1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
|
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2023 Intel Corporation. All rights reserved. */
#include <linux/acpi.h>
#include <linux/xarray.h>
#include <linux/fw_table.h>
#include <linux/node.h>
#include <linux/overflow.h>
#include "cxlpci.h"
#include "cxlmem.h"
#include "core.h"
#include "cxl.h"
struct dsmas_entry {
struct range dpa_range;
u8 handle;
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX];
int entries;
int qos_class;
};
static u32 cdat_normalize(u16 entry, u64 base, u8 type)
{
u32 value;
/*
* Check for invalid and overflow values
*/
if (entry == 0xffff || !entry)
return 0;
else if (base > (UINT_MAX / (entry)))
return 0;
/*
* CDAT fields follow the format of HMAT fields. See table 5 Device
* Scoped Latency and Bandwidth Information Structure in Coherent Device
* Attribute Table (CDAT) Specification v1.01.
*/
value = entry * base;
switch (type) {
case ACPI_HMAT_ACCESS_LATENCY:
case ACPI_HMAT_READ_LATENCY:
case ACPI_HMAT_WRITE_LATENCY:
value = DIV_ROUND_UP(value, 1000);
break;
default:
break;
}
return value;
}
static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_header *hdr = &header->cdat;
struct acpi_cdat_dsmas *dsmas;
int size = sizeof(*hdr) + sizeof(*dsmas);
struct xarray *dsmas_xa = arg;
struct dsmas_entry *dent;
u16 len;
int rc;
len = le16_to_cpu((__force __le16)hdr->length);
if (len != size || (unsigned long)hdr + len > end) {
pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len);
return -EINVAL;
}
/* Skip common header */
dsmas = (struct acpi_cdat_dsmas *)(hdr + 1);
dent = kzalloc(sizeof(*dent), GFP_KERNEL);
if (!dent)
return -ENOMEM;
dent->handle = dsmas->dsmad_handle;
dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address);
dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) +
le64_to_cpu((__force __le64)dsmas->dpa_length) - 1;
rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL);
if (rc) {
kfree(dent);
return rc;
}
return 0;
}
static void __cxl_access_coordinate_set(struct access_coordinate *coord,
int access, unsigned int val)
{
switch (access) {
case ACPI_HMAT_ACCESS_LATENCY:
coord->read_latency = val;
coord->write_latency = val;
break;
case ACPI_HMAT_READ_LATENCY:
coord->read_latency = val;
break;
case ACPI_HMAT_WRITE_LATENCY:
coord->write_latency = val;
break;
case ACPI_HMAT_ACCESS_BANDWIDTH:
coord->read_bandwidth = val;
coord->write_bandwidth = val;
break;
case ACPI_HMAT_READ_BANDWIDTH:
coord->read_bandwidth = val;
break;
case ACPI_HMAT_WRITE_BANDWIDTH:
coord->write_bandwidth = val;
break;
}
}
static void cxl_access_coordinate_set(struct access_coordinate *coord,
int access, unsigned int val)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
__cxl_access_coordinate_set(&coord[i], access, val);
}
static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_header *hdr = &header->cdat;
struct acpi_cdat_dslbis *dslbis;
int size = sizeof(*hdr) + sizeof(*dslbis);
struct xarray *dsmas_xa = arg;
struct dsmas_entry *dent;
__le64 le_base;
__le16 le_val;
u64 val;
u16 len;
len = le16_to_cpu((__force __le16)hdr->length);
if (len != size || (unsigned long)hdr + len > end) {
pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len);
return -EINVAL;
}
/* Skip common header */
dslbis = (struct acpi_cdat_dslbis *)(hdr + 1);
/* Skip unrecognized data type */
if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
return 0;
/* Not a memory type, skip */
if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY)
return 0;
dent = xa_load(dsmas_xa, dslbis->handle);
if (!dent) {
pr_warn("No matching DSMAS entry for DSLBIS entry.\n");
return 0;
}
le_base = (__force __le64)dslbis->entry_base_unit;
le_val = (__force __le16)dslbis->entry[0];
val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
dslbis->data_type);
cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val);
return 0;
}
static int cdat_table_parse_output(int rc)
{
if (rc < 0)
return rc;
if (rc == 0)
return -ENOENT;
return 0;
}
static int cxl_cdat_endpoint_process(struct cxl_port *port,
struct xarray *dsmas_xa)
{
int rc;
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler,
dsmas_xa, port->cdat.table, port->cdat.length);
rc = cdat_table_parse_output(rc);
if (rc)
return rc;
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler,
dsmas_xa, port->cdat.table, port->cdat.length);
return cdat_table_parse_output(rc);
}
static int cxl_port_perf_data_calculate(struct cxl_port *port,
struct xarray *dsmas_xa)
{
struct access_coordinate ep_c[ACCESS_COORDINATE_MAX];
struct dsmas_entry *dent;
int valid_entries = 0;
unsigned long index;
int rc;
rc = cxl_endpoint_get_perf_coordinates(port, ep_c);
if (rc) {
dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n");
return rc;
}
struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port);
if (!cxl_root)
return -ENODEV;
if (!cxl_root->ops || !cxl_root->ops->qos_class)
return -EOPNOTSUPP;
xa_for_each(dsmas_xa, index, dent) {
int qos_class;
cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c);
dent->entries = 1;
rc = cxl_root->ops->qos_class(cxl_root,
&dent->coord[ACCESS_COORDINATE_CPU],
1, &qos_class);
if (rc != 1)
continue;
valid_entries++;
dent->qos_class = qos_class;
}
if (!valid_entries)
return -ENOENT;
return 0;
}
static void update_perf_entry(struct device *dev, struct dsmas_entry *dent,
struct cxl_dpa_perf *dpa_perf)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
dpa_perf->coord[i] = dent->coord[i];
dpa_perf->cdat_coord[i] = dent->cdat_coord[i];
}
dpa_perf->dpa_range = dent->dpa_range;
dpa_perf->qos_class = dent->qos_class;
dev_dbg(dev,
"DSMAS: dpa: %#llx qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n",
dent->dpa_range.start, dpa_perf->qos_class,
dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth,
dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth,
dent->coord[ACCESS_COORDINATE_CPU].read_latency,
dent->coord[ACCESS_COORDINATE_CPU].write_latency);
}
static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds,
struct xarray *dsmas_xa)
{
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
struct device *dev = cxlds->dev;
struct range pmem_range = {
.start = cxlds->pmem_res.start,
.end = cxlds->pmem_res.end,
};
struct range ram_range = {
.start = cxlds->ram_res.start,
.end = cxlds->ram_res.end,
};
struct dsmas_entry *dent;
unsigned long index;
xa_for_each(dsmas_xa, index, dent) {
if (resource_size(&cxlds->ram_res) &&
range_contains(&ram_range, &dent->dpa_range))
update_perf_entry(dev, dent, &mds->ram_perf);
else if (resource_size(&cxlds->pmem_res) &&
range_contains(&pmem_range, &dent->dpa_range))
update_perf_entry(dev, dent, &mds->pmem_perf);
else
dev_dbg(dev, "no partition for dsmas dpa: %#llx\n",
dent->dpa_range.start);
}
}
static int match_cxlrd_qos_class(struct device *dev, void *data)
{
int dev_qos_class = *(int *)data;
struct cxl_root_decoder *cxlrd;
if (!is_root_decoder(dev))
return 0;
cxlrd = to_cxl_root_decoder(dev);
if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID)
return 0;
if (cxlrd->qos_class == dev_qos_class)
return 1;
return 0;
}
static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf)
{
*dpa_perf = (struct cxl_dpa_perf) {
.qos_class = CXL_QOS_CLASS_INVALID,
};
}
static bool cxl_qos_match(struct cxl_port *root_port,
struct cxl_dpa_perf *dpa_perf)
{
if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID)
return false;
if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class,
match_cxlrd_qos_class))
return false;
return true;
}
static int match_cxlrd_hb(struct device *dev, void *data)
{
struct device *host_bridge = data;
struct cxl_switch_decoder *cxlsd;
struct cxl_root_decoder *cxlrd;
if (!is_root_decoder(dev))
return 0;
cxlrd = to_cxl_root_decoder(dev);
cxlsd = &cxlrd->cxlsd;
guard(rwsem_read)(&cxl_region_rwsem);
for (int i = 0; i < cxlsd->nr_targets; i++) {
if (host_bridge == cxlsd->target[i]->dport_dev)
return 1;
}
return 0;
}
static int cxl_qos_class_verify(struct cxl_memdev *cxlmd)
{
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
struct cxl_port *root_port;
int rc;
struct cxl_root *cxl_root __free(put_cxl_root) =
find_cxl_root(cxlmd->endpoint);
if (!cxl_root)
return -ENODEV;
root_port = &cxl_root->port;
/* Check that the QTG IDs are all sane between end device and root decoders */
if (!cxl_qos_match(root_port, &mds->ram_perf))
reset_dpa_perf(&mds->ram_perf);
if (!cxl_qos_match(root_port, &mds->pmem_perf))
reset_dpa_perf(&mds->pmem_perf);
/* Check to make sure that the device's host bridge is under a root decoder */
rc = device_for_each_child(&root_port->dev,
cxlmd->endpoint->host_bridge, match_cxlrd_hb);
if (!rc) {
reset_dpa_perf(&mds->ram_perf);
reset_dpa_perf(&mds->pmem_perf);
}
return rc;
}
static void discard_dsmas(struct xarray *xa)
{
unsigned long index;
void *ent;
xa_for_each(xa, index, ent) {
xa_erase(xa, index);
kfree(ent);
}
xa_destroy(xa);
}
DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T))
void cxl_endpoint_parse_cdat(struct cxl_port *port)
{
struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct xarray __dsmas_xa;
struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa;
int rc;
xa_init(&__dsmas_xa);
if (!port->cdat.table)
return;
rc = cxl_cdat_endpoint_process(port, dsmas_xa);
if (rc < 0) {
dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc);
return;
}
rc = cxl_port_perf_data_calculate(port, dsmas_xa);
if (rc) {
dev_dbg(&port->dev, "Failed to do perf coord calculations.\n");
return;
}
cxl_memdev_set_qos_class(cxlds, dsmas_xa);
cxl_qos_class_verify(cxlmd);
cxl_memdev_update_perf(cxlmd);
}
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, CXL);
static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_sslbis_table {
struct acpi_cdat_header header;
struct acpi_cdat_sslbis sslbis_header;
struct acpi_cdat_sslbe entries[];
} *tbl = (struct acpi_cdat_sslbis_table *)header;
int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header);
struct acpi_cdat_sslbis *sslbis;
struct cxl_port *port = arg;
struct device *dev = &port->dev;
int remain, entries, i;
u16 len;
len = le16_to_cpu((__force __le16)header->cdat.length);
remain = len - size;
if (!remain || remain % sizeof(tbl->entries[0]) ||
(unsigned long)header + len > end) {
dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len);
return -EINVAL;
}
sslbis = &tbl->sslbis_header;
/* Unrecognized data type, we can skip */
if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
return 0;
entries = remain / sizeof(tbl->entries[0]);
if (struct_size(tbl, entries, entries) != len)
return -EINVAL;
for (i = 0; i < entries; i++) {
u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id);
u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id);
__le64 le_base;
__le16 le_val;
struct cxl_dport *dport;
unsigned long index;
u16 dsp_id;
u64 val;
switch (x) {
case ACPI_CDAT_SSLBIS_US_PORT:
dsp_id = y;
break;
case ACPI_CDAT_SSLBIS_ANY_PORT:
switch (y) {
case ACPI_CDAT_SSLBIS_US_PORT:
dsp_id = x;
break;
case ACPI_CDAT_SSLBIS_ANY_PORT:
dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT;
break;
default:
dsp_id = y;
break;
}
break;
default:
dsp_id = x;
break;
}
le_base = (__force __le64)tbl->sslbis_header.entry_base_unit;
le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth;
val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
sslbis->data_type);
xa_for_each(&port->dports, index, dport) {
if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT ||
dsp_id == dport->port_id) {
cxl_access_coordinate_set(dport->coord,
sslbis->data_type,
val);
}
}
}
return 0;
}
void cxl_switch_parse_cdat(struct cxl_port *port)
{
int rc;
if (!port->cdat.table)
return;
rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler,
port, port->cdat.table, port->cdat.length);
rc = cdat_table_parse_output(rc);
if (rc)
dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc);
}
EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, CXL);
static void __cxl_coordinates_combine(struct access_coordinate *out,
struct access_coordinate *c1,
struct access_coordinate *c2)
{
if (c1->write_bandwidth && c2->write_bandwidth)
out->write_bandwidth = min(c1->write_bandwidth,
c2->write_bandwidth);
out->write_latency = c1->write_latency + c2->write_latency;
if (c1->read_bandwidth && c2->read_bandwidth)
out->read_bandwidth = min(c1->read_bandwidth,
c2->read_bandwidth);
out->read_latency = c1->read_latency + c2->read_latency;
}
/**
* cxl_coordinates_combine - Combine the two input coordinates
*
* @out: Output coordinate of c1 and c2 combined
* @c1: input coordinates
* @c2: input coordinates
*/
void cxl_coordinates_combine(struct access_coordinate *out,
struct access_coordinate *c1,
struct access_coordinate *c2)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
__cxl_coordinates_combine(&out[i], &c1[i], &c2[i]);
}
MODULE_IMPORT_NS(CXL);
static void cxl_bandwidth_add(struct access_coordinate *coord,
struct access_coordinate *c1,
struct access_coordinate *c2)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
coord[i].read_bandwidth = c1[i].read_bandwidth +
c2[i].read_bandwidth;
coord[i].write_bandwidth = c1[i].write_bandwidth +
c2[i].write_bandwidth;
}
}
static bool dpa_perf_contains(struct cxl_dpa_perf *perf,
struct resource *dpa_res)
{
struct range dpa = {
.start = dpa_res->start,
.end = dpa_res->end,
};
return range_contains(&perf->dpa_range, &dpa);
}
static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled,
enum cxl_decoder_mode mode)
{
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlmd->cxlds);
struct cxl_dpa_perf *perf;
switch (mode) {
case CXL_DECODER_RAM:
perf = &mds->ram_perf;
break;
case CXL_DECODER_PMEM:
perf = &mds->pmem_perf;
break;
default:
return ERR_PTR(-EINVAL);
}
if (!dpa_perf_contains(perf, cxled->dpa_res))
return ERR_PTR(-EINVAL);
return perf;
}
/*
* Transient context for containing the current calculation of bandwidth when
* doing walking the port hierarchy to deal with shared upstream link.
*/
struct cxl_perf_ctx {
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
struct cxl_port *port;
};
/**
* cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray
* @cxlr: CXL region for the bandwidth calculation
* @cxled: endpoint decoder to start on
* @usp_xa: (output) the xarray that collects all the bandwidth coordinates
* indexed by the upstream device with data of 'struct cxl_perf_ctx'.
* @gp_is_root: (output) bool of whether the grandparent is cxl root.
*
* Return: 0 for success or -errno
*
* Collects aggregated endpoint bandwidth and store the bandwidth in
* an xarray indexed by the upstream device of the switch or the RP
* device. Each endpoint consists the minimum of the bandwidth from DSLBIS
* from the endpoint CDAT, the endpoint upstream link bandwidth, and the
* bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to
* the downstream port that's associated with the endpoint. If the
* device is directly connected to a RP, then no SSLBIS is involved.
*/
static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr,
struct cxl_endpoint_decoder *cxled,
struct xarray *usp_xa,
bool *gp_is_root)
{
struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent);
struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent);
struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX];
struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX];
struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX];
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
struct cxl_perf_ctx *perf_ctx;
struct cxl_dpa_perf *perf;
unsigned long index;
void *ptr;
int rc;
if (!dev_is_pci(cxlds->dev))
return -ENODEV;
if (cxlds->rcd)
return -ENODEV;
perf = cxled_get_dpa_perf(cxled, cxlr->mode);
if (IS_ERR(perf))
return PTR_ERR(perf);
gp_port = to_cxl_port(parent_port->dev.parent);
*gp_is_root = is_cxl_root(gp_port);
/*
* If the grandparent is cxl root, then index is the root port,
* otherwise it's the parent switch upstream device.
*/
if (*gp_is_root)
index = (unsigned long)endpoint->parent_dport->dport_dev;
else
index = (unsigned long)parent_port->uport_dev;
perf_ctx = xa_load(usp_xa, index);
if (!perf_ctx) {
struct cxl_perf_ctx *c __free(kfree) =
kzalloc(sizeof(*perf_ctx), GFP_KERNEL);
if (!c)
return -ENOMEM;
ptr = xa_store(usp_xa, index, c, GFP_KERNEL);
if (xa_is_err(ptr))
return xa_err(ptr);
perf_ctx = no_free_ptr(c);
perf_ctx->port = parent_port;
}
/* Direct upstream link from EP bandwidth */
rc = cxl_pci_get_bandwidth(pdev, pci_coord);
if (rc < 0)
return rc;
/*
* Min of upstream link bandwidth and Endpoint CDAT bandwidth from
* DSLBIS.
*/
cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord);
/*
* If grandparent port is root, then there's no switch involved and
* the endpoint is connected to a root port.
*/
if (!*gp_is_root) {
/*
* Retrieve the switch SSLBIS for switch downstream port
* associated with the endpoint bandwidth.
*/
rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord);
if (rc)
return rc;
/*
* Min of the earlier coordinates with the switch SSLBIS
* bandwidth
*/
cxl_coordinates_combine(ep_coord, ep_coord, sw_coord);
}
/*
* Aggregate the computed bandwidth with the current aggregated bandwidth
* of the endpoints with the same switch upstream device or RP.
*/
cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord);
return 0;
}
static void free_perf_xa(struct xarray *xa)
{
struct cxl_perf_ctx *ctx;
unsigned long index;
if (!xa)
return;
xa_for_each(xa, index, ctx)
kfree(ctx);
xa_destroy(xa);
kfree(xa);
}
DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T))
/**
* cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray
* @cxlr: The region being operated on
* @input_xa: xarray indexed by upstream device of a switch with data of 'struct
* cxl_perf_ctx'
* @gp_is_root: (output) bool of whether the grandparent is cxl root.
*
* Return: a xarray of resulting cxl_perf_ctx per parent switch or root port
* or ERR_PTR(-errno)
*
* Iterate through the xarray. Take the minimum of the downstream calculated
* bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream
* switch if exists. Sum the resulting bandwidth under the switch upstream
* device or a RP device. The function can be iterated over multiple switches
* if the switches are present.
*/
static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr,
struct xarray *input_xa,
bool *gp_is_root)
{
struct xarray *res_xa __free(free_perf_xa) =
kzalloc(sizeof(*res_xa), GFP_KERNEL);
struct access_coordinate coords[ACCESS_COORDINATE_MAX];
struct cxl_perf_ctx *ctx, *us_ctx;
unsigned long index, us_index;
int dev_count = 0;
int gp_count = 0;
void *ptr;
int rc;
if (!res_xa)
return ERR_PTR(-ENOMEM);
xa_init(res_xa);
xa_for_each(input_xa, index, ctx) {
struct device *dev = (struct device *)index;
struct cxl_port *port = ctx->port;
struct cxl_port *parent_port = to_cxl_port(port->dev.parent);
struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
struct cxl_dport *dport = port->parent_dport;
bool is_root = false;
dev_count++;
if (is_cxl_root(gp_port)) {
is_root = true;
gp_count++;
}
/*
* If the grandparent is cxl root, then index is the root port,
* otherwise it's the parent switch upstream device.
*/
if (is_root)
us_index = (unsigned long)port->parent_dport->dport_dev;
else
us_index = (unsigned long)parent_port->uport_dev;
us_ctx = xa_load(res_xa, us_index);
if (!us_ctx) {
struct cxl_perf_ctx *n __free(kfree) =
kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return ERR_PTR(-ENOMEM);
ptr = xa_store(res_xa, us_index, n, GFP_KERNEL);
if (xa_is_err(ptr))
return ERR_PTR(xa_err(ptr));
us_ctx = no_free_ptr(n);
us_ctx->port = parent_port;
}
/*
* If the device isn't an upstream PCIe port, there's something
* wrong with the topology.
*/
if (!dev_is_pci(dev))
return ERR_PTR(-EINVAL);
/* Retrieve the upstream link bandwidth */
rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords);
if (rc)
return ERR_PTR(-ENXIO);
/*
* Take the min of downstream bandwidth and the upstream link
* bandwidth.
*/
cxl_coordinates_combine(coords, coords, ctx->coord);
/*
* Take the min of the calculated bandwdith and the upstream
* switch SSLBIS bandwidth if there's a parent switch
*/
if (!is_root)
cxl_coordinates_combine(coords, coords, dport->coord);
/*
* Aggregate the calculated bandwidth common to an upstream
* switch.
*/
cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords);
}
/* Asymmetric topology detected. */
if (gp_count) {
if (gp_count != dev_count) {
dev_dbg(&cxlr->dev,
"Asymmetric hierarchy detected, bandwidth not updated\n");
return ERR_PTR(-EOPNOTSUPP);
}
*gp_is_root = true;
}
return no_free_ptr(res_xa);
}
/**
* cxl_rp_gather_bandwidth - handle the root port level bandwidth collection
* @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
* below each root port device.
*
* Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno)
*/
static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa)
{
struct xarray *hb_xa __free(free_perf_xa) =
kzalloc(sizeof(*hb_xa), GFP_KERNEL);
struct cxl_perf_ctx *ctx;
unsigned long index;
if (!hb_xa)
return ERR_PTR(-ENOMEM);
xa_init(hb_xa);
xa_for_each(xa, index, ctx) {
struct cxl_port *port = ctx->port;
unsigned long hb_index = (unsigned long)port->uport_dev;
struct cxl_perf_ctx *hb_ctx;
void *ptr;
hb_ctx = xa_load(hb_xa, hb_index);
if (!hb_ctx) {
struct cxl_perf_ctx *n __free(kfree) =
kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return ERR_PTR(-ENOMEM);
ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL);
if (xa_is_err(ptr))
return ERR_PTR(xa_err(ptr));
hb_ctx = no_free_ptr(n);
hb_ctx->port = port;
}
cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord);
}
return no_free_ptr(hb_xa);
}
/**
* cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection
* @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
* below each host bridge.
*
* Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno)
*/
static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa)
{
struct xarray *mw_xa __free(free_perf_xa) =
kzalloc(sizeof(*mw_xa), GFP_KERNEL);
struct cxl_perf_ctx *ctx;
unsigned long index;
if (!mw_xa)
return ERR_PTR(-ENOMEM);
xa_init(mw_xa);
xa_for_each(xa, index, ctx) {
struct cxl_port *port = ctx->port;
struct cxl_port *parent_port;
struct cxl_perf_ctx *mw_ctx;
struct cxl_dport *dport;
unsigned long mw_index;
void *ptr;
parent_port = to_cxl_port(port->dev.parent);
mw_index = (unsigned long)parent_port->uport_dev;
mw_ctx = xa_load(mw_xa, mw_index);
if (!mw_ctx) {
struct cxl_perf_ctx *n __free(kfree) =
kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return ERR_PTR(-ENOMEM);
ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL);
if (xa_is_err(ptr))
return ERR_PTR(xa_err(ptr));
mw_ctx = no_free_ptr(n);
}
dport = port->parent_dport;
cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord);
cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord);
}
return no_free_ptr(mw_xa);
}
/**
* cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region
* @cxlr: The region being operated on
* @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance
*/
static void cxl_region_update_bandwidth(struct cxl_region *cxlr,
struct xarray *input_xa)
{
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
struct cxl_perf_ctx *ctx;
unsigned long index;
memset(coord, 0, sizeof(coord));
xa_for_each(input_xa, index, ctx)
cxl_bandwidth_add(coord, coord, ctx->coord);
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth;
cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth;
}
}
/**
* cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for
* the region
* @cxlr: the cxl region to recalculate
*
* The function walks the topology from bottom up and calculates the bandwidth. It
* starts at the endpoints, processes at the switches if any, processes at the rootport
* level, at the host bridge level, and finally aggregates at the region.
*/
void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr)
{
struct xarray *working_xa;
int root_count = 0;
bool is_root;
int rc;
lockdep_assert_held(&cxl_dpa_rwsem);
struct xarray *usp_xa __free(free_perf_xa) =
kzalloc(sizeof(*usp_xa), GFP_KERNEL);
if (!usp_xa)
return;
xa_init(usp_xa);
/* Collect bandwidth data from all the endpoints. */
for (int i = 0; i < cxlr->params.nr_targets; i++) {
struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i];
is_root = false;
rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root);
if (rc)
return;
root_count += is_root;
}
/* Detect asymmetric hierarchy with some direct attached endpoints. */
if (root_count && root_count != cxlr->params.nr_targets) {
dev_dbg(&cxlr->dev,
"Asymmetric hierarchy detected, bandwidth not updated\n");
return;
}
/*
* Walk up one or more switches to deal with the bandwidth of the
* switches if they exist. Endpoints directly attached to RPs skip
* over this part.
*/
if (!root_count) {
do {
working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa,
&is_root);
if (IS_ERR(working_xa))
return;
free_perf_xa(usp_xa);
usp_xa = working_xa;
} while (!is_root);
}
/* Handle the bandwidth at the root port of the hierarchy */
working_xa = cxl_rp_gather_bandwidth(usp_xa);
if (IS_ERR(working_xa))
return;
free_perf_xa(usp_xa);
usp_xa = working_xa;
/* Handle the bandwidth at the host bridge of the hierarchy */
working_xa = cxl_hb_gather_bandwidth(usp_xa);
if (IS_ERR(working_xa))
return;
free_perf_xa(usp_xa);
usp_xa = working_xa;
/*
* Aggregate all the bandwidth collected per CFMWS (ACPI0017) and
* update the region bandwidth with the final calculated values.
*/
cxl_region_update_bandwidth(cxlr, usp_xa);
}
void cxl_region_perf_data_calculate(struct cxl_region *cxlr,
struct cxl_endpoint_decoder *cxled)
{
struct cxl_dpa_perf *perf;
lockdep_assert_held(&cxl_dpa_rwsem);
perf = cxled_get_dpa_perf(cxled, cxlr->mode);
if (IS_ERR(perf))
return;
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
/* Get total bandwidth and the worst latency for the cxl region */
cxlr->coord[i].read_latency = max_t(unsigned int,
cxlr->coord[i].read_latency,
perf->coord[i].read_latency);
cxlr->coord[i].write_latency = max_t(unsigned int,
cxlr->coord[i].write_latency,
perf->coord[i].write_latency);
cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth;
cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth;
}
}
int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr,
enum access_coordinate_class access)
{
return hmat_update_target_coordinates(nid, &cxlr->coord[access], access);
}
bool cxl_need_node_perf_attrs_update(int nid)
{
return !acpi_node_backed_by_real_pxm(nid);
}
|