1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
|
// SPDX-License-Identifier: GPL-2.0
/*
* The ARCv2 backend of Just-In-Time compiler for eBPF bytecode.
*
* Copyright (c) 2024 Synopsys Inc.
* Author: Shahab Vahedi <shahab@synopsys.com>
*/
#include <linux/bug.h>
#include "bpf_jit.h"
/* ARC core registers. */
enum {
ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5,
ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11,
ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17,
ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23,
ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK,
ARC_R_30, ARC_R_BLINK,
/*
* Having ARC_R_IMM encoded as source register means there is an
* immediate that must be interpreted from the next 4 bytes. If
* encoded as the destination register though, it implies that the
* output of the operation is not assigned to any register. The
* latter is helpful if we only care about updating the CPU status
* flags.
*/
ARC_R_IMM = 62
};
/*
* Remarks about the rationale behind the chosen mapping:
*
* - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to
* argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last
* argument register in the ABI. Therefore BPF_REG_5, as the fifth
* argument, must be pushed onto the stack. This is a must for calling
* in-kernel functions.
*
* - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0)
* for 64-bit results. However, because they're already used for BPF_REG_1,
* the next available scratch registers, r8 and r9, are the best candidates
* for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result
* is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to
* (r1,r0).
* It is worth mentioning that scratch registers are the best choice for
* BPF_REG_0, because it is very popular in BPF instruction encoding.
*
* - JIT_REG_TMP is an artifact needed to translate some BPF instructions.
* Its life span is one single BPF instruction. Since during the
* analyze_reg_usage(), it is not known if temporary registers are used,
* it is mapped to ARC's scratch registers: r10 and r11. Therefore, they
* don't matter in analysing phase and don't need saving. This temporary
* register is added as yet another index in the bpf2arc array, so it will
* unfold like the rest of registers during the code generation process.
*
* - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from
* (r15,r14) register pair. The (r13,r12) is not a good choice, because
* in ARCv2 ABI, r12 is not a callee-saved register and this can cause
* problem when calling an in-kernel function. Theoretically, the mapping
* could start from (r14,r13), but it is not a conventional ARCv2 register
* pair. To have a future proof design, I opted for this arrangement.
* If/when we decide to add ARCv2 instructions that do use register pairs,
* the mapping, hopefully, doesn't need to be revisited.
*/
static const u8 bpf2arc[][2] = {
/* Return value from in-kernel function, and exit value from eBPF */
[BPF_REG_0] = {ARC_R_8, ARC_R_9},
/* Arguments from eBPF program to in-kernel function */
[BPF_REG_1] = {ARC_R_0, ARC_R_1},
[BPF_REG_2] = {ARC_R_2, ARC_R_3},
[BPF_REG_3] = {ARC_R_4, ARC_R_5},
[BPF_REG_4] = {ARC_R_6, ARC_R_7},
/* Remaining arguments, to be passed on the stack per 32-bit ABI */
[BPF_REG_5] = {ARC_R_22, ARC_R_23},
/* Callee-saved registers that in-kernel function will preserve */
[BPF_REG_6] = {ARC_R_14, ARC_R_15},
[BPF_REG_7] = {ARC_R_16, ARC_R_17},
[BPF_REG_8] = {ARC_R_18, ARC_R_19},
[BPF_REG_9] = {ARC_R_20, ARC_R_21},
/* Read-only frame pointer to access the eBPF stack. 32-bit only. */
[BPF_REG_FP] = {ARC_R_FP, },
/* Register for blinding constants */
[BPF_REG_AX] = {ARC_R_24, ARC_R_25},
/* Temporary registers for internal use */
[JIT_REG_TMP] = {ARC_R_10, ARC_R_11}
};
#define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13
#define ARC_CALLEE_SAVED_REG_LAST ARC_R_25
#define REG_LO(r) (bpf2arc[(r)][0])
#define REG_HI(r) (bpf2arc[(r)][1])
/*
* To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which,
* the stack needs to be restored by ARG5_SIZE.
*/
#define ARG5_SIZE 8
/* Instruction lengths in bytes. */
enum {
INSN_len_normal = 4, /* Normal instructions length. */
INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */
};
/* ZZ defines the size of operation in encodings that it is used. */
enum {
ZZ_1_byte = 1,
ZZ_2_byte = 2,
ZZ_4_byte = 0,
ZZ_8_byte = 3
};
/*
* AA is mostly about address write back mode. It determines if the
* address in question should be updated before usage or after:
* addr += offset; data = *addr;
* data = *addr; addr += offset;
*
* In "scaling" mode, the effective address will become the sum
* of "address" + "index"*"size". The "size" is specified by the
* "ZZ" field. There is no write back when AA is set for scaling:
* data = *(addr + offset<<zz)
*/
enum {
AA_none = 0,
AA_pre = 1, /* in assembly known as "a/aw". */
AA_post = 2, /* in assembly known as "ab". */
AA_scale = 3 /* in assembly known as "as". */
};
/* X flag determines the mode of extension. */
enum {
X_zero = 0,
X_sign = 1
};
/* Condition codes. */
enum {
CC_always = 0, /* condition is true all the time */
CC_equal = 1, /* if status32.z flag is set */
CC_unequal = 2, /* if status32.z flag is clear */
CC_positive = 3, /* if status32.n flag is clear */
CC_negative = 4, /* if status32.n flag is set */
CC_less_u = 5, /* less than (unsigned) */
CC_less_eq_u = 14, /* less than or equal (unsigned) */
CC_great_eq_u = 6, /* greater than or equal (unsigned) */
CC_great_u = 13, /* greater than (unsigned) */
CC_less_s = 11, /* less than (signed) */
CC_less_eq_s = 12, /* less than or equal (signed) */
CC_great_eq_s = 10, /* greater than or equal (signed) */
CC_great_s = 9 /* greater than (signed) */
};
#define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0)
#define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100)
#define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800)
#define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000)
#define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000)
/* Operands in most of the encodings. */
#define OP_A(x) ((x) & 0x03f)
#define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9))
#define OP_C(x) (((x) & 0x03f) << 6)
#define OP_IMM (OP_C(ARC_R_IMM))
#define COND(x) (OP_A((x) & 31))
#define FLAG(x) (((x) & 1) << 15)
/*
* The 4-byte encoding of "mov b,c":
*
* 0010_0bbb 0000_1010 0BBB_cccc cc00_0000
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_MOV 0x200a0000
/*
* The 4-byte encoding of "mov b,s12" (used for moving small immediates):
*
* 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS
*
* b: BBBbbb destination register
* s: SSSSSSssssss source immediate (signed)
*/
#define OPC_MOVI 0x208a0000
#define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6))
/*
* The 4-byte encoding of "mov[.qq] b,u6", used for conditional
* moving of even smaller immediates:
*
* 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq
*
* qq: qqqqq condition code
* i: If set, c is considered a 6-bit immediate, else a reg.
*
* b: BBBbbb destination register
* c: cccccc source
*/
#define OPC_MOV_CC 0x20ca0000
#define MOV_CC_I BIT(5)
#define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I)
/*
* The 4-byte encoding of "sexb b,c" (8-bit sign extension):
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_0101
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SEXB 0x202f0005
/*
* The 4-byte encoding of "sexh b,c" (16-bit sign extension):
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_0110
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SEXH 0x202f0006
/*
* The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]":
*
* 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc
*
* zz: size mode
* aa: address write back mode
* x: extension mode
*
* s9: S_ssss_ssss 9-bit signed number
* b: BBBbbb source reg for address
* c: cccccc destination register
*/
#define OPC_LOAD 0x10000000
#define LOAD_X(x) ((x) << 6)
#define LOAD_ZZ(x) ((x) << 7)
#define LOAD_AA(x) ((x) << 9)
#define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
#define LOAD_C(x) ((x) & 0x03f)
/* Unsigned and signed loads. */
#define OPC_LDU (OPC_LOAD | LOAD_X(X_zero))
#define OPC_LDS (OPC_LOAD | LOAD_X(X_sign))
/* 32-bit load. */
#define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte))
/* "pop reg" is merely a "ld.ab reg,[sp,4]". */
#define OPC_POP \
(OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP))
/*
* The 4-byte encoding of "st[zz][.aa] c,[b,s9]":
*
* 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0
*
* zz: zz size mode
* aa: aa address write back mode
*
* s9: S_ssss_ssss 9-bit signed number
* b: BBBbbb source reg for address
* c: cccccc source reg to be stored
*/
#define OPC_STORE 0x18000000
#define STORE_ZZ(x) ((x) << 1)
#define STORE_AA(x) ((x) << 3)
#define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
/* 32-bit store. */
#define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte))
/* "push reg" is merely a "st.aw reg,[sp,-4]". */
#define OPC_PUSH \
(OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP))
/*
* The 4-byte encoding of "add a,b,c":
*
* 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
* i: If set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_ADD 0x20000000
/* Addition with updating the pertinent flags in "status32" register. */
#define OPC_ADDF (OPC_ADD | FLAG(1))
#define ADDI BIT(22)
#define ADDI_U6(x) OP_C(x)
#define OPC_ADDI (OPC_ADD | ADDI)
#define OPC_ADDIF (OPC_ADDI | FLAG(1))
#define OPC_ADD_I (OPC_ADD | OP_IMM)
/*
* The 4-byte encoding of "adc a,b,c" (addition with carry):
*
* 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_ADC 0x20010000
#define ADCI BIT(22)
#define ADCI_U6(x) OP_C(x)
#define OPC_ADCI (OPC_ADC | ADCI)
/*
* The 4-byte encoding of "sub a,b,c":
*
* 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_SUB 0x20020000
/* Subtraction with updating the pertinent flags in "status32" register. */
#define OPC_SUBF (OPC_SUB | FLAG(1))
#define SUBI BIT(22)
#define SUBI_U6(x) OP_C(x)
#define OPC_SUBI (OPC_SUB | SUBI)
#define OPC_SUB_I (OPC_SUB | OP_IMM)
/*
* The 4-byte encoding of "sbc a,b,c" (subtraction with carry):
*
* 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_SBC 0x20030000
/*
* The 4-byte encoding of "cmp[.qq] b,c":
*
* 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq
*
* qq: qqqqq condition code
*
* b: BBBbbb the 1st operand
* c: cccccc the 2nd operand
*/
#define OPC_CMP 0x20cc8000
/*
* The 4-byte encoding of "neg a,b":
*
* 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa
*
* a: aaaaaa result
* b: BBBbbb input
*/
#define OPC_NEG 0x204e0000
/*
* The 4-byte encoding of "mpy a,b,c".
* mpy is the signed 32-bit multiplication with the lower 32-bit
* of the product as the result.
*
* 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_MPY 0x201a0000
#define OPC_MPYI (OPC_MPY | OP_IMM)
/*
* The 4-byte encoding of "mpydu a,b,c".
* mpydu is the unsigned 32-bit multiplication with the lower 32-bit of
* the product in register "a" and the higher 32-bit in register "a+1".
*
* 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa 64-bit result in registers (R_a+1,R_a)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_MPYDU 0x28190000
#define OPC_MPYDUI (OPC_MPYDU | OP_IMM)
/*
* The 4-byte encoding of "divu a,b,c" (unsigned division):
*
* 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (quotient)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_DIVU 0x28050000
#define OPC_DIVUI (OPC_DIVU | OP_IMM)
/*
* The 4-byte encoding of "div a,b,c" (signed division):
*
* 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (quotient)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_DIVS 0x28040000
#define OPC_DIVSI (OPC_DIVS | OP_IMM)
/*
* The 4-byte encoding of "remu a,b,c" (unsigned remainder):
*
* 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (remainder)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_REMU 0x28090000
#define OPC_REMUI (OPC_REMU | OP_IMM)
/*
* The 4-byte encoding of "rem a,b,c" (signed remainder):
*
* 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (remainder)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_REMS 0x28080000
#define OPC_REMSI (OPC_REMS | OP_IMM)
/*
* The 4-byte encoding of "and a,b,c":
*
* 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa
*
* f: indicates if zero and negative flags should be updated
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_AND 0x20040000
#define OPC_ANDI (OPC_AND | OP_IMM)
/*
* The 4-byte encoding of "tst[.qq] b,c".
* Checks if the two input operands have any bit set at the same
* position.
*
* 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq
*
* qq: qqqqq condition code
*
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_TST 0x20cb8000
/*
* The 4-byte encoding of "or a,b,c":
*
* 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_OR 0x20050000
#define OPC_ORI (OPC_OR | OP_IMM)
/*
* The 4-byte encoding of "xor a,b,c":
*
* 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_XOR 0x20070000
#define OPC_XORI (OPC_XOR | OP_IMM)
/*
* The 4-byte encoding of "not b,c":
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_1010
*
* b: BBBbbb result
* c: cccccc input
*/
#define OPC_NOT 0x202f000a
/*
* The 4-byte encoding of "btst b,u6":
*
* 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000
*
* b: BBBbbb input number to check
* u6: uuuuuu 6-bit unsigned number specifying bit position to check
*/
#define OPC_BTSTU6 0x20518000
#define BTST_U6(x) (OP_C((x) & 63))
/*
* The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left):
*
* 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 5-bit immediate, else a reg.
*
* b: BBBbbb result and the first operand (number to be shifted)
* c: cccccc amount to be shifted
*/
#define OPC_ASL 0x28000000
#define ASL_I BIT(22)
#define ASLI_U6(x) OP_C((x) & 31)
#define OPC_ASLI (OPC_ASL | ASL_I)
/*
* The 4-byte encoding of "asr a,b,c" (arithmetic shift right):
*
* 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb first input: number to be shifted
* c: cccccc second input: amount to be shifted
*/
#define OPC_ASR 0x28020000
#define ASR_I ASL_I
#define ASRI_U6(x) ASLI_U6(x)
#define OPC_ASRI (OPC_ASR | ASR_I)
/*
* The 4-byte encoding of "lsr a,b,c" (logical shift right):
*
* 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb first input: number to be shifted
* c: cccccc second input: amount to be shifted
*/
#define OPC_LSR 0x28010000
#define LSR_I ASL_I
#define LSRI_U6(x) ASLI_U6(x)
#define OPC_LSRI (OPC_LSR | LSR_I)
/*
* The 4-byte encoding of "swape b,c":
*
* 0010_1bbb 0010_1111 0bbb_cccc cc00_1001
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SWAPE 0x282f0009
/*
* Encoding for jump to an address in register:
* j reg_c
*
* 0010_0000 1110_0000 0000_cccc cc00_0000
*
* c: cccccc register holding the destination address
*/
#define OPC_JMP 0x20e00000
/* Jump to "branch-and-link" register, which effectively is a "return". */
#define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK))
/*
* Encoding for jump-and-link to an address in register:
* jl reg_c
*
* 0010_0000 0010_0010 0000_cccc cc00_0000
*
* c: cccccc register holding the destination address
*/
#define OPC_JL 0x20220000
/*
* Encoding for (conditional) branch to an offset from the current location
* that is word aligned: (PC & 0xffff_fffc) + s21
* B[qq] s21
*
* 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq
*
* qq: qqqqq condition code
* s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed)
*
* The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
* it should be a multiple of 2. Hence, there is an implied '0' bit at its
* LSB: S_SSSS SSSS_Ssss ssss_sss0
*/
#define OPC_BCC 0x00000000
#define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5))
/*
* Encoding for unconditional branch to an offset from the current location
* that is word aligned: (PC & 0xffff_fffc) + s25
* B s25
*
* 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT
*
* s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed)
*
* The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
* it should be a multiple of 2. Hence, there is an implied '0' bit at its
* LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0
*/
#define OPC_B 0x00010000
#define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d))
static inline void emit_2_bytes(u8 *buf, u16 bytes)
{
*((u16 *)buf) = bytes;
}
static inline void emit_4_bytes(u8 *buf, u32 bytes)
{
emit_2_bytes(buf, bytes >> 16);
emit_2_bytes(buf + 2, bytes & 0xffff);
}
static inline u8 bpf_to_arc_size(u8 size)
{
switch (size) {
case BPF_B:
return ZZ_1_byte;
case BPF_H:
return ZZ_2_byte;
case BPF_W:
return ZZ_4_byte;
case BPF_DW:
return ZZ_8_byte;
default:
return ZZ_4_byte;
}
}
/************** Encoders (Deal with ARC regs) ************/
/* Move an immediate to register with a 4-byte instruction. */
static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm)
{
const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* rd <- rs */
static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* The emitted code may have different sizes based on "imm". */
static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
if (IN_S12_RANGE(imm))
return arc_movi_r(buf, rd, imm);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* The emitted code will always have the same size (8). */
static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* Conditional move. */
static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs)
{
const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Conditional move of a small immediate to rd. */
static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm)
{
const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Sign extension from a byte. */
static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Sign extension from two bytes. */
static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* st reg, [reg_mem, off] */
static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) |
OP_B(reg_mem) | STORE_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* st.aw reg, [sp, -4] */
static u8 arc_push_r(u8 *buf, u8 reg)
{
const u32 insn = OPC_PUSH | OP_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld reg, [reg_mem, off] (unsigned) */
static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) |
OP_B(reg_mem) | LOAD_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld.x reg, [reg_mem, off] (sign extend) */
static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) |
OP_B(reg_mem) | LOAD_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld.ab reg,[sp,4] */
static u8 arc_pop_r(u8 *buf, u8 reg)
{
const u32 insn = OPC_POP | LOAD_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Ra,Rc */
static u8 arc_add_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add.f Ra,Ra,Rc */
static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add.f Ra,Ra,u6 */
static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Ra,u6 */
static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Rb,imm */
static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm)
{
const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* adc Ra,Ra,Rc */
static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* adc Ra,Ra,u6 */
static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,Rc */
static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub.f Ra,Ra,Rc */
static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,u6 */
static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,imm */
static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm)
{
const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* sbc Ra,Ra,Rc */
static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* cmp Rb,Rc */
static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc)
{
const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* cmp.z Rb,Rc
*
* This "cmp.z" variant of compare instruction is used on lower
* 32-bits of register pairs after "cmp"ing their upper parts. If the
* upper parts are equal (z), then this one will proceed to check the
* rest.
*/
static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc)
{
const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal;
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* neg Ra,Rb */
static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb)
{
const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpy Ra,Rb,Rc */
static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc)
{
const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpy Ra,Rb,imm */
static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm)
{
const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* mpydu Ra,Ra,Rc */
static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpydu Ra,Ra,imm */
static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm)
{
const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* divu Rd,Rd,Rs */
static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* divu Rd,Rd,imm */
static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* div Rd,Rd,Rs */
static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* div Rd,Rd,imm */
static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* remu Rd,Rd,Rs */
static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* remu Rd,Rd,imm */
static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* rem Rd,Rd,Rs */
static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* rem Rd,Rd,imm */
static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* and Rd,Rd,Rs */
static u8 arc_and_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* and Rd,Rd,limm */
static u8 arc_and_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* tst Rd,Rs */
static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* This particular version, "tst.z ...", is meant to be used after a
* "tst" on the low 32-bit of register pairs. If that "tst" is not
* zero, then we don't need to test the upper 32-bits lest it sets
* the zero flag.
*/
static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal;
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_or_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
static u8 arc_not_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm)
{
const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_swape_r(u8 *buf, u8 r)
{
const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_jmp_return(u8 *buf)
{
if (buf)
emit_4_bytes(buf, OPC_J_BLINK);
return INSN_len_normal;
}
static u8 arc_jl(u8 *buf, u8 reg)
{
const u32 insn = OPC_JL | OP_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* Conditional jump to an address that is max 21 bits away (signed).
*
* b<cc> s21
*/
static u8 arc_bcc(u8 *buf, u8 cc, int offset)
{
const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* Unconditional jump to an address that is max 25 bits away (signed).
*
* b s25
*/
static u8 arc_b(u8 *buf, s32 offset)
{
const u32 insn = OPC_B | B_S25(offset);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/************* Packers (Deal with BPF_REGs) **************/
u8 zext(u8 *buf, u8 rd)
{
if (rd != BPF_REG_FP)
return arc_movi_r(buf, REG_HI(rd), 0);
else
return 0;
}
u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
{
u8 len = 0;
if (sign_ext) {
if (sign_ext == 8)
len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs));
else if (sign_ext == 16)
len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs));
else if (sign_ext == 32 && rd != rs)
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
return len;
}
/* Unsigned move. */
if (rd != rs)
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
return len;
}
u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm)
{
return arc_mov_i(buf, REG_LO(reg), imm);
}
u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
{
u8 len = 0;
if (sign_ext) {
/* First handle the low 32-bit part. */
len = mov_r32(buf, rd, rs, sign_ext);
/* Now propagate the sign bit of LO to HI. */
if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) {
len += arc_asri_r(BUF(buf, len),
REG_HI(rd), REG_LO(rd), 31);
}
return len;
}
/* Unsigned move. */
if (rd == rs)
return 0;
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
if (rs != BPF_REG_FP)
len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
else
len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
return len;
}
/* Sign extend the 32-bit immediate into 64-bit register pair. */
u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm)
{
u8 len = 0;
len = arc_mov_i(buf, REG_LO(reg), imm);
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
if (reg != BPF_REG_FP) {
if (imm >= 0)
len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0);
else
len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1);
}
return len;
}
/*
* This is merely used for translation of "LD R, IMM64" instructions
* of the BPF. These sort of instructions are sometimes used for
* relocations. If during the normal pass, the relocation value is
* not known, the BPF instruction may look something like:
*
* LD R <- 0x0000_0001_0000_0001
*
* Which will nicely translate to two 4-byte ARC instructions:
*
* mov R_lo, 1 # imm is small enough to be s12
* mov R_hi, 1 # same
*
* However, during the extra pass, the IMM64 will have changed
* to the resolved address and looks something like:
*
* LD R <- 0x0000_0000_1234_5678
*
* Now, the translated code will require 12 bytes:
*
* mov R_lo, 0x12345678 # this is an 8-byte instruction
* mov R_hi, 0 # still 4 bytes
*
* Which in practice will result in overwriting the following
* instruction. To avoid such cases, we will always emit codes
* with fixed sizes.
*/
u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi)
{
u8 len;
len = arc_mov_i_fixed(buf, REG_LO(reg), lo);
len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi);
return len;
}
/*
* If the "off"set is too big (doesn't encode as S9) for:
*
* {ld,st} r, [rm, off]
*
* Then emit:
*
* add r10, REG_LO(rm), off
*
* and make sure that r10 becomes the effective address:
*
* {ld,st} r, [r10, 0]
*/
static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size,
u8 rm, u8 *arc_reg_mem)
{
u8 len = 0;
*arc_reg_mem = REG_LO(rm);
if (!IN_S9_RANGE(*off) ||
(size == BPF_DW && !IN_S9_RANGE(*off + 4))) {
len += arc_add_i(BUF(buf, len),
REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off));
*arc_reg_mem = REG_LO(JIT_REG_TMP);
*off = 0;
}
return len;
}
/* store rs, [rd, off] */
u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size)
{
u8 len, arc_reg_mem;
len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
if (size == BPF_DW) {
len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
off, ZZ_4_byte);
len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
u8 zz = bpf_to_arc_size(size);
len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
off, zz);
}
return len;
}
/*
* For {8,16,32}-bit stores:
* mov r21, imm
* st r21, [...]
* For 64-bit stores:
* mov r21, imm
* st r21, [...]
* mov r21, {0,-1}
* st r21, [...+4]
*/
u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size)
{
u8 len, arc_reg_mem;
/* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */
const u8 arc_rs = REG_HI(JIT_REG_TMP);
len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
if (size == BPF_DW) {
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
off, ZZ_4_byte);
imm = (imm >= 0 ? 0 : -1);
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
u8 zz = bpf_to_arc_size(size);
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz);
}
return len;
}
/*
* For the calling convention of a little endian machine, the LO part
* must be on top of the stack.
*/
static u8 push_r64(u8 *buf, u8 reg)
{
u8 len = 0;
#ifdef __LITTLE_ENDIAN
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
if (reg != BPF_REG_FP)
len += arc_push_r(BUF(buf, len), REG_HI(reg));
len += arc_push_r(BUF(buf, len), REG_LO(reg));
#else
len += arc_push_r(BUF(buf, len), REG_LO(reg));
if (reg != BPF_REG_FP)
len += arc_push_r(BUF(buf, len), REG_HI(reg));
#endif
return len;
}
/* load rd, [rs, off] */
u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext)
{
u8 len, arc_reg_mem;
len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem);
if (size == BPF_B || size == BPF_H || size == BPF_W) {
const u8 zz = bpf_to_arc_size(size);
/* Use LD.X only if the data size is less than 32-bit. */
if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) {
len += arc_ldx_r(BUF(buf, len), REG_LO(rd),
arc_reg_mem, off, zz);
} else {
len += arc_ld_r(BUF(buf, len), REG_LO(rd),
arc_reg_mem, off, zz);
}
if (sign_ext) {
/* Propagate the sign bit to the higher reg. */
len += arc_asri_r(BUF(buf, len),
REG_HI(rd), REG_LO(rd), 31);
} else {
len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
}
} else if (size == BPF_DW) {
/*
* We are about to issue 2 consecutive loads:
*
* ld rx, [rb, off+0]
* ld ry, [rb, off+4]
*
* If "rx" and "rb" are the same registers, then the order
* should change to guarantee that "rb" remains intact
* during these 2 operations:
*
* ld ry, [rb, off+4]
* ld rx, [rb, off+0]
*/
if (REG_LO(rd) != arc_reg_mem) {
len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
off, ZZ_4_byte);
len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
off + 4, ZZ_4_byte);
len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
off, ZZ_4_byte);
}
}
return len;
}
u8 add_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_add_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 add_r32_i32(u8 *buf, u8 rd, s32 imm)
{
if (IN_U6_RANGE(imm))
return arc_addi_r(buf, REG_LO(rd), imm);
else
return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm);
}
u8 add_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 add_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
if (IN_U6_RANGE(imm)) {
len = arc_addif_r(buf, REG_LO(rd), imm);
len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0);
} else {
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += add_r64(BUF(buf, len), rd, JIT_REG_TMP);
}
return len;
}
u8 sub_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_sub_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm)
{
if (IN_U6_RANGE(imm))
return arc_subi_r(buf, REG_LO(rd), imm);
else
return arc_sub_i(buf, REG_LO(rd), imm);
}
u8 sub_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
static u8 cmp_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 neg_r32(u8 *buf, u8 r)
{
return arc_neg_r(buf, REG_LO(r), REG_LO(r));
}
/* In a two's complement system, -r is (~r + 1). */
u8 neg_r64(u8 *buf, u8 r)
{
u8 len;
len = arc_not_r(buf, REG_LO(r), REG_LO(r));
len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r));
len += add_r64_i32(BUF(buf, len), r, 1);
return len;
}
u8 mul_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* MUL B, C
* --------
* mpy t0, B_hi, C_lo
* mpy t1, B_lo, C_hi
* mpydu B_lo, B_lo, C_lo
* add B_hi, B_hi, t0
* add B_hi, B_hi, t1
*/
u8 mul_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 C_hi = REG_HI(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_mpy_r(buf, t0, B_hi, C_lo);
len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi);
len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo);
len += arc_add_r(BUF(buf, len), B_hi, t0);
len += arc_add_r(BUF(buf, len), B_hi, t1);
return len;
}
/*
* MUL B, imm
* ----------
*
* To get a 64-bit result from a signed 64x32 multiplication:
*
* B_hi B_lo *
* sign imm
* -----------------------------
* HI(B_lo*imm) LO(B_lo*imm) +
* B_hi*imm +
* B_lo*sign
* -----------------------------
* res_hi res_lo
*
* mpy t1, B_lo, sign(imm)
* mpy t0, B_hi, imm
* mpydu B_lo, B_lo, imm
* add B_hi, B_hi, t0
* add B_hi, B_hi, t1
*
* Note: We can't use signed double multiplication, "mpyd", instead of an
* unsigned version, "mpydu", and then get rid of the sign adjustments
* calculated in "t1". The signed multiplication, "mpyd", will consider
* both operands, "B_lo" and "imm", as signed inputs. However, for this
* 64x32 multiplication, "B_lo" must be treated as an unsigned number.
*/
u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len = 0;
if (imm == 1)
return 0;
/* Is the sign-extension of the immediate "-1"? */
if (imm < 0)
len += arc_neg_r(BUF(buf, len), t1, B_lo);
len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm);
len += arc_mpydu_i(BUF(buf, len), B_lo, imm);
len += arc_add_r(BUF(buf, len), B_hi, t0);
/* Add the "sign*B_lo" part, if necessary. */
if (imm < 0)
len += arc_add_r(BUF(buf, len), B_hi, t1);
return len;
}
u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
{
if (sign_ext)
return arc_divs_r(buf, REG_LO(rd), REG_LO(rs));
else
return arc_divu_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
{
if (imm == 0)
return 0;
if (sign_ext)
return arc_divs_i(buf, REG_LO(rd), imm);
else
return arc_divu_i(buf, REG_LO(rd), imm);
}
u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
{
if (sign_ext)
return arc_rems_r(buf, REG_LO(rd), REG_LO(rs));
else
return arc_remu_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
{
if (imm == 0)
return 0;
if (sign_ext)
return arc_rems_i(buf, REG_LO(rd), imm);
else
return arc_remu_i(buf, REG_LO(rd), imm);
}
u8 and_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_and_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 and_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_and_i(buf, REG_LO(rd), imm);
}
u8 and_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_and_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 and_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += and_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
static u8 tst_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_tst_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 or_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 or_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_or_i(buf, REG_LO(rd), imm);
}
u8 or_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs));
return len;
}
u8 or_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += or_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
u8 xor_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_xor_i(buf, REG_LO(rd), imm);
}
u8 xor_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
/* "asl a,b,c" --> "a = (b << (c & 31))". */
u8 lsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* algorithm
* ---------
* if (n <= 32)
* to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width.
* lo <<= n
* hi <<= n
* hi |= to_hi
* else
* hi = lo << (n-32)
* lo = 0
*
* assembly translation for "LSH B, C"
* (heavily influenced by ARC gcc)
* -----------------------------------
* not t0, C_lo # The first 3 lines are almost the same as:
* lsr t1, B_lo, 1 # neg t0, C_lo
* lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi"
* mov t0, C_lo* # with one important difference. In "neg"
* asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while
* asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead,
* or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically
* btst t0, 5 # setting it to 0 when C_lo=0.
* mov.ne B_hi, B_lo**
* mov.ne B_lo, 0
*
* *The "mov t0, C_lo" is necessary to cover the cases that C is the same
* register as B.
*
* **ARC performs a shift in this manner: B <<= (C & 31)
* For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and
* "B << (n-32)" yield the same results. e.g. the results of "B << 35" and
* "B << 3" are the same.
*
* The behaviour is undefined for n >= 64.
*/
u8 lsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1);
len += arc_lsr_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo);
len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0);
return len;
}
/*
* if (n < 32)
* to_hi = B_lo >> 32-n # extract upper n bits
* lo <<= n
* hi <<=n
* hi |= to_hi
* else if (n < 64)
* hi = lo << n-32
* lo = 0
*/
u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_lsri_r(buf, t0, B_lo, 32 - n);
len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0);
} else if (n <= 63) {
len = arc_asli_r(buf, B_hi, B_lo, n - 32);
len += arc_movi_r(BUF(buf, len), B_lo, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
/* "lsr a,b,c" --> "a = (b >> (c & 31))". */
u8 rsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* For better commentary, see lsh_r64().
*
* algorithm
* ---------
* if (n <= 32)
* to_lo = hi << (32-n)
* hi >>= n
* lo >>= n
* lo |= to_lo
* else
* lo = hi >> (n-32)
* hi = 0
*
* RSH B,C
* ----------
* not t0, C_lo
* asl t1, B_hi, 1
* asl t1, t1, t0
* mov t0, C_lo
* lsr B_hi, B_hi, t0
* lsr B_lo, B_lo, t0
* or B_lo, B_lo, t1
* btst t0, 5
* mov.ne B_lo, B_hi
* mov.ne B_hi, 0
*/
u8 rsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
len += arc_asl_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0);
return len;
}
/*
* if (n < 32)
* to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s
* lo >>=n
* hi >>=n
* hi |= to_lo
* else if (n < 64)
* lo = hi >> n-32
* hi = 0
*/
u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_asli_r(buf, t0, B_hi, 32 - n);
len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
} else if (n <= 63) {
len = arc_lsri_r(buf, B_lo, B_hi, n - 32);
len += arc_movi_r(BUF(buf, len), B_hi, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
/* "asr a,b,c" --> "a = (b s>> (c & 31))". */
u8 arsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* For comparison, see rsh_r64().
*
* algorithm
* ---------
* if (n <= 32)
* to_lo = hi << (32-n)
* hi s>>= n
* lo >>= n
* lo |= to_lo
* else
* hi_sign = hi s>>31
* lo = hi s>> (n-32)
* hi = hi_sign
*
* ARSH B,C
* ----------
* not t0, C_lo
* asl t1, B_hi, 1
* asl t1, t1, t0
* mov t0, C_lo
* asr B_hi, B_hi, t0
* lsr B_lo, B_lo, t0
* or B_lo, B_lo, t1
* btst t0, 5
* asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign
* mov.ne B_lo, B_hi
* mov.ne B_hi, t0
*/
u8 arsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
len += arc_asl_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_asri_r(BUF(buf, len), t0, B_hi, 31);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0);
return len;
}
/*
* if (n < 32)
* to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s
* lo >>=n
* hi s>>=n
* hi |= to_lo
* else if (n < 64)
* lo = hi s>> n-32
* hi = (lo[msb] ? -1 : 0)
*/
u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_asli_r(buf, t0, B_hi, 32 - n);
len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
} else if (n <= 63) {
len = arc_asri_r(buf, B_lo, B_hi, n - 32);
len += arc_movi_r(BUF(buf, len), B_hi, -1);
len += arc_btst_i(BUF(buf, len), B_lo, 31);
len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext)
{
u8 len = 0;
#ifdef __BIG_ENDIAN
const u8 host_endian = BPF_FROM_BE;
#else
const u8 host_endian = BPF_FROM_LE;
#endif
if (host_endian != endian || force) {
switch (size) {
case 16:
/*
* r = B4B3_B2B1 << 16 --> r = B2B1_0000
* then, swape(r) would become the desired 0000_B1B2
*/
len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16);
fallthrough;
case 32:
len += arc_swape_r(BUF(buf, len), REG_LO(rd));
if (do_zext)
len += zext(BUF(buf, len), rd);
break;
case 64:
/*
* swap "hi" and "lo":
* hi ^= lo;
* lo ^= hi;
* hi ^= lo;
* and then swap the bytes in "hi" and "lo".
*/
len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd));
len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd));
len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd));
len += arc_swape_r(BUF(buf, len), REG_LO(rd));
len += arc_swape_r(BUF(buf, len), REG_HI(rd));
break;
default:
/* The caller must have handled this. */
break;
}
} else {
/*
* If the same endianness, there's not much to do other
* than zeroing out the upper bytes based on the "size".
*/
switch (size) {
case 16:
len = arc_and_i(buf, REG_LO(rd), 0xffff);
fallthrough;
case 32:
if (do_zext)
len += zext(BUF(buf, len), rd);
break;
case 64:
break;
default:
/* The caller must have handled this. */
break;
}
}
return len;
}
/*
* To create a frame, all that is needed is:
*
* push fp
* mov fp, sp
* sub sp, <frame_size>
*
* "push fp" is taken care of separately while saving the clobbered registers.
* All that remains is copying SP value to FP and shrinking SP's address space
* for any possible function call to come.
*/
static inline u8 frame_create(u8 *buf, u16 size)
{
u8 len;
len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP);
if (IN_U6_RANGE(size))
len += arc_subi_r(BUF(buf, len), ARC_R_SP, size);
else
len += arc_sub_i(BUF(buf, len), ARC_R_SP, size);
return len;
}
/*
* mov sp, fp
*
* The value of SP upon entering was copied to FP.
*/
static inline u8 frame_restore(u8 *buf)
{
return arc_mov_r(buf, ARC_R_SP, ARC_R_FP);
}
/*
* Going from a JITed code to the native caller:
*
* mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8
* mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9
*/
static u8 bpf_to_arc_return(u8 *buf)
{
u8 len;
len = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0));
len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0));
return len;
}
/*
* Coming back from an external (in-kernel) function to the JITed code:
*
* mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0
* mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1
*/
u8 arc_to_bpf_return(u8 *buf)
{
u8 len;
len = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0);
len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1);
return len;
}
/*
* This translation leads to:
*
* mov r10, addr # always an 8-byte instruction
* jl [r10]
*
* The length of the "mov" must be fixed (8), otherwise it may diverge
* during the normal and extra passes:
*
* normal pass extra pass
*
* 180: mov r10,0 | 180: mov r10,0x700578d8
* 184: jl [r10] | 188: jl [r10]
* 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0
* 18c: adc r17,r17,0 |
*
* In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8"
* has led to an increase in the length of the "mov" instruction.
* Inadvertently, that caused the loss of the "add.f" instruction.
*/
static u8 jump_and_link(u8 *buf, u32 addr)
{
u8 len;
len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr);
len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP));
return len;
}
/*
* This function determines which ARC registers must be saved and restored.
* It does so by looking into:
*
* "bpf_reg": The clobbered (destination) BPF register
* "is_call": Indicator if the current instruction is a call
*
* When a register of interest is clobbered, its corresponding bit position
* in return value, "usage", is set to true.
*/
u32 mask_for_used_regs(u8 bpf_reg, bool is_call)
{
u32 usage = 0;
/* BPF registers that must be saved. */
if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) {
usage |= BIT(REG_LO(bpf_reg));
usage |= BIT(REG_HI(bpf_reg));
/*
* Using the frame pointer register implies that it should
* be saved and reinitialised with the current frame data.
*/
} else if (bpf_reg == BPF_REG_FP) {
usage |= BIT(REG_LO(BPF_REG_FP));
/* Could there be some ARC registers that must to be saved? */
} else {
if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
usage |= BIT(REG_LO(bpf_reg));
if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
usage |= BIT(REG_HI(bpf_reg));
}
/* A "call" indicates that ARC's "blink" reg must be saved. */
usage |= is_call ? BIT(ARC_R_BLINK) : 0;
return usage;
}
/*
* push blink # if blink is marked as clobbered
* push r[0-n] # if r[i] is marked as clobbered
* push fp # if fp is marked as clobbered
* mov fp, sp # if frame_size > 0 (clobbers fp)
* sub sp, <frame_size> # same as above
*/
u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size)
{
u8 len = 0;
u32 gp_regs = 0;
/* Deal with blink first. */
if (usage & BIT(ARC_R_BLINK))
len += arc_push_r(BUF(buf, len), ARC_R_BLINK);
gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
while (gp_regs) {
u8 reg = __builtin_ffs(gp_regs) - 1;
len += arc_push_r(BUF(buf, len), reg);
gp_regs &= ~BIT(reg);
}
/* Deal with fp last. */
if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
len += arc_push_r(BUF(buf, len), ARC_R_FP);
if (frame_size > 0)
len += frame_create(BUF(buf, len), frame_size);
#ifdef ARC_BPF_JIT_DEBUG
if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
pr_err("FP is being saved while there is no frame.");
BUG();
}
#endif
return len;
}
/*
* mov sp, fp # if frame_size > 0
* pop fp # if fp is marked as clobbered
* pop r[n-0] # if r[i] is marked as clobbered
* pop blink # if blink is marked as clobbered
* mov r0, r8 # always: ABI_return <- BPF_return
* mov r1, r9 # continuation of above
* j [blink] # always
*
* "fp being marked as clobbered" and "frame_size > 0" are the two sides of
* the same coin.
*/
u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size)
{
u32 len = 0;
u32 gp_regs = 0;
#ifdef ARC_BPF_JIT_DEBUG
if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
pr_err("FP is being saved while there is no frame.");
BUG();
}
#endif
if (frame_size > 0)
len += frame_restore(BUF(buf, len));
/* Deal with fp first. */
if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
len += arc_pop_r(BUF(buf, len), ARC_R_FP);
gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
while (gp_regs) {
/* "usage" is 32-bit, each bit indicating an ARC register. */
u8 reg = 31 - __builtin_clz(gp_regs);
len += arc_pop_r(BUF(buf, len), reg);
gp_regs &= ~BIT(reg);
}
/* Deal with blink last. */
if (usage & BIT(ARC_R_BLINK))
len += arc_pop_r(BUF(buf, len), ARC_R_BLINK);
/* Wrap up the return value and jump back to the caller. */
len += bpf_to_arc_return(BUF(buf, len));
len += arc_jmp_return(BUF(buf, len));
return len;
}
/*
* For details on the algorithm, see the comments of "gen_jcc_64()".
*
* This data structure is holding information for jump translations.
*
* jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs
* cond: The condition that the ARC branch instruction must use
*
* e.g.:
*
* BPF_JGE R1, R0, @target
* ------------------------
* |
* v
* 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn
* 0x1004: bhi @target # first jump (branch higher)
* 0x1008: blo @end # second jump acting as a skip (end is 0x1014)
* 0x100C: cmp r2, r0 # the lower 32 bits are evaluated
* 0x1010: bhs @target # third jump (branch higher or same)
* 0x1014: ...
*
* The jit_off(set) of the "bhi" is 4 bytes.
* The cond(ition) for the "bhi" is "CC_great_u".
*
* The jit_off(set) is necessary for calculating the exact displacement
* to the "target" address:
*
* jit_address + jit_off(set) - @target
* 0x1000 + 4 - @target
*/
#define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */
#define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */
#define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */
static const struct {
/*
* "jit_off" is common between all "jmp[]" and is coupled with
* "cond" of each "jmp[]" instance. e.g.:
*
* arcv2_64_jccs.jit_off[1]
* arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1]
*
* Are indicating that the second jump in JITed code of "UGT"
* is at offset "jit_off[1]" while its condition is "cond[1]".
*/
u8 jit_off[JCC64_NR_OF_JMPS];
struct {
u8 cond[JCC64_NR_OF_JMPS];
} jmp[ARC_CC_SLE + 1];
} arcv2_64_jccs = {
.jit_off = {
INSN_len_normal * 1,
INSN_len_normal * 2,
INSN_len_normal * 4
},
/*
* cmp rd_hi, rs_hi
* bhi @target # 1: u>
* blo @end # 2: u<
* cmp rd_lo, rs_lo
* bhi @target # 3: u>
* end:
*/
.jmp[ARC_CC_UGT] = {
.cond = {CC_great_u, CC_less_u, CC_great_u}
},
/*
* cmp rd_hi, rs_hi
* bhi @target # 1: u>
* blo @end # 2: u<
* cmp rd_lo, rs_lo
* bhs @target # 3: u>=
* end:
*/
.jmp[ARC_CC_UGE] = {
.cond = {CC_great_u, CC_less_u, CC_great_eq_u}
},
/*
* cmp rd_hi, rs_hi
* blo @target # 1: u<
* bhi @end # 2: u>
* cmp rd_lo, rs_lo
* blo @target # 3: u<
* end:
*/
.jmp[ARC_CC_ULT] = {
.cond = {CC_less_u, CC_great_u, CC_less_u}
},
/*
* cmp rd_hi, rs_hi
* blo @target # 1: u<
* bhi @end # 2: u>
* cmp rd_lo, rs_lo
* bls @target # 3: u<=
* end:
*/
.jmp[ARC_CC_ULE] = {
.cond = {CC_less_u, CC_great_u, CC_less_eq_u}
},
/*
* cmp rd_hi, rs_hi
* bgt @target # 1: s>
* blt @end # 2: s<
* cmp rd_lo, rs_lo
* bhi @target # 3: u>
* end:
*/
.jmp[ARC_CC_SGT] = {
.cond = {CC_great_s, CC_less_s, CC_great_u}
},
/*
* cmp rd_hi, rs_hi
* bgt @target # 1: s>
* blt @end # 2: s<
* cmp rd_lo, rs_lo
* bhs @target # 3: u>=
* end:
*/
.jmp[ARC_CC_SGE] = {
.cond = {CC_great_s, CC_less_s, CC_great_eq_u}
},
/*
* cmp rd_hi, rs_hi
* blt @target # 1: s<
* bgt @end # 2: s>
* cmp rd_lo, rs_lo
* blo @target # 3: u<
* end:
*/
.jmp[ARC_CC_SLT] = {
.cond = {CC_less_s, CC_great_s, CC_less_u}
},
/*
* cmp rd_hi, rs_hi
* blt @target # 1: s<
* bgt @end # 2: s>
* cmp rd_lo, rs_lo
* bls @target # 3: u<=
* end:
*/
.jmp[ARC_CC_SLE] = {
.cond = {CC_less_s, CC_great_s, CC_less_eq_u}
}
};
/*
* The displacement (offset) for ARC's "b"ranch instruction is the distance
* from the aligned version of _current_ instruction (PCL) to the target
* instruction:
*
* DISP = TARGET - PCL # PCL is the word aligned PC
*/
static inline s32 get_displacement(u32 curr_off, u32 targ_off)
{
return (s32)(targ_off - (curr_off & ~3L));
}
/*
* "disp"lacement should be:
*
* 1. 16-bit aligned.
* 2. fit in S25, because no "condition code" is supposed to be encoded.
*/
static inline bool is_valid_far_disp(s32 disp)
{
return (!(disp & 1) && IN_S25_RANGE(disp));
}
/*
* "disp"lacement should be:
*
* 1. 16-bit aligned.
* 2. fit in S21, because "condition code" is supposed to be encoded too.
*/
static inline bool is_valid_near_disp(s32 disp)
{
return (!(disp & 1) && IN_S21_RANGE(disp));
}
/*
* cmp rd_hi, rs_hi
* cmp.z rd_lo, rs_lo
* b{eq,ne} @target
* | |
* | `--> "eq" param is false (JNE)
* `-----> "eq" param is true (JEQ)
*/
static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq,
u32 curr_off, u32 targ_off)
{
s32 disp;
u8 len = 0;
len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp);
return len;
}
/*
* tst rd_hi, rs_hi
* tst.z rd_lo, rs_lo
* bne @target
*/
static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off)
{
u8 len = 0;
s32 disp;
len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), CC_unequal, disp);
return len;
}
/*
* Verify if all the jumps for a JITed jcc64 operation are valid,
* by consulting the data stored at "arcv2_64_jccs".
*/
static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond)
{
size_t i;
if (cond >= ARC_CC_LAST)
return false;
for (i = 0; i < JCC64_NR_OF_JMPS; i++) {
u32 from, to;
from = curr_off + arcv2_64_jccs.jit_off[i];
/* for the 2nd jump, we jump to the end of block. */
if (i != JCC64_SKIP_JMP)
to = targ_off;
else
to = from + (JCC64_INSNS_TO_END * INSN_len_normal);
/* There is a "cc" in the instruction, so a "near" jump. */
if (!is_valid_near_disp(get_displacement(from, to)))
return false;
}
return true;
}
/* Can the jump from "curr_off" to "targ_off" actually happen? */
bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond)
{
s32 disp;
switch (cond) {
case ARC_CC_UGT:
case ARC_CC_UGE:
case ARC_CC_ULT:
case ARC_CC_ULE:
case ARC_CC_SGT:
case ARC_CC_SGE:
case ARC_CC_SLT:
case ARC_CC_SLE:
return check_jcc_64(curr_off, targ_off, cond);
case ARC_CC_EQ:
case ARC_CC_NE:
case ARC_CC_SET:
/*
* The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the
* 3rd instruction. See comments of "gen_j{set,_eq}_64()".
*/
curr_off += 2 * INSN_len_normal;
disp = get_displacement(curr_off, targ_off);
/* There is a "cc" field in the issued instruction. */
return is_valid_near_disp(disp);
case ARC_CC_AL:
disp = get_displacement(curr_off, targ_off);
return is_valid_far_disp(disp);
default:
return false;
}
}
/*
* The template for the 64-bit jumps with the following BPF conditions
*
* u< u<= u> u>= s< s<= s> s>=
*
* Looks like below:
*
* cmp rd_hi, rs_hi
* b<c1> @target
* b<c2> @end
* cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal
* b<c3> @target
* end:
*
* "c1" is the condition that JIT is handling minus the equality part.
* For instance if we have to translate an "unsigned greater or equal",
* then "c1" will be "unsigned greater". We won't know about equality
* until all 64-bits of data (higeher and lower registers) are processed.
*
* "c2" is the counter logic of "c1". For instance, if "c1" is originated
* from "s>", then "c2" would be "s<". Notice that equality doesn't play
* a role here either, because the lower 32 bits are not processed yet.
*
* "c3" is the unsigned version of "c1", no matter if the BPF condition
* was signed or unsigned. An unsigned version is necessary, because the
* MSB of the lower 32 bits does not reflect a sign in the whole 64-bit
* scheme. Otherwise, 64-bit comparisons like
* (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000)
* would yield an incorrect result. Finally, if there is an equality
* check in the BPF condition, it will be reflected in "c3".
*
* You can find all the instances of this template where the
* "arcv2_64_jccs" is getting initialised.
*/
static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond,
u32 curr_off, u32 targ_off)
{
s32 disp;
u32 end_off;
const u8 *cc = arcv2_64_jccs.jmp[cond].cond;
u8 len = 0;
/* cmp rd_hi, rs_hi */
len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs));
/* b<c1> @target */
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), cc[0], disp);
/* b<c2> @end */
end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal);
disp = get_displacement(curr_off + len, end_off);
len += arc_bcc(BUF(buf, len), cc[1], disp);
/* cmp rd_lo, rs_lo */
len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
/* b<c3> @target */
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), cc[2], disp);
return len;
}
/*
* This function only applies the necessary logic to make the proper
* translations. All the sanity checks must have already been done
* by calling the check_jmp_64().
*/
u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
{
u8 len = 0;
bool eq = false;
s32 disp;
switch (cond) {
case ARC_CC_AL:
disp = get_displacement(curr_off, targ_off);
len = arc_b(buf, disp);
break;
case ARC_CC_UGT:
case ARC_CC_UGE:
case ARC_CC_ULT:
case ARC_CC_ULE:
case ARC_CC_SGT:
case ARC_CC_SGE:
case ARC_CC_SLT:
case ARC_CC_SLE:
len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off);
break;
case ARC_CC_EQ:
eq = true;
fallthrough;
case ARC_CC_NE:
len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off);
break;
case ARC_CC_SET:
len = gen_jset_64(buf, rd, rs, curr_off, targ_off);
break;
default:
#ifdef ARC_BPF_JIT_DEBUG
pr_err("64-bit jump condition is not known.");
BUG();
#endif
}
return len;
}
/*
* The condition codes to use when generating JIT instructions
* for 32-bit jumps.
*
* The "ARC_CC_AL" index is not really used by the code, but it
* is here for the sake of completeness.
*
* The "ARC_CC_SET" becomes "CC_unequal" because of the "tst"
* instruction that precedes the conditional branch.
*/
static const u8 arcv2_32_jmps[ARC_CC_LAST] = {
[ARC_CC_UGT] = CC_great_u,
[ARC_CC_UGE] = CC_great_eq_u,
[ARC_CC_ULT] = CC_less_u,
[ARC_CC_ULE] = CC_less_eq_u,
[ARC_CC_SGT] = CC_great_s,
[ARC_CC_SGE] = CC_great_eq_s,
[ARC_CC_SLT] = CC_less_s,
[ARC_CC_SLE] = CC_less_eq_s,
[ARC_CC_AL] = CC_always,
[ARC_CC_EQ] = CC_equal,
[ARC_CC_NE] = CC_unequal,
[ARC_CC_SET] = CC_unequal
};
/* Can the jump from "curr_off" to "targ_off" actually happen? */
bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
{
u8 addendum;
s32 disp;
if (cond >= ARC_CC_LAST)
return false;
/*
* The unconditional jump happens immediately, while the rest
* are either preceded by a "cmp" or "tst" instruction.
*/
addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
disp = get_displacement(curr_off + addendum, targ_off);
if (cond == ARC_CC_AL)
return is_valid_far_disp(disp);
else
return is_valid_near_disp(disp);
}
/*
* The JITed code for 32-bit (conditional) branches:
*
* ARC_CC_AL @target
* b @jit_targ_addr
*
* ARC_CC_SET rd, rs, @target
* tst rd, rs
* bnz @jit_targ_addr
*
* ARC_CC_xx rd, rs, @target
* cmp rd, rs
* b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx]
*/
u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
{
s32 disp;
u8 len = 0;
/*
* Although this must have already been checked by "check_jmp_32()",
* we're not going to risk accessing "arcv2_32_jmps" array without
* the boundary check.
*/
if (cond >= ARC_CC_LAST) {
#ifdef ARC_BPF_JIT_DEBUG
pr_err("32-bit jump condition is not known.");
BUG();
#endif
return 0;
}
/* If there is a "condition", issue the "cmp" or "tst" first. */
if (cond != ARC_CC_AL) {
if (cond == ARC_CC_SET)
len = tst_r32(buf, rd, rs);
else
len = cmp_r32(buf, rd, rs);
/*
* The issued instruction affects the "disp"lacement as
* it alters the "curr_off" by its "len"gth. The "curr_off"
* should always point to the jump instruction.
*/
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp);
} else {
/* The straight forward unconditional jump. */
disp = get_displacement(curr_off, targ_off);
len = arc_b(buf, disp);
}
return len;
}
/*
* Generate code for functions calls. There can be two types of calls:
*
* - Calling another BPF function
* - Calling an in-kernel function which is compiled by ARC gcc
*
* In the later case, we must comply to ARCv2 ABI and handle arguments
* and return values accordingly.
*/
u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func)
{
u8 len = 0;
/*
* In case of an in-kernel function call, always push the 5th
* argument onto the stack, because that's where the ABI dictates
* it should be found. If the callee doesn't really use it, no harm
* is done. The stack is readjusted either way after the call.
*/
if (external_func)
len += push_r64(BUF(buf, len), BPF_REG_5);
len += jump_and_link(BUF(buf, len), func_addr);
if (external_func)
len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE);
return len;
}
|