1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_guc.h"
#include <drm/drm_managed.h>
#include <generated/xe_wa_oob.h>
#include "abi/guc_actions_abi.h"
#include "abi/guc_errors_abi.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_gtt_defs.h"
#include "regs/xe_guc_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_gt_sriov_vf.h"
#include "xe_gt_throttle.h"
#include "xe_guc_ads.h"
#include "xe_guc_ct.h"
#include "xe_guc_db_mgr.h"
#include "xe_guc_hwconfig.h"
#include "xe_guc_log.h"
#include "xe_guc_pc.h"
#include "xe_guc_relay.h"
#include "xe_guc_submit.h"
#include "xe_memirq.h"
#include "xe_mmio.h"
#include "xe_platform_types.h"
#include "xe_sriov.h"
#include "xe_uc.h"
#include "xe_uc_fw.h"
#include "xe_wa.h"
#include "xe_wopcm.h"
static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
struct xe_bo *bo)
{
struct xe_device *xe = guc_to_xe(guc);
u32 addr = xe_bo_ggtt_addr(bo);
/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
xe_assert(xe, addr < GUC_GGTT_TOP);
xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
return addr;
}
static u32 guc_ctl_debug_flags(struct xe_guc *guc)
{
u32 level = xe_guc_log_get_level(&guc->log);
u32 flags = 0;
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
flags |= GUC_LOG_DISABLED;
else
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
GUC_LOG_VERBOSITY_SHIFT;
return flags;
}
static u32 guc_ctl_feature_flags(struct xe_guc *guc)
{
u32 flags = 0;
if (!guc_to_xe(guc)->info.skip_guc_pc)
flags |= GUC_CTL_ENABLE_SLPC;
return flags;
}
static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
{
u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
u32 flags;
#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
#define LOG_UNIT SZ_1M
#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
#else
#define LOG_UNIT SZ_4K
#define LOG_FLAG 0
#endif
#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
#define CAPTURE_UNIT SZ_1M
#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
#else
#define CAPTURE_UNIT SZ_4K
#define CAPTURE_FLAG 0
#endif
BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
flags = GUC_LOG_VALID |
GUC_LOG_NOTIFY_ON_HALF_FULL |
CAPTURE_FLAG |
LOG_FLAG |
((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
GUC_LOG_CAPTURE_SHIFT) |
(offset << GUC_LOG_BUF_ADDR_SHIFT);
#undef LOG_UNIT
#undef LOG_FLAG
#undef CAPTURE_UNIT
#undef CAPTURE_FLAG
return flags;
}
static u32 guc_ctl_ads_flags(struct xe_guc *guc)
{
u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
return flags;
}
static u32 guc_ctl_wa_flags(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
u32 flags = 0;
if (XE_WA(gt, 22012773006))
flags |= GUC_WA_POLLCS;
if (XE_WA(gt, 14014475959))
flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
if (XE_WA(gt, 22011391025))
flags |= GUC_WA_DUAL_QUEUE;
/*
* Wa_22011802037: FIXME - there's more to be done than simply setting
* this flag: make sure each CS is stopped when preparing for GT reset
* and wait for pending MI_FW.
*/
if (GRAPHICS_VERx100(xe) < 1270)
flags |= GUC_WA_PRE_PARSER;
if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
flags |= GUC_WA_CONTEXT_ISOLATION;
if (XE_WA(gt, 18020744125) &&
!xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
if (XE_WA(gt, 1509372804))
flags |= GUC_WA_RENDER_RST_RC6_EXIT;
if (XE_WA(gt, 14018913170))
flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
return flags;
}
static u32 guc_ctl_devid(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
return (((u32)xe->info.devid) << 16) | xe->info.revid;
}
static void guc_print_params(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 *params = guc->params;
int i;
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
}
static void guc_init_params(struct xe_guc *guc)
{
u32 *params = guc->params;
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = 0;
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
params[GUC_CTL_WA] = 0;
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
guc_print_params(guc);
}
static void guc_init_params_post_hwconfig(struct xe_guc *guc)
{
u32 *params = guc->params;
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
guc_print_params(guc);
}
/*
* Initialize the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
static void guc_write_params(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
int i;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
}
static void guc_fini_hw(void *arg)
{
struct xe_guc *guc = arg;
struct xe_gt *gt = guc_to_gt(guc);
xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
xe_uc_fini_hw(&guc_to_gt(guc)->uc);
xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
}
/**
* xe_guc_comm_init_early - early initialization of GuC communication
* @guc: the &xe_guc to initialize
*
* Must be called prior to first MMIO communication with GuC firmware.
*/
void xe_guc_comm_init_early(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
if (xe_gt_is_media_type(gt))
guc->notify_reg = MED_GUC_HOST_INTERRUPT;
else
guc->notify_reg = GUC_HOST_INTERRUPT;
}
static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
{
struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
struct xe_device *xe = guc_to_xe(guc);
int ret;
if (!IS_DGFX(guc_to_xe(guc)))
return 0;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
if (ret)
return ret;
return 0;
}
static int vf_guc_init(struct xe_guc *guc)
{
int err;
xe_guc_comm_init_early(guc);
err = xe_guc_ct_init(&guc->ct);
if (err)
return err;
err = xe_guc_relay_init(&guc->relay);
if (err)
return err;
return 0;
}
int xe_guc_init(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
int ret;
guc->fw.type = XE_UC_FW_TYPE_GUC;
ret = xe_uc_fw_init(&guc->fw);
if (ret)
goto out;
if (!xe_uc_fw_is_enabled(&guc->fw))
return 0;
if (IS_SRIOV_VF(xe)) {
ret = vf_guc_init(guc);
if (ret)
goto out;
return 0;
}
ret = xe_guc_log_init(&guc->log);
if (ret)
goto out;
ret = xe_guc_ads_init(&guc->ads);
if (ret)
goto out;
ret = xe_guc_ct_init(&guc->ct);
if (ret)
goto out;
ret = xe_guc_relay_init(&guc->relay);
if (ret)
goto out;
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
if (ret)
goto out;
guc_init_params(guc);
xe_guc_comm_init_early(guc);
return 0;
out:
xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
return ret;
}
static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
{
int err;
err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
if (err)
return err;
/* XXX xe_guc_db_mgr_init not needed for now */
return 0;
}
/**
* xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
* @guc: The GuC object
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_init_post_hwconfig(struct xe_guc *guc)
{
int ret;
if (IS_SRIOV_VF(guc_to_xe(guc)))
return vf_guc_init_post_hwconfig(guc);
ret = xe_guc_realloc_post_hwconfig(guc);
if (ret)
return ret;
guc_init_params_post_hwconfig(guc);
ret = xe_guc_submit_init(guc, ~0);
if (ret)
return ret;
ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
if (ret)
return ret;
ret = xe_guc_pc_init(&guc->pc);
if (ret)
return ret;
return xe_guc_ads_init_post_hwconfig(&guc->ads);
}
int xe_guc_post_load_init(struct xe_guc *guc)
{
xe_guc_ads_populate_post_load(&guc->ads);
guc->submission_state.enabled = true;
return 0;
}
int xe_guc_reset(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 guc_status, gdrst;
int ret;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
if (IS_SRIOV_VF(gt_to_xe(gt)))
return xe_gt_sriov_vf_bootstrap(gt);
xe_mmio_write32(gt, GDRST, GRDOM_GUC);
ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
if (ret) {
xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
goto err_out;
}
guc_status = xe_mmio_read32(gt, GUC_STATUS);
if (!(guc_status & GS_MIA_IN_RESET)) {
xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
guc_status);
ret = -EIO;
goto err_out;
}
return 0;
err_out:
return ret;
}
static void guc_prepare_xfer(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
struct xe_device *xe = guc_to_xe(guc);
u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
GUC_ENABLE_MIA_CLOCK_GATING;
if (GRAPHICS_VERx100(xe) < 1250)
shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
GUC_ENABLE_MIA_CACHING;
if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
/* Must program this register before loading the ucode with DMA */
xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
/* Make sure GuC receives ARAT interrupts */
xe_mmio_rmw32(gt, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
}
/*
* Supporting MMIO & in memory RSA
*/
static int guc_xfer_rsa(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 rsa[UOS_RSA_SCRATCH_COUNT];
size_t copied;
int i;
if (guc->fw.rsa_size > 256) {
u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
xe_uc_fw_rsa_offset(&guc->fw);
xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
return 0;
}
copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
if (copied < sizeof(rsa))
return -ENOMEM;
for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
return 0;
}
/*
* Check a previously read GuC status register (GUC_STATUS) looking for
* known terminal states (either completion or failure) of either the
* microkernel status field or the boot ROM status field. Returns +1 for
* successful completion, -1 for failure and 0 for any intermediate state.
*/
static int guc_load_done(u32 status)
{
u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
switch (uk_val) {
case XE_GUC_LOAD_STATUS_READY:
return 1;
case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
case XE_GUC_LOAD_STATUS_DPC_ERROR:
case XE_GUC_LOAD_STATUS_EXCEPTION:
case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
return -1;
}
switch (br_val) {
case XE_BOOTROM_STATUS_NO_KEY_FOUND:
case XE_BOOTROM_STATUS_RSA_FAILED:
case XE_BOOTROM_STATUS_PAVPC_FAILED:
case XE_BOOTROM_STATUS_WOPCM_FAILED:
case XE_BOOTROM_STATUS_LOADLOC_FAILED:
case XE_BOOTROM_STATUS_JUMP_FAILED:
case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
case XE_BOOTROM_STATUS_EXCEPTION:
case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
return -1;
}
return 0;
}
static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
{
u32 freq;
int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
return ret ? ret : freq;
}
/*
* Wait for the GuC to start up.
*
* Measurements indicate this should take no more than 20ms (assuming the GT
* clock is at maximum frequency). However, thermal throttling and other issues
* can prevent the clock hitting max and thus making the load take significantly
* longer. Allow up to 200ms as a safety margin for real world worst case situations.
*
* However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
* lead to even longer times. E.g. if the GT is clamped to minimum frequency then
* the load times can be in the seconds range. So the timeout is increased for debug
* builds to ensure that problems can be correctly analysed. For release builds, the
* timeout is kept short so that users don't wait forever to find out that there is a
* problem. In either case, if the load took longer than is reasonable even with some
* 'sensible' throttling, then flag a warning because something is not right.
*
* Note that there is a limit on how long an individual usleep_range() can wait for,
* hence longer waits require wrapping a shorter wait in a loop.
*
* Note that the only reason an end user should hit the shorter timeout is in case of
* extreme thermal throttling. And a system that is that hot during boot is probably
* dead anyway!
*/
#if defined(CONFIG_DRM_XE_DEBUG)
#define GUC_LOAD_RETRY_LIMIT 20
#else
#define GUC_LOAD_RETRY_LIMIT 3
#endif
#define GUC_LOAD_TIME_WARN_MS 200
static void guc_wait_ucode(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
struct xe_guc_pc *guc_pc = >->uc.guc.pc;
ktime_t before, after, delta;
int load_done;
u32 status = 0;
int count = 0;
u64 delta_ms;
u32 before_freq;
before_freq = xe_guc_pc_get_act_freq(guc_pc);
before = ktime_get();
/*
* Note, can't use any kind of timing information from the call to xe_mmio_wait.
* It could return a thousand intermediate stages at random times. Instead, must
* manually track the total time taken and locally implement the timeout.
*/
do {
u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
int ret;
/*
* Wait for any change (intermediate or terminal) in the status register.
* Note, the return value is a don't care. The only failure code is timeout
* but the timeouts need to be accumulated over all the intermediate partial
* timeouts rather than allowing a huge timeout each time. So basically, need
* to treat a timeout no different to a value change.
*/
ret = xe_mmio_wait32_not(gt, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
last_status, 1000 * 1000, &status, false);
if (ret < 0)
count++;
after = ktime_get();
delta = ktime_sub(after, before);
delta_ms = ktime_to_ms(delta);
load_done = guc_load_done(status);
if (load_done != 0)
break;
if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
break;
xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
count, xe_guc_pc_get_act_freq(guc_pc),
guc_pc_get_cur_freq(guc_pc), status,
REG_FIELD_GET(GS_BOOTROM_MASK, status),
REG_FIELD_GET(GS_UKERNEL_MASK, status));
} while (1);
if (load_done != 1) {
u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
guc_pc_get_cur_freq(guc_pc), load_done);
xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
REG_FIELD_GET(GS_MIA_IN_RESET, status),
bootrom, ukernel,
REG_FIELD_GET(GS_MIA_MASK, status),
REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
switch (bootrom) {
case XE_BOOTROM_STATUS_NO_KEY_FOUND:
xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
xe_mmio_read32(gt, GUC_HEADER_INFO));
break;
case XE_BOOTROM_STATUS_RSA_FAILED:
xe_gt_err(gt, "firmware signature verification failed\n");
break;
case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
xe_gt_err(gt, "firmware production part check failure\n");
break;
}
switch (ukernel) {
case XE_GUC_LOAD_STATUS_EXCEPTION:
xe_gt_err(gt, "firmware exception. EIP: %#x\n",
xe_mmio_read32(gt, SOFT_SCRATCH(13)));
break;
case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
xe_gt_err(gt, "illegal register in save/restore workaround list\n");
break;
case XE_GUC_LOAD_STATUS_HWCONFIG_START:
xe_gt_err(gt, "still extracting hwconfig table.\n");
break;
}
xe_device_declare_wedged(gt_to_xe(gt));
} else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
delta_ms, status, count);
xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
before_freq, xe_gt_throttle_get_limit_reasons(gt));
} else {
xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
before_freq, status, count);
}
}
static int __xe_guc_upload(struct xe_guc *guc)
{
int ret;
/* Raise GT freq to speed up HuC/GuC load */
xe_guc_pc_raise_unslice(&guc->pc);
guc_write_params(guc);
guc_prepare_xfer(guc);
/*
* Note that GuC needs the CSS header plus uKernel code to be copied
* by the DMA engine in one operation, whereas the RSA signature is
* loaded separately, either by copying it to the UOS_RSA_SCRATCH
* register (if key size <= 256) or through a ggtt-pinned vma (if key
* size > 256). The RSA size and therefore the way we provide it to the
* HW is fixed for each platform and hard-coded in the bootrom.
*/
ret = guc_xfer_rsa(guc);
if (ret)
goto out;
/*
* Current uCode expects the code to be loaded at 8k; locations below
* this are used for the stack.
*/
ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
if (ret)
goto out;
/* Wait for authentication */
guc_wait_ucode(guc);
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
return 0;
out:
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
return 0 /* FIXME: ret, don't want to stop load currently */;
}
static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
int ret;
ret = xe_gt_sriov_vf_bootstrap(gt);
if (ret)
return ret;
ret = xe_gt_sriov_vf_query_config(gt);
if (ret)
return ret;
ret = xe_guc_hwconfig_init(guc);
if (ret)
return ret;
ret = xe_guc_enable_communication(guc);
if (ret)
return ret;
ret = xe_gt_sriov_vf_connect(gt);
if (ret)
return ret;
ret = xe_gt_sriov_vf_query_runtime(gt);
if (ret)
return ret;
return 0;
}
/**
* xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
* @guc: The GuC object
*
* This function uploads a minimal GuC that does not support submissions but
* in a state where the hwconfig table can be read. Next, it reads and parses
* the hwconfig table so it can be used for subsequent steps in the driver load.
* Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
{
int ret;
if (IS_SRIOV_VF(guc_to_xe(guc)))
return vf_guc_min_load_for_hwconfig(guc);
xe_guc_ads_populate_minimal(&guc->ads);
xe_guc_pc_init_early(&guc->pc);
ret = __xe_guc_upload(guc);
if (ret)
return ret;
ret = xe_guc_hwconfig_init(guc);
if (ret)
return ret;
ret = xe_guc_enable_communication(guc);
if (ret)
return ret;
return 0;
}
int xe_guc_upload(struct xe_guc *guc)
{
xe_guc_ads_populate(&guc->ads);
return __xe_guc_upload(guc);
}
static void guc_handle_mmio_msg(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 msg;
if (IS_SRIOV_VF(guc_to_xe(guc)))
return;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
msg &= XE_GUC_RECV_MSG_EXCEPTION |
XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
xe_gt_err(gt, "Received early GuC crash dump notification!\n");
if (msg & XE_GUC_RECV_MSG_EXCEPTION)
xe_gt_err(gt, "Received early GuC exception notification!\n");
}
static void guc_enable_irq(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 events = xe_gt_is_media_type(gt) ?
REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) :
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
/* Primary GuC and media GuC share a single enable bit */
xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
/*
* There are separate mask bits for primary and media GuCs, so use
* a RMW operation to avoid clobbering the other GuC's setting.
*/
xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
}
int xe_guc_enable_communication(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
int err;
if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
struct xe_gt *gt = guc_to_gt(guc);
struct xe_tile *tile = gt_to_tile(gt);
err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
if (err)
return err;
} else {
guc_enable_irq(guc);
}
err = xe_guc_ct_enable(&guc->ct);
if (err)
return err;
guc_handle_mmio_msg(guc);
return 0;
}
int xe_guc_suspend(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 action[] = {
XE_GUC_ACTION_CLIENT_SOFT_RESET,
};
int ret;
ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
if (ret) {
xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
return ret;
}
xe_guc_sanitize(guc);
return 0;
}
void xe_guc_notify(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
const u32 default_notify_data = 0;
/*
* Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
* additional payload data to the GuC but this capability is not
* used by the firmware yet. Use default value in the meantime.
*/
xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
}
int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
{
u32 action[] = {
XE_GUC_ACTION_AUTHENTICATE_HUC,
rsa_addr
};
return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
}
int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
u32 len, u32 *response_buf)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
u32 header, reply;
struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
int ret;
int i;
BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
xe_assert(xe, len);
xe_assert(xe, len <= VF_SW_FLAG_COUNT);
xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
GUC_HXG_ORIGIN_HOST);
xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
GUC_HXG_TYPE_REQUEST);
retry:
/* Not in critical data-path, just do if else for GT type */
if (xe_gt_is_media_type(gt)) {
for (i = 0; i < len; ++i)
xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
request[i]);
xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
} else {
for (i = 0; i < len; ++i)
xe_mmio_write32(gt, VF_SW_FLAG(i),
request[i]);
xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
}
xe_guc_notify(guc);
ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
50000, &reply, false);
if (ret) {
timeout:
xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
request[0], reply);
return ret;
}
header = xe_mmio_read32(gt, reply_reg);
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
/*
* Once we got a BUSY reply we must wait again for the final
* response but this time we can't use ORIGIN mask anymore.
* To spot a right change in the reply, we take advantage that
* response SUCCESS and FAILURE differ only by the single bit
* and all other bits are set and can be used as a new mask.
*/
u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
ret = xe_mmio_wait32(gt, reply_reg, resp_mask, resp_mask,
1000000, &header, false);
if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
GUC_HXG_ORIGIN_GUC))
goto proto;
if (unlikely(ret)) {
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
GUC_HXG_TYPE_NO_RESPONSE_BUSY)
goto proto;
goto timeout;
}
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
request[0], reason);
goto retry;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_RESPONSE_FAILURE) {
u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
request[0], error, hint);
return -ENXIO;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
GUC_HXG_TYPE_RESPONSE_SUCCESS) {
proto:
xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
request[0], header);
return -EPROTO;
}
/* Just copy entire possible message response */
if (response_buf) {
response_buf[0] = header;
for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
reply_reg.addr += sizeof(u32);
response_buf[i] = xe_mmio_read32(gt, reply_reg);
}
}
/* Use data from the GuC response as our return value */
return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
}
int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
{
return xe_guc_mmio_send_recv(guc, request, len, NULL);
}
static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
{
struct xe_device *xe = guc_to_xe(guc);
u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
GUC_ACTION_HOST2GUC_SELF_CFG),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
lower_32_bits(val)),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
upper_32_bits(val)),
};
int ret;
xe_assert(xe, len <= 2);
xe_assert(xe, len != 1 || !upper_32_bits(val));
/* Self config must go over MMIO */
ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
if (unlikely(ret < 0))
return ret;
if (unlikely(ret > 1))
return -EPROTO;
if (unlikely(!ret))
return -ENOKEY;
return 0;
}
int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
{
return guc_self_cfg(guc, key, 1, val);
}
int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
{
return guc_self_cfg(guc, key, 2, val);
}
void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
{
if (iir & GUC_INTR_GUC2HOST)
xe_guc_ct_irq_handler(&guc->ct);
}
void xe_guc_sanitize(struct xe_guc *guc)
{
xe_uc_fw_sanitize(&guc->fw);
xe_guc_ct_disable(&guc->ct);
guc->submission_state.enabled = false;
}
int xe_guc_reset_prepare(struct xe_guc *guc)
{
return xe_guc_submit_reset_prepare(guc);
}
void xe_guc_reset_wait(struct xe_guc *guc)
{
xe_guc_submit_reset_wait(guc);
}
void xe_guc_stop_prepare(struct xe_guc *guc)
{
if (!IS_SRIOV_VF(guc_to_xe(guc))) {
int err;
err = xe_guc_pc_stop(&guc->pc);
xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
ERR_PTR(err));
}
}
void xe_guc_stop(struct xe_guc *guc)
{
xe_guc_ct_stop(&guc->ct);
xe_guc_submit_stop(guc);
}
int xe_guc_start(struct xe_guc *guc)
{
if (!IS_SRIOV_VF(guc_to_xe(guc))) {
int err;
err = xe_guc_pc_start(&guc->pc);
xe_gt_WARN(guc_to_gt(guc), err, "Failed to start GuC PC: %pe\n",
ERR_PTR(err));
}
return xe_guc_submit_start(guc);
}
void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 status;
int err;
int i;
xe_uc_fw_print(&guc->fw, p);
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return;
status = xe_mmio_read32(gt, GUC_STATUS);
drm_printf(p, "\nGuC status 0x%08x:\n", status);
drm_printf(p, "\tBootrom status = 0x%x\n",
REG_FIELD_GET(GS_BOOTROM_MASK, status));
drm_printf(p, "\tuKernel status = 0x%x\n",
REG_FIELD_GET(GS_UKERNEL_MASK, status));
drm_printf(p, "\tMIA Core status = 0x%x\n",
REG_FIELD_GET(GS_MIA_MASK, status));
drm_printf(p, "\tLog level = %d\n",
xe_guc_log_get_level(&guc->log));
drm_puts(p, "\nScratch registers:\n");
for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
drm_printf(p, "\t%2d: \t0x%x\n",
i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
}
xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
xe_guc_ct_print(&guc->ct, p);
xe_guc_submit_print(guc, p);
}
/**
* xe_guc_declare_wedged() - Declare GuC wedged
* @guc: the GuC object
*
* Wedge the GuC which stops all submission, saves desired debug state, and
* cleans up anything which could timeout.
*/
void xe_guc_declare_wedged(struct xe_guc *guc)
{
xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
xe_guc_reset_prepare(guc);
xe_guc_ct_stop(&guc->ct);
xe_guc_submit_wedge(guc);
}
|