goto out;
/* Success! Copy everything to peer */
down_write(&handshake->lock);
memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN);
if (memcmp(t, handshake->latest_timestamp, NOISE_TIMESTAMP_LEN) > 0)
memcpy(handshake->latest_timestamp, t, NOISE_TIMESTAMP_LEN);
memcpy(handshake->hash, hash, NOISE_HASH_LEN);
memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN);
handshake->remote_index = src->sender_index;
initiation_consumption = ktime_get_coarse_boottime_ns();
if ((s64)(handshake->last_initiation_consumption - initiation_consumption) < 0)
handshake->last_initiation_consumption = initiation_consumption;
handshake->state = HANDSHAKE_CONSUMED_INITIATION;
up_write(&handshake->lock);
ret_peer = peer;
out:
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
memzero_explicit(hash, NOISE_HASH_LEN);
memzero_explicit(chaining_key, NOISE_HASH_LEN);
up_read(&wg->static_identity.lock);
if (!ret_peer)
wg_peer_put(peer);
return ret_peer;
}
bool wg_noise_handshake_create_response(struct message_handshake_response *dst,
struct noise_handshake *handshake)
{
u8 key[NOISE_SYMMETRIC_KEY_LEN];
bool ret = false;
/* We need to wait for crng _before_ taking any locks, since
* curve25519_generate_secret uses get_random_bytes_wait.
*/
wait_for_random_bytes();
down_read(&handshake->static_identity->lock);
down_write(&handshake->lock);
if (handshake->state != HANDSHAKE_CONSUMED_INITIATION)
goto out;
dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE);
dst->receiver_index = handshake->remote_index;
/* e */
curve25519_generate_secret(handshake->ephemeral_private);
if (!curve25519_generate_public(dst->unencrypted_ephemeral,
handshake->ephemeral_private))
goto out;
message_ephemeral(dst->unencrypted_ephemeral,
dst->unencrypted_ephemeral, handshake->chaining_key,
handshake->hash);
/* ee */
if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private,
handshake->remote_ephemeral))
goto out;
/* se */
if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private,
handshake->remote_static))
goto out;
/* psk */
mix_psk(handshake->chaining_key, handshake->hash, key,
handshake->preshared_key);
/* {} */
message_encrypt(dst->encrypted_nothing, NULL, 0, key, handshake->hash);
dst->sender_index = wg_index_hashtable_insert(
handshake->entry.peer->device->index_hashtable,
&handshake->entry);
handshake->state = HANDSHAKE_CREATED_RESPONSE;
ret = true;
out:
up_write(&handshake->lock);
up_read(&handshake->static_identity->lock);
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
return ret;
}
struct wg_peer *
wg_noise_handshake_consume_response(struct message_handshake_response *src,
struct wg_device *wg)
{
enum noise_handshake_state state = HANDSHAKE_ZEROED;
struct wg_peer *peer = NULL, *ret_peer = NULL;
struct noise_handshake *handshake;
u8 key[NOISE_SYMMETRIC_KEY_LEN];
u8 hash[NOISE_HASH_LEN];
u8 chaining_key[NOISE_HASH_LEN];
u8 e[NOISE_PUBLIC_KEY_LEN];
u8 ephemeral_private[NOISE_PUBLIC_KEY_LEN];
u8 static_private[NOISE_PUBLIC_KEY_LEN];
u8 preshared_key[NOISE_SYMMETRIC_KEY_LEN];
down_read(&wg->static_identity.lock);
if (unlikely(!wg->static_identity.has_identity))
goto out;
handshake = (struct noise_handshake *)wg_index_hashtable_lookup(
wg->index_hashtable, INDEX_HASHTABLE_HANDSHAKE,
src->receiver_index, &peer);
if (unlikely(!handshake))
goto out;
down_read(&handshake->lock);
state = handshake->state;
memcpy(hash, handshake->hash, NOISE_HASH_LEN);
memcpy(chaining_key, handshake->chaining_key, NOISE_HASH_LEN);
memcpy(ephemeral_private, handshake->ephemeral_private,
NOISE_PUBLIC_KEY_LEN);
memcpy(preshared_key, handshake->preshared_key,
NOISE_SYMMETRIC_KEY_LEN);
up_read(&handshake->lock);
if (state != HANDSHAKE_CREATED_INITIATION)
goto fail;
/* e */
message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash);
/* ee */
if (!mix_dh(chaining_key, NULL, ephemeral_private, e))
goto fail;
/* se */
if (!mix_dh(chaining_key, NULL, wg->static_identity.static_private, e))
goto fail;
/* psk */
mix_psk(chaining_key, hash, key, preshared_key);
/* {} */
if (!message_decrypt(NULL, src->encrypted_nothing,
sizeof(src->encrypted_nothing), key, hash))
goto fail;
/* Success! Copy everything to peer */
down_write(&handshake->lock);
/* It's important to check that the state is still the same, while we
* have an exclusive lock.
*/
if (handshake->state != state) {
up_write(&handshake->lock);
goto fail;
}
memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN);
memcpy(handshake->hash, hash, NOISE_HASH_LEN);
memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN);
handshake->remote_index = src->sender_index;
handshake->state = HANDSHAKE_CONSUMED_RESPONSE;
up_write(&handshake->lock);
ret_peer = peer;
goto out;
fail:
wg_peer_put(peer);
out:
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
memzero_explicit(hash, NOISE_HASH_LEN);
memzero_explicit(chaining_key, NOISE_HASH_LEN);
memzero_explicit(ephemeral_private, NOISE_PUBLIC_KEY_LEN);
memzero_explicit(static_private, NOISE_PUBLIC_KEY_LEN);
memzero_explicit(preshared_key, NOISE_SYMMETRIC_KEY_LEN);
up_read(&wg->static_identity.lock);
return ret_peer;
}
bool wg_noise_handshake_begin_session(struct noise_handshake *handshake,
struct noise_keypairs *keypairs)
{
struct noise_keypair *new_keypair;
bool ret = false;
down_write(&handshake->lock);
if (handshake->state != HANDSHAKE_CREATED_RESPONSE &&
handshake->state != HANDSHAKE_CONSUMED_RESPONSE)
goto out;
new_keypair = keypair_create(handshake->entry.peer);
if (!new_keypair)
goto out;
new_keypair->i_am_the_initiator = handshake->state ==
HANDSHAKE_CONSUMED_RESPONSE;
new_keypair->remote_index = handshake->remote_index;
if (new_keypair->i_am_the_initiator)
derive_keys(&new_keypair->sending, &new_keypair->receiving,
handshake->chaining_key);
else
derive_keys(&new_keypair->receiving, &new_keypair->sending,
handshake->chaining_key);
handshake_zero(handshake);
rcu_read_lock_bh();
if (likely(!READ_ONCE(container_of(handshake, struct wg_peer,
handshake)->is_dead))) {
add_new_keypair(keypairs, new_keypair);
net_dbg_ratelimited("%s: Keypair %llu created for peer %llu\n",
handshake->entry.peer->device->dev->name,
new_keypair->internal_id,
handshake->entry.peer->internal_id);
ret = wg_index_hashtable_replace(
handshake->entry.peer->device->index_hashtable,
&handshake->entry, &new_keypair->entry);
} else {
kfree_sensitive(new_keypair);
}
rcu_read_unlock_bh();
out:
up_write(&handshake->lock);
return ret;
}
|