1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
|
// SPDX-License-Identifier: GPL-2.0
/*
* The back-end-agnostic part of Just-In-Time compiler for eBPF bytecode.
*
* Copyright (c) 2024 Synopsys Inc.
* Author: Shahab Vahedi <shahab@synopsys.com>
*/
#include <linux/bug.h>
#include "bpf_jit.h"
/*
* Check for the return value. A pattern used often in this file.
* There must be a "ret" variable of type "int" in the scope.
*/
#define CHECK_RET(cmd) \
do { \
ret = (cmd); \
if (ret < 0) \
return ret; \
} while (0)
#ifdef ARC_BPF_JIT_DEBUG
/* Dumps bytes in /var/log/messages at KERN_INFO level (4). */
static void dump_bytes(const u8 *buf, u32 len, const char *header)
{
u8 line[64];
size_t i, j;
pr_info("-----------------[ %s ]-----------------\n", header);
for (i = 0, j = 0; i < len; i++) {
/* Last input byte? */
if (i == len - 1) {
j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
pr_info("%s\n", line);
break;
}
/* End of line? */
else if (i % 8 == 7) {
j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
pr_info("%s\n", line);
j = 0;
} else {
j += scnprintf(line + j, 64 - j, "0x%02x, ", buf[i]);
}
}
}
#endif /* ARC_BPF_JIT_DEBUG */
/********************* JIT context ***********************/
/*
* buf: Translated instructions end up here.
* len: The length of whole block in bytes.
* index: The offset at which the _next_ instruction may be put.
*/
struct jit_buffer {
u8 *buf;
u32 len;
u32 index;
};
/*
* This is a subset of "struct jit_context" that its information is deemed
* necessary for the next extra pass to come.
*
* bpf_header: Needed to finally lock the region.
* bpf2insn: Used to find the translation for instructions of interest.
*
* Things like "jit.buf" and "jit.len" can be retrieved respectively from
* "prog->bpf_func" and "prog->jited_len".
*/
struct arc_jit_data {
struct bpf_binary_header *bpf_header;
u32 *bpf2insn;
};
/*
* The JIT pertinent context that is used by different functions.
*
* prog: The current eBPF program being handled.
* orig_prog: The original eBPF program before any possible change.
* jit: The JIT buffer and its length.
* bpf_header: The JITed program header. "jit.buf" points inside it.
* emit: If set, opcodes are written to memory; else, a dry-run.
* do_zext: If true, 32-bit sub-regs must be zero extended.
* bpf2insn: Maps BPF insn indices to their counterparts in jit.buf.
* bpf2insn_valid: Indicates if "bpf2ins" is populated with the mappings.
* jit_data: A piece of memory to transfer data to the next pass.
* arc_regs_clobbered: Each bit status determines if that arc reg is clobbered.
* save_blink: Whether ARC's "blink" register needs to be saved.
* frame_size: Derived from "prog->aux->stack_depth".
* epilogue_offset: Used by early "return"s in the code to jump here.
* need_extra_pass: A forecast if an "extra_pass" will occur.
* is_extra_pass: Indicates if the current pass is an extra pass.
* user_bpf_prog: True, if VM opcodes come from a real program.
* blinded: True if "constant blinding" step returned a new "prog".
* success: Indicates if the whole JIT went OK.
*/
struct jit_context {
struct bpf_prog *prog;
struct bpf_prog *orig_prog;
struct jit_buffer jit;
struct bpf_binary_header *bpf_header;
bool emit;
bool do_zext;
u32 *bpf2insn;
bool bpf2insn_valid;
struct arc_jit_data *jit_data;
u32 arc_regs_clobbered;
bool save_blink;
u16 frame_size;
u32 epilogue_offset;
bool need_extra_pass;
bool is_extra_pass;
bool user_bpf_prog;
bool blinded;
bool success;
};
/*
* If we're in ARC_BPF_JIT_DEBUG mode and the debug level is right, dump the
* input BPF stream. "bpf_jit_dump()" is not fully suited for this purpose.
*/
static void vm_dump(const struct bpf_prog *prog)
{
#ifdef ARC_BPF_JIT_DEBUG
if (bpf_jit_enable > 1)
dump_bytes((u8 *)prog->insns, 8 * prog->len, " VM ");
#endif
}
/*
* If the right level of debug is set, dump the bytes. There are 2 variants
* of this function:
*
* 1. Use the standard bpf_jit_dump() which is meant only for JITed code.
* 2. Use the dump_bytes() to match its "vm_dump()" instance.
*/
static void jit_dump(const struct jit_context *ctx)
{
#ifdef ARC_BPF_JIT_DEBUG
u8 header[8];
#endif
const int pass = ctx->is_extra_pass ? 2 : 1;
if (bpf_jit_enable <= 1 || !ctx->prog->jited)
return;
#ifdef ARC_BPF_JIT_DEBUG
scnprintf(header, sizeof(header), "JIT:%d", pass);
dump_bytes(ctx->jit.buf, ctx->jit.len, header);
pr_info("\n");
#else
bpf_jit_dump(ctx->prog->len, ctx->jit.len, pass, ctx->jit.buf);
#endif
}
/* Initialise the context so there's no garbage. */
static int jit_ctx_init(struct jit_context *ctx, struct bpf_prog *prog)
{
memset(ctx, 0, sizeof(*ctx));
ctx->orig_prog = prog;
/* If constant blinding was requested but failed, scram. */
ctx->prog = bpf_jit_blind_constants(prog);
if (IS_ERR(ctx->prog))
return PTR_ERR(ctx->prog);
ctx->blinded = (ctx->prog != ctx->orig_prog);
/* If the verifier doesn't zero-extend, then we have to do it. */
ctx->do_zext = !ctx->prog->aux->verifier_zext;
ctx->is_extra_pass = ctx->prog->jited;
ctx->user_bpf_prog = ctx->prog->is_func;
return 0;
}
/*
* Only after the first iteration of normal pass (the dry-run),
* there are valid offsets in ctx->bpf2insn array.
*/
static inline bool offsets_available(const struct jit_context *ctx)
{
return ctx->bpf2insn_valid;
}
/*
* "*mem" should be freed when there is no "extra pass" to come,
* or the compilation terminated abruptly. A few of such memory
* allocations are: ctx->jit_data and ctx->bpf2insn.
*/
static inline void maybe_free(struct jit_context *ctx, void **mem)
{
if (*mem) {
if (!ctx->success || !ctx->need_extra_pass) {
kfree(*mem);
*mem = NULL;
}
}
}
/*
* Free memories based on the status of the context.
*
* A note about "bpf_header": On successful runs, "bpf_header" is
* not freed, because "jit.buf", a sub-array of it, is returned as
* the "bpf_func". However, "bpf_header" is lost and nothing points
* to it. This should not cause a leakage, because apparently
* "bpf_header" can be revived by "bpf_jit_binary_hdr()". This is
* how "bpf_jit_free()" in "kernel/bpf/core.c" releases the memory.
*/
static void jit_ctx_cleanup(struct jit_context *ctx)
{
if (ctx->blinded) {
/* if all went well, release the orig_prog. */
if (ctx->success)
bpf_jit_prog_release_other(ctx->prog, ctx->orig_prog);
else
bpf_jit_prog_release_other(ctx->orig_prog, ctx->prog);
}
maybe_free(ctx, (void **)&ctx->bpf2insn);
maybe_free(ctx, (void **)&ctx->jit_data);
if (!ctx->bpf2insn)
ctx->bpf2insn_valid = false;
/* Freeing "bpf_header" is enough. "jit.buf" is a sub-array of it. */
if (!ctx->success && ctx->bpf_header) {
bpf_jit_binary_free(ctx->bpf_header);
ctx->bpf_header = NULL;
ctx->jit.buf = NULL;
ctx->jit.index = 0;
ctx->jit.len = 0;
}
ctx->emit = false;
ctx->do_zext = false;
}
/*
* Analyse the register usage and record the frame size.
* The register usage is determined by consulting the back-end.
*/
static void analyze_reg_usage(struct jit_context *ctx)
{
size_t i;
u32 usage = 0;
const struct bpf_insn *insn = ctx->prog->insnsi;
for (i = 0; i < ctx->prog->len; i++) {
u8 bpf_reg;
bool call;
bpf_reg = insn[i].dst_reg;
call = (insn[i].code == (BPF_JMP | BPF_CALL)) ? true : false;
usage |= mask_for_used_regs(bpf_reg, call);
}
ctx->arc_regs_clobbered = usage;
ctx->frame_size = ctx->prog->aux->stack_depth;
}
/* Verify that no instruction will be emitted when there is no buffer. */
static inline int jit_buffer_check(const struct jit_context *ctx)
{
if (ctx->emit) {
if (!ctx->jit.buf) {
pr_err("bpf-jit: inconsistence state; no "
"buffer to emit instructions.\n");
return -EINVAL;
} else if (ctx->jit.index > ctx->jit.len) {
pr_err("bpf-jit: estimated JIT length is less "
"than the emitted instructions.\n");
return -EFAULT;
}
}
return 0;
}
/* On a dry-run (emit=false), "jit.len" is growing gradually. */
static inline void jit_buffer_update(struct jit_context *ctx, u32 n)
{
if (!ctx->emit)
ctx->jit.len += n;
else
ctx->jit.index += n;
}
/* Based on "emit", determine the address where instructions are emitted. */
static inline u8 *effective_jit_buf(const struct jit_context *ctx)
{
return ctx->emit ? (ctx->jit.buf + ctx->jit.index) : NULL;
}
/* Prologue based on context variables set by "analyze_reg_usage()". */
static int handle_prologue(struct jit_context *ctx)
{
int ret;
u8 *buf = effective_jit_buf(ctx);
u32 len = 0;
CHECK_RET(jit_buffer_check(ctx));
len = arc_prologue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
jit_buffer_update(ctx, len);
return 0;
}
/* The counter part for "handle_prologue()". */
static int handle_epilogue(struct jit_context *ctx)
{
int ret;
u8 *buf = effective_jit_buf(ctx);
u32 len = 0;
CHECK_RET(jit_buffer_check(ctx));
len = arc_epilogue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
jit_buffer_update(ctx, len);
return 0;
}
/* Tell which number of the BPF instruction we are dealing with. */
static inline s32 get_index_for_insn(const struct jit_context *ctx,
const struct bpf_insn *insn)
{
return (insn - ctx->prog->insnsi);
}
/*
* In most of the cases, the "offset" is read from "insn->off". However,
* if it is an unconditional BPF_JMP32, then it comes from "insn->imm".
*
* (Courtesy of "cpu=v4" support)
*/
static inline s32 get_offset(const struct bpf_insn *insn)
{
if ((BPF_CLASS(insn->code) == BPF_JMP32) &&
(BPF_OP(insn->code) == BPF_JA))
return insn->imm;
else
return insn->off;
}
/*
* Determine to which number of the BPF instruction we're jumping to.
*
* The "offset" is interpreted as the "number" of BPF instructions
* from the _next_ BPF instruction. e.g.:
*
* 4 means 4 instructions after the next insn
* 0 means 0 instructions after the next insn -> fallthrough.
* -1 means 1 instruction before the next insn -> jmp to current insn.
*
* Another way to look at this, "offset" is the number of instructions
* that exist between the current instruction and the target instruction.
*
* It is worth noting that a "mov r,i64", which is 16-byte long, is
* treated as two instructions long, therefore "offset" needn't be
* treated specially for those. Everything is uniform.
*/
static inline s32 get_target_index_for_insn(const struct jit_context *ctx,
const struct bpf_insn *insn)
{
return (get_index_for_insn(ctx, insn) + 1) + get_offset(insn);
}
/* Is there an immediate operand encoded in the "insn"? */
static inline bool has_imm(const struct bpf_insn *insn)
{
return BPF_SRC(insn->code) == BPF_K;
}
/* Is the last BPF instruction? */
static inline bool is_last_insn(const struct bpf_prog *prog, u32 idx)
{
return idx == (prog->len - 1);
}
/*
* Invocation of this function, conditionally signals the need for
* an extra pass. The conditions that must be met are:
*
* 1. The current pass itself shouldn't be an extra pass.
* 2. The stream of bytes being JITed must come from a user program.
*/
static inline void set_need_for_extra_pass(struct jit_context *ctx)
{
if (!ctx->is_extra_pass)
ctx->need_extra_pass = ctx->user_bpf_prog;
}
/*
* Check if the "size" is valid and then transfer the control to
* the back-end for the swap.
*/
static int handle_swap(u8 *buf, u8 rd, u8 size, u8 endian,
bool force, bool do_zext, u8 *len)
{
/* Sanity check on the size. */
switch (size) {
case 16:
case 32:
case 64:
break;
default:
pr_err("bpf-jit: invalid size for swap.\n");
return -EINVAL;
}
*len = gen_swap(buf, rd, size, endian, force, do_zext);
return 0;
}
/* Checks if the (instruction) index is in valid range. */
static inline bool check_insn_idx_valid(const struct jit_context *ctx,
const s32 idx)
{
return (idx >= 0 && idx < ctx->prog->len);
}
/*
* Decouple the back-end from BPF by converting BPF conditions
* to internal enum. ARC_CC_* start from 0 and are used as index
* to an array. BPF_J* usage must end after this conversion.
*/
static int bpf_cond_to_arc(const u8 op, u8 *arc_cc)
{
switch (op) {
case BPF_JA:
*arc_cc = ARC_CC_AL;
break;
case BPF_JEQ:
*arc_cc = ARC_CC_EQ;
break;
case BPF_JGT:
*arc_cc = ARC_CC_UGT;
break;
case BPF_JGE:
*arc_cc = ARC_CC_UGE;
break;
case BPF_JSET:
*arc_cc = ARC_CC_SET;
break;
case BPF_JNE:
*arc_cc = ARC_CC_NE;
break;
case BPF_JSGT:
*arc_cc = ARC_CC_SGT;
break;
case BPF_JSGE:
*arc_cc = ARC_CC_SGE;
break;
case BPF_JLT:
*arc_cc = ARC_CC_ULT;
break;
case BPF_JLE:
*arc_cc = ARC_CC_ULE;
break;
case BPF_JSLT:
*arc_cc = ARC_CC_SLT;
break;
case BPF_JSLE:
*arc_cc = ARC_CC_SLE;
break;
default:
pr_err("bpf-jit: can't handle condition 0x%02X\n", op);
return -EINVAL;
}
return 0;
}
/*
* Check a few things for a supposedly "jump" instruction:
*
* 0. "insn" is a "jump" instruction, but not the "call/exit" variant.
* 1. The current "insn" index is in valid range.
* 2. The index of target instruction is in valid range.
*/
static int check_bpf_jump(const struct jit_context *ctx,
const struct bpf_insn *insn)
{
const u8 class = BPF_CLASS(insn->code);
const u8 op = BPF_OP(insn->code);
/* Must be a jmp(32) instruction that is not a "call/exit". */
if ((class != BPF_JMP && class != BPF_JMP32) ||
(op == BPF_CALL || op == BPF_EXIT)) {
pr_err("bpf-jit: not a jump instruction.\n");
return -EINVAL;
}
if (!check_insn_idx_valid(ctx, get_index_for_insn(ctx, insn))) {
pr_err("bpf-jit: the bpf jump insn is not in prog.\n");
return -EINVAL;
}
if (!check_insn_idx_valid(ctx, get_target_index_for_insn(ctx, insn))) {
pr_err("bpf-jit: bpf jump label is out of range.\n");
return -EINVAL;
}
return 0;
}
/*
* Based on input "insn", consult "ctx->bpf2insn" to get the
* related index (offset) of the translation in JIT stream.
*/
static u32 get_curr_jit_off(const struct jit_context *ctx,
const struct bpf_insn *insn)
{
const s32 idx = get_index_for_insn(ctx, insn);
#ifdef ARC_BPF_JIT_DEBUG
BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, idx));
#endif
return ctx->bpf2insn[idx];
}
/*
* The input "insn" must be a jump instruction.
*
* Based on input "insn", consult "ctx->bpf2insn" to get the
* related JIT index (offset) of "target instruction" that
* "insn" would jump to.
*/
static u32 get_targ_jit_off(const struct jit_context *ctx,
const struct bpf_insn *insn)
{
const s32 tidx = get_target_index_for_insn(ctx, insn);
#ifdef ARC_BPF_JIT_DEBUG
BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, tidx));
#endif
return ctx->bpf2insn[tidx];
}
/*
* This function will return 0 for a feasible jump.
*
* Consult the back-end to check if it finds it feasible to emit
* the necessary instructions based on "cond" and the displacement
* between the "from_off" and the "to_off".
*/
static int feasible_jit_jump(u32 from_off, u32 to_off, u8 cond, bool j32)
{
int ret = 0;
if (j32) {
if (!check_jmp_32(from_off, to_off, cond))
ret = -EFAULT;
} else {
if (!check_jmp_64(from_off, to_off, cond))
ret = -EFAULT;
}
if (ret != 0)
pr_err("bpf-jit: the JIT displacement is not OK.\n");
return ret;
}
/*
* This jump handler performs the following steps:
*
* 1. Compute ARC's internal condition code from BPF's
* 2. Determine the bitness of the operation (32 vs. 64)
* 3. Sanity check on BPF stream
* 4. Sanity check on what is supposed to be JIT's displacement
* 5. And finally, emit the necessary instructions
*
* The last two steps are performed through the back-end.
* The value of steps 1 and 2 are necessary inputs for the back-end.
*/
static int handle_jumps(const struct jit_context *ctx,
const struct bpf_insn *insn,
u8 *len)
{
u8 cond;
int ret = 0;
u8 *buf = effective_jit_buf(ctx);
const bool j32 = (BPF_CLASS(insn->code) == BPF_JMP32) ? true : false;
const u8 rd = insn->dst_reg;
u8 rs = insn->src_reg;
u32 curr_off = 0, targ_off = 0;
*len = 0;
/* Map the BPF condition to internal enum. */
CHECK_RET(bpf_cond_to_arc(BPF_OP(insn->code), &cond));
/* Sanity check on the BPF byte stream. */
CHECK_RET(check_bpf_jump(ctx, insn));
/*
* Move the immediate into a temporary register _now_ for 2 reasons:
*
* 1. "gen_jmp_{32,64}()" deal with operands in registers.
*
* 2. The "len" parameter will grow so that the current jit offset
* (curr_off) will have increased to a point where the necessary
* instructions can be inserted by "gen_jmp_{32,64}()".
*/
if (has_imm(insn) && cond != ARC_CC_AL) {
if (j32) {
*len += mov_r32_i32(BUF(buf, *len), JIT_REG_TMP,
insn->imm);
} else {
*len += mov_r64_i32(BUF(buf, *len), JIT_REG_TMP,
insn->imm);
}
rs = JIT_REG_TMP;
}
/* If the offsets are known, check if the branch can occur. */
if (offsets_available(ctx)) {
curr_off = get_curr_jit_off(ctx, insn) + *len;
targ_off = get_targ_jit_off(ctx, insn);
/* Sanity check on the back-end side. */
CHECK_RET(feasible_jit_jump(curr_off, targ_off, cond, j32));
}
if (j32) {
*len += gen_jmp_32(BUF(buf, *len), rd, rs, cond,
curr_off, targ_off);
} else {
*len += gen_jmp_64(BUF(buf, *len), rd, rs, cond,
curr_off, targ_off);
}
return ret;
}
/* Jump to translated epilogue address. */
static int handle_jmp_epilogue(struct jit_context *ctx,
const struct bpf_insn *insn, u8 *len)
{
u8 *buf = effective_jit_buf(ctx);
u32 curr_off = 0, epi_off = 0;
/* Check the offset only if the data is available. */
if (offsets_available(ctx)) {
curr_off = get_curr_jit_off(ctx, insn);
epi_off = ctx->epilogue_offset;
if (!check_jmp_64(curr_off, epi_off, ARC_CC_AL)) {
pr_err("bpf-jit: epilogue offset is not valid.\n");
return -EINVAL;
}
}
/* Jump to "epilogue offset" (rd and rs don't matter). */
*len = gen_jmp_64(buf, 0, 0, ARC_CC_AL, curr_off, epi_off);
return 0;
}
/* Try to get the resolved address and generate the instructions. */
static int handle_call(struct jit_context *ctx,
const struct bpf_insn *insn,
u8 *len)
{
int ret;
bool in_kernel_func, fixed = false;
u64 addr = 0;
u8 *buf = effective_jit_buf(ctx);
ret = bpf_jit_get_func_addr(ctx->prog, insn, ctx->is_extra_pass,
&addr, &fixed);
if (ret < 0) {
pr_err("bpf-jit: can't get the address for call.\n");
return ret;
}
in_kernel_func = (fixed ? true : false);
/* No valuable address retrieved (yet). */
if (!fixed && !addr)
set_need_for_extra_pass(ctx);
*len = gen_func_call(buf, (ARC_ADDR)addr, in_kernel_func);
if (insn->src_reg != BPF_PSEUDO_CALL) {
/* Assigning ABI's return reg to JIT's return reg. */
*len += arc_to_bpf_return(BUF(buf, *len));
}
return 0;
}
/*
* Try to generate instructions for loading a 64-bit immediate.
* These sort of instructions are usually associated with the 64-bit
* relocations: R_BPF_64_64. Therefore, signal the need for an extra
* pass if the circumstances are right.
*/
static int handle_ld_imm64(struct jit_context *ctx,
const struct bpf_insn *insn,
u8 *len)
{
const s32 idx = get_index_for_insn(ctx, insn);
u8 *buf = effective_jit_buf(ctx);
/* We're about to consume 2 VM instructions. */
if (is_last_insn(ctx->prog, idx)) {
pr_err("bpf-jit: need more data for 64-bit immediate.\n");
return -EINVAL;
}
*len = mov_r64_i64(buf, insn->dst_reg, insn->imm, (insn + 1)->imm);
if (bpf_pseudo_func(insn))
set_need_for_extra_pass(ctx);
return 0;
}
/*
* Handles one eBPF instruction at a time. To make this function faster,
* it does not call "jit_buffer_check()". Else, it would call it for every
* instruction. As a result, it should not be invoked directly. Only
* "handle_body()", that has already executed the "check", may call this
* function.
*
* If the "ret" value is negative, something has went wrong. Else,
* it mostly holds the value 0 and rarely 1. Number 1 signals
* the loop in "handle_body()" to skip the next instruction, because
* it has been consumed as part of a 64-bit immediate value.
*/
static int handle_insn(struct jit_context *ctx, u32 idx)
{
const struct bpf_insn *insn = &ctx->prog->insnsi[idx];
const u8 code = insn->code;
const u8 dst = insn->dst_reg;
const u8 src = insn->src_reg;
const s16 off = insn->off;
const s32 imm = insn->imm;
u8 *buf = effective_jit_buf(ctx);
u8 len = 0;
int ret = 0;
switch (code) {
/* dst += src (32-bit) */
case BPF_ALU | BPF_ADD | BPF_X:
len = add_r32(buf, dst, src);
break;
/* dst += imm (32-bit) */
case BPF_ALU | BPF_ADD | BPF_K:
len = add_r32_i32(buf, dst, imm);
break;
/* dst -= src (32-bit) */
case BPF_ALU | BPF_SUB | BPF_X:
len = sub_r32(buf, dst, src);
break;
/* dst -= imm (32-bit) */
case BPF_ALU | BPF_SUB | BPF_K:
len = sub_r32_i32(buf, dst, imm);
break;
/* dst = -dst (32-bit) */
case BPF_ALU | BPF_NEG:
len = neg_r32(buf, dst);
break;
/* dst *= src (32-bit) */
case BPF_ALU | BPF_MUL | BPF_X:
len = mul_r32(buf, dst, src);
break;
/* dst *= imm (32-bit) */
case BPF_ALU | BPF_MUL | BPF_K:
len = mul_r32_i32(buf, dst, imm);
break;
/* dst /= src (32-bit) */
case BPF_ALU | BPF_DIV | BPF_X:
len = div_r32(buf, dst, src, off == 1);
break;
/* dst /= imm (32-bit) */
case BPF_ALU | BPF_DIV | BPF_K:
len = div_r32_i32(buf, dst, imm, off == 1);
break;
/* dst %= src (32-bit) */
case BPF_ALU | BPF_MOD | BPF_X:
len = mod_r32(buf, dst, src, off == 1);
break;
/* dst %= imm (32-bit) */
case BPF_ALU | BPF_MOD | BPF_K:
len = mod_r32_i32(buf, dst, imm, off == 1);
break;
/* dst &= src (32-bit) */
case BPF_ALU | BPF_AND | BPF_X:
len = and_r32(buf, dst, src);
break;
/* dst &= imm (32-bit) */
case BPF_ALU | BPF_AND | BPF_K:
len = and_r32_i32(buf, dst, imm);
break;
/* dst |= src (32-bit) */
case BPF_ALU | BPF_OR | BPF_X:
len = or_r32(buf, dst, src);
break;
/* dst |= imm (32-bit) */
case BPF_ALU | BPF_OR | BPF_K:
len = or_r32_i32(buf, dst, imm);
break;
/* dst ^= src (32-bit) */
case BPF_ALU | BPF_XOR | BPF_X:
len = xor_r32(buf, dst, src);
break;
/* dst ^= imm (32-bit) */
case BPF_ALU | BPF_XOR | BPF_K:
len = xor_r32_i32(buf, dst, imm);
break;
/* dst <<= src (32-bit) */
case BPF_ALU | BPF_LSH | BPF_X:
len = lsh_r32(buf, dst, src);
break;
/* dst <<= imm (32-bit) */
case BPF_ALU | BPF_LSH | BPF_K:
len = lsh_r32_i32(buf, dst, imm);
break;
/* dst >>= src (32-bit) [unsigned] */
case BPF_ALU | BPF_RSH | BPF_X:
len = rsh_r32(buf, dst, src);
break;
/* dst >>= imm (32-bit) [unsigned] */
case BPF_ALU | BPF_RSH | BPF_K:
len = rsh_r32_i32(buf, dst, imm);
break;
/* dst >>= src (32-bit) [signed] */
case BPF_ALU | BPF_ARSH | BPF_X:
len = arsh_r32(buf, dst, src);
break;
/* dst >>= imm (32-bit) [signed] */
case BPF_ALU | BPF_ARSH | BPF_K:
len = arsh_r32_i32(buf, dst, imm);
break;
/* dst = src (32-bit) */
case BPF_ALU | BPF_MOV | BPF_X:
len = mov_r32(buf, dst, src, (u8)off);
break;
/* dst = imm32 (32-bit) */
case BPF_ALU | BPF_MOV | BPF_K:
len = mov_r32_i32(buf, dst, imm);
break;
/* dst = swap(dst) */
case BPF_ALU | BPF_END | BPF_FROM_LE:
case BPF_ALU | BPF_END | BPF_FROM_BE:
case BPF_ALU64 | BPF_END | BPF_FROM_LE: {
CHECK_RET(handle_swap(buf, dst, imm, BPF_SRC(code),
BPF_CLASS(code) == BPF_ALU64,
ctx->do_zext, &len));
break;
}
/* dst += src (64-bit) */
case BPF_ALU64 | BPF_ADD | BPF_X:
len = add_r64(buf, dst, src);
break;
/* dst += imm32 (64-bit) */
case BPF_ALU64 | BPF_ADD | BPF_K:
len = add_r64_i32(buf, dst, imm);
break;
/* dst -= src (64-bit) */
case BPF_ALU64 | BPF_SUB | BPF_X:
len = sub_r64(buf, dst, src);
break;
/* dst -= imm32 (64-bit) */
case BPF_ALU64 | BPF_SUB | BPF_K:
len = sub_r64_i32(buf, dst, imm);
break;
/* dst = -dst (64-bit) */
case BPF_ALU64 | BPF_NEG:
len = neg_r64(buf, dst);
break;
/* dst *= src (64-bit) */
case BPF_ALU64 | BPF_MUL | BPF_X:
len = mul_r64(buf, dst, src);
break;
/* dst *= imm32 (64-bit) */
case BPF_ALU64 | BPF_MUL | BPF_K:
len = mul_r64_i32(buf, dst, imm);
break;
/* dst &= src (64-bit) */
case BPF_ALU64 | BPF_AND | BPF_X:
len = and_r64(buf, dst, src);
break;
/* dst &= imm32 (64-bit) */
case BPF_ALU64 | BPF_AND | BPF_K:
len = and_r64_i32(buf, dst, imm);
break;
/* dst |= src (64-bit) */
case BPF_ALU64 | BPF_OR | BPF_X:
len = or_r64(buf, dst, src);
break;
/* dst |= imm32 (64-bit) */
case BPF_ALU64 | BPF_OR | BPF_K:
len = or_r64_i32(buf, dst, imm);
break;
/* dst ^= src (64-bit) */
case BPF_ALU64 | BPF_XOR | BPF_X:
len = xor_r64(buf, dst, src);
break;
/* dst ^= imm32 (64-bit) */
case BPF_ALU64 | BPF_XOR | BPF_K:
len = xor_r64_i32(buf, dst, imm);
break;
/* dst <<= src (64-bit) */
case BPF_ALU64 | BPF_LSH | BPF_X:
len = lsh_r64(buf, dst, src);
break;
/* dst <<= imm32 (64-bit) */
case BPF_ALU64 | BPF_LSH | BPF_K:
len = lsh_r64_i32(buf, dst, imm);
break;
/* dst >>= src (64-bit) [unsigned] */
case BPF_ALU64 | BPF_RSH | BPF_X:
len = rsh_r64(buf, dst, src);
break;
/* dst >>= imm32 (64-bit) [unsigned] */
case BPF_ALU64 | BPF_RSH | BPF_K:
len = rsh_r64_i32(buf, dst, imm);
break;
/* dst >>= src (64-bit) [signed] */
case BPF_ALU64 | BPF_ARSH | BPF_X:
len = arsh_r64(buf, dst, src);
break;
/* dst >>= imm32 (64-bit) [signed] */
case BPF_ALU64 | BPF_ARSH | BPF_K:
len = arsh_r64_i32(buf, dst, imm);
break;
/* dst = src (64-bit) */
case BPF_ALU64 | BPF_MOV | BPF_X:
len = mov_r64(buf, dst, src, (u8)off);
break;
/* dst = imm32 (sign extend to 64-bit) */
case BPF_ALU64 | BPF_MOV | BPF_K:
len = mov_r64_i32(buf, dst, imm);
break;
/* dst = imm64 */
case BPF_LD | BPF_DW | BPF_IMM:
CHECK_RET(handle_ld_imm64(ctx, insn, &len));
/* Tell the loop to skip the next instruction. */
ret = 1;
break;
/* dst = *(size *)(src + off) */
case BPF_LDX | BPF_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_DW:
len = load_r(buf, dst, src, off, BPF_SIZE(code), false);
break;
case BPF_LDX | BPF_MEMSX | BPF_W:
case BPF_LDX | BPF_MEMSX | BPF_H:
case BPF_LDX | BPF_MEMSX | BPF_B:
len = load_r(buf, dst, src, off, BPF_SIZE(code), true);
break;
/* *(size *)(dst + off) = src */
case BPF_STX | BPF_MEM | BPF_W:
case BPF_STX | BPF_MEM | BPF_H:
case BPF_STX | BPF_MEM | BPF_B:
case BPF_STX | BPF_MEM | BPF_DW:
len = store_r(buf, src, dst, off, BPF_SIZE(code));
break;
case BPF_ST | BPF_MEM | BPF_W:
case BPF_ST | BPF_MEM | BPF_H:
case BPF_ST | BPF_MEM | BPF_B:
case BPF_ST | BPF_MEM | BPF_DW:
len = store_i(buf, imm, dst, off, BPF_SIZE(code));
break;
case BPF_JMP | BPF_JA:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JA:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_K:
CHECK_RET(handle_jumps(ctx, insn, &len));
break;
case BPF_JMP | BPF_CALL:
CHECK_RET(handle_call(ctx, insn, &len));
break;
case BPF_JMP | BPF_EXIT:
/* If this is the last instruction, epilogue will follow. */
if (is_last_insn(ctx->prog, idx))
break;
CHECK_RET(handle_jmp_epilogue(ctx, insn, &len));
break;
default:
pr_err("bpf-jit: can't handle instruction code 0x%02X\n", code);
return -EOPNOTSUPP;
}
if (BPF_CLASS(code) == BPF_ALU) {
/*
* Skip the "swap" instructions. Even 64-bit swaps are of type
* BPF_ALU (and not BPF_ALU64). Therefore, for the swaps, one
* has to look at the "size" of the operations rather than the
* ALU type. "gen_swap()" specifically takes care of that.
*/
if (BPF_OP(code) != BPF_END && ctx->do_zext)
len += zext(BUF(buf, len), dst);
}
jit_buffer_update(ctx, len);
return ret;
}
static int handle_body(struct jit_context *ctx)
{
int ret;
bool populate_bpf2insn = false;
const struct bpf_prog *prog = ctx->prog;
CHECK_RET(jit_buffer_check(ctx));
/*
* Record the mapping for the instructions during the dry-run.
* Doing it this way allows us to have the mapping ready for
* the jump instructions during the real compilation phase.
*/
if (!ctx->emit)
populate_bpf2insn = true;
for (u32 i = 0; i < prog->len; i++) {
/* During the dry-run, jit.len grows gradually per BPF insn. */
if (populate_bpf2insn)
ctx->bpf2insn[i] = ctx->jit.len;
CHECK_RET(handle_insn(ctx, i));
if (ret > 0) {
/* "ret" is 1 if two (64-bit) chunks were consumed. */
ctx->bpf2insn[i + 1] = ctx->bpf2insn[i];
i++;
}
}
/* If bpf2insn had to be populated, then it is done at this point. */
if (populate_bpf2insn)
ctx->bpf2insn_valid = true;
return 0;
}
/*
* Initialize the memory with "unimp_s" which is the mnemonic for
* "unimplemented" instruction and always raises an exception.
*
* The instruction is 2 bytes. If "size" is odd, there is not much
* that can be done about the last byte in "area". Because, the
* CPU always fetches instructions in two bytes. Therefore, the
* byte beyond the last one is going to accompany it during a
* possible fetch. In the most likely case of a little endian
* system, that beyond-byte will become the major opcode and
* we have no control over its initialisation.
*/
static void fill_ill_insn(void *area, unsigned int size)
{
const u16 unimp_s = 0x79e0;
if (size & 1) {
*((u8 *)area + (size - 1)) = 0xff;
size -= 1;
}
memset16(area, unimp_s, size >> 1);
}
/* Piece of memory that can be allocated at the beginning of jit_prepare(). */
static int jit_prepare_early_mem_alloc(struct jit_context *ctx)
{
ctx->bpf2insn = kcalloc(ctx->prog->len, sizeof(ctx->jit.len),
GFP_KERNEL);
if (!ctx->bpf2insn) {
pr_err("bpf-jit: could not allocate memory for "
"mapping of the instructions.\n");
return -ENOMEM;
}
return 0;
}
/*
* Memory allocations that rely on parameters known at the end of
* jit_prepare().
*/
static int jit_prepare_final_mem_alloc(struct jit_context *ctx)
{
const size_t alignment = sizeof(u32);
ctx->bpf_header = bpf_jit_binary_alloc(ctx->jit.len, &ctx->jit.buf,
alignment, fill_ill_insn);
if (!ctx->bpf_header) {
pr_err("bpf-jit: could not allocate memory for translation.\n");
return -ENOMEM;
}
if (ctx->need_extra_pass) {
ctx->jit_data = kzalloc(sizeof(*ctx->jit_data), GFP_KERNEL);
if (!ctx->jit_data)
return -ENOMEM;
}
return 0;
}
/*
* The first phase of the translation without actually emitting any
* instruction. It helps in getting a forecast on some aspects, such
* as the length of the whole program or where the epilogue starts.
*
* Whenever the necessary parameters are known, memories are allocated.
*/
static int jit_prepare(struct jit_context *ctx)
{
int ret;
/* Dry run. */
ctx->emit = false;
CHECK_RET(jit_prepare_early_mem_alloc(ctx));
/* Get the length of prologue section after some register analysis. */
analyze_reg_usage(ctx);
CHECK_RET(handle_prologue(ctx));
CHECK_RET(handle_body(ctx));
/* Record at which offset epilogue begins. */
ctx->epilogue_offset = ctx->jit.len;
/* Process the epilogue section now. */
CHECK_RET(handle_epilogue(ctx));
CHECK_RET(jit_prepare_final_mem_alloc(ctx));
return 0;
}
/*
* jit_compile() is the real compilation phase. jit_prepare() is
* invoked before jit_compile() as a dry-run to make sure everything
* will go OK and allocate the necessary memory.
*
* In the end, jit_compile() checks if it has produced the same number
* of instructions as jit_prepare() would.
*/
static int jit_compile(struct jit_context *ctx)
{
int ret;
/* Let there be code. */
ctx->emit = true;
CHECK_RET(handle_prologue(ctx));
CHECK_RET(handle_body(ctx));
CHECK_RET(handle_epilogue(ctx));
if (ctx->jit.index != ctx->jit.len) {
pr_err("bpf-jit: divergence between the phases; "
"%u vs. %u (bytes).\n",
ctx->jit.len, ctx->jit.index);
return -EFAULT;
}
return 0;
}
/*
* Calling this function implies a successful JIT. A successful
* translation is signaled by setting the right parameters:
*
* prog->jited=1, prog->jited_len=..., prog->bpf_func=...
*/
static int jit_finalize(struct jit_context *ctx)
{
struct bpf_prog *prog = ctx->prog;
/* We're going to need this information for the "do_extra_pass()". */
if (ctx->need_extra_pass) {
ctx->jit_data->bpf_header = ctx->bpf_header;
ctx->jit_data->bpf2insn = ctx->bpf2insn;
prog->aux->jit_data = (void *)ctx->jit_data;
} else {
/*
* If things seem finalised, then mark the JITed memory
* as R-X and flush it.
*/
if (bpf_jit_binary_lock_ro(ctx->bpf_header)) {
pr_err("bpf-jit: Could not lock the JIT memory.\n");
return -EFAULT;
}
flush_icache_range((unsigned long)ctx->bpf_header,
(unsigned long)
BUF(ctx->jit.buf, ctx->jit.len));
prog->aux->jit_data = NULL;
bpf_prog_fill_jited_linfo(prog, ctx->bpf2insn);
}
ctx->success = true;
prog->bpf_func = (void *)ctx->jit.buf;
prog->jited_len = ctx->jit.len;
prog->jited = 1;
jit_ctx_cleanup(ctx);
jit_dump(ctx);
return 0;
}
/*
* A lenient verification for the existence of JIT context in "prog".
* Apparently the JIT internals, namely jit_subprogs() in bpf/verifier.c,
* may request for a second compilation although nothing needs to be done.
*/
static inline int check_jit_context(const struct bpf_prog *prog)
{
if (!prog->aux->jit_data) {
pr_notice("bpf-jit: no jit data for the extra pass.\n");
return 1;
} else {
return 0;
}
}
/* Reuse the previous pass's data. */
static int jit_resume_context(struct jit_context *ctx)
{
struct arc_jit_data *jdata =
(struct arc_jit_data *)ctx->prog->aux->jit_data;
if (!jdata) {
pr_err("bpf-jit: no jit data for the extra pass.\n");
return -EINVAL;
}
ctx->jit.buf = (u8 *)ctx->prog->bpf_func;
ctx->jit.len = ctx->prog->jited_len;
ctx->bpf_header = jdata->bpf_header;
ctx->bpf2insn = (u32 *)jdata->bpf2insn;
ctx->bpf2insn_valid = ctx->bpf2insn ? true : false;
ctx->jit_data = jdata;
return 0;
}
/*
* Patch in the new addresses. The instructions of interest are:
*
* - call
* - ld r64, imm64
*
* For "call"s, it resolves the addresses one more time through the
* handle_call().
*
* For 64-bit immediate loads, it just retranslates them, because the BPF
* core in kernel might have changed the value since the normal pass.
*/
static int jit_patch_relocations(struct jit_context *ctx)
{
const u8 bpf_opc_call = BPF_JMP | BPF_CALL;
const u8 bpf_opc_ldi64 = BPF_LD | BPF_DW | BPF_IMM;
const struct bpf_prog *prog = ctx->prog;
int ret;
ctx->emit = true;
for (u32 i = 0; i < prog->len; i++) {
const struct bpf_insn *insn = &prog->insnsi[i];
u8 dummy;
/*
* Adjust "ctx.jit.index", so "gen_*()" functions below
* can use it for their output addresses.
*/
ctx->jit.index = ctx->bpf2insn[i];
if (insn->code == bpf_opc_call) {
CHECK_RET(handle_call(ctx, insn, &dummy));
} else if (insn->code == bpf_opc_ldi64) {
CHECK_RET(handle_ld_imm64(ctx, insn, &dummy));
/* Skip the next instruction. */
++i;
}
}
return 0;
}
/*
* A normal pass that involves a "dry-run" phase, jit_prepare(),
* to get the necessary data for the real compilation phase,
* jit_compile().
*/
static struct bpf_prog *do_normal_pass(struct bpf_prog *prog)
{
struct jit_context ctx;
/* Bail out if JIT is disabled. */
if (!prog->jit_requested)
return prog;
if (jit_ctx_init(&ctx, prog)) {
jit_ctx_cleanup(&ctx);
return prog;
}
/* Get the lengths and allocate buffer. */
if (jit_prepare(&ctx)) {
jit_ctx_cleanup(&ctx);
return prog;
}
if (jit_compile(&ctx)) {
jit_ctx_cleanup(&ctx);
return prog;
}
if (jit_finalize(&ctx)) {
jit_ctx_cleanup(&ctx);
return prog;
}
return ctx.prog;
}
/*
* If there are multi-function BPF programs that call each other,
* their translated addresses are not known all at once. Therefore,
* an extra pass is needed to consult the bpf_jit_get_func_addr()
* again to get the newly translated addresses in order to resolve
* the "call"s.
*/
static struct bpf_prog *do_extra_pass(struct bpf_prog *prog)
{
struct jit_context ctx;
/* Skip if there's no context to resume from. */
if (check_jit_context(prog))
return prog;
if (jit_ctx_init(&ctx, prog)) {
jit_ctx_cleanup(&ctx);
return prog;
}
if (jit_resume_context(&ctx)) {
jit_ctx_cleanup(&ctx);
return prog;
}
if (jit_patch_relocations(&ctx)) {
jit_ctx_cleanup(&ctx);
return prog;
}
if (jit_finalize(&ctx)) {
jit_ctx_cleanup(&ctx);
return prog;
}
return ctx.prog;
}
/*
* This function may be invoked twice for the same stream of BPF
* instructions. The "extra pass" happens, when there are
* (re)locations involved that their addresses are not known
* during the first run.
*/
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
vm_dump(prog);
/* Was this program already translated? */
if (!prog->jited)
return do_normal_pass(prog);
else
return do_extra_pass(prog);
return prog;
}
|