1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015 Intel Corporation
* Keith Busch <kbusch@kernel.org>
*/
#include <linux/blkdev.h>
#include <linux/pr.h>
#include <linux/unaligned.h>
#include "nvme.h"
static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return NVME_PR_WRITE_EXCLUSIVE;
case PR_EXCLUSIVE_ACCESS:
return NVME_PR_EXCLUSIVE_ACCESS;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS;
}
return 0;
}
static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type)
{
switch (type) {
case NVME_PR_WRITE_EXCLUSIVE:
return PR_WRITE_EXCLUSIVE;
case NVME_PR_EXCLUSIVE_ACCESS:
return PR_EXCLUSIVE_ACCESS;
case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY:
return PR_WRITE_EXCLUSIVE_REG_ONLY;
case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY:
return PR_EXCLUSIVE_ACCESS_REG_ONLY;
case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS:
return PR_WRITE_EXCLUSIVE_ALL_REGS;
case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS:
return PR_EXCLUSIVE_ACCESS_ALL_REGS;
}
return 0;
}
static int nvme_send_ns_head_pr_command(struct block_device *bdev,
struct nvme_command *c, void *data, unsigned int data_len)
{
struct nvme_ns_head *head = bdev->bd_disk->private_data;
int srcu_idx = srcu_read_lock(&head->srcu);
struct nvme_ns *ns = nvme_find_path(head);
int ret = -EWOULDBLOCK;
if (ns) {
c->common.nsid = cpu_to_le32(ns->head->ns_id);
ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len);
}
srcu_read_unlock(&head->srcu, srcu_idx);
return ret;
}
static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
void *data, unsigned int data_len)
{
c->common.nsid = cpu_to_le32(ns->head->ns_id);
return nvme_submit_sync_cmd(ns->queue, c, data, data_len);
}
static int nvme_status_to_pr_err(int status)
{
if (nvme_is_path_error(status))
return PR_STS_PATH_FAILED;
switch (status & NVME_SCT_SC_MASK) {
case NVME_SC_SUCCESS:
return PR_STS_SUCCESS;
case NVME_SC_RESERVATION_CONFLICT:
return PR_STS_RESERVATION_CONFLICT;
case NVME_SC_BAD_ATTRIBUTES:
case NVME_SC_INVALID_OPCODE:
case NVME_SC_INVALID_FIELD:
case NVME_SC_INVALID_NS:
return -EINVAL;
default:
return PR_STS_IOERR;
}
}
static int nvme_send_pr_command(struct block_device *bdev,
struct nvme_command *c, void *data, unsigned int data_len)
{
if (nvme_disk_is_ns_head(bdev->bd_disk))
return nvme_send_ns_head_pr_command(bdev, c, data, data_len);
return nvme_send_ns_pr_command(bdev->bd_disk->private_data, c, data,
data_len);
}
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
u64 key, u64 sa_key, u8 op)
{
struct nvme_command c = { };
u8 data[16] = { 0, };
int ret;
put_unaligned_le64(key, &data[0]);
put_unaligned_le64(sa_key, &data[8]);
c.common.opcode = op;
c.common.cdw10 = cpu_to_le32(cdw10);
ret = nvme_send_pr_command(bdev, &c, data, sizeof(data));
if (ret < 0)
return ret;
return nvme_status_to_pr_err(ret);
}
static int nvme_pr_register(struct block_device *bdev, u64 old,
u64 new, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = old ? 2 : 0;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
enum pr_type type, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = nvme_pr_type_from_blk(type) << 8;
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
enum pr_type type, bool abort)
{
u32 cdw10 = nvme_pr_type_from_blk(type) << 8 | (abort ? 2 : 1);
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
u32 cdw10 = 1 | (key ? 0 : 1 << 3);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
u32 cdw10 = nvme_pr_type_from_blk(type) << 8 | (key ? 0 : 1 << 3);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static int nvme_pr_resv_report(struct block_device *bdev, void *data,
u32 data_len, bool *eds)
{
struct nvme_command c = { };
int ret;
c.common.opcode = nvme_cmd_resv_report;
c.common.cdw10 = cpu_to_le32(nvme_bytes_to_numd(data_len));
c.common.cdw11 = cpu_to_le32(NVME_EXTENDED_DATA_STRUCT);
*eds = true;
retry:
ret = nvme_send_pr_command(bdev, &c, data, data_len);
if (ret == NVME_SC_HOST_ID_INCONSIST &&
c.common.cdw11 == cpu_to_le32(NVME_EXTENDED_DATA_STRUCT)) {
c.common.cdw11 = 0;
*eds = false;
goto retry;
}
if (ret < 0)
return ret;
return nvme_status_to_pr_err(ret);
}
static int nvme_pr_read_keys(struct block_device *bdev,
struct pr_keys *keys_info)
{
u32 rse_len, num_keys = keys_info->num_keys;
struct nvme_reservation_status_ext *rse;
int ret, i;
bool eds;
/*
* Assume we are using 128-bit host IDs and allocate a buffer large
* enough to get enough keys to fill the return keys buffer.
*/
rse_len = struct_size(rse, regctl_eds, num_keys);
rse = kzalloc(rse_len, GFP_KERNEL);
if (!rse)
return -ENOMEM;
ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
if (ret)
goto free_rse;
keys_info->generation = le32_to_cpu(rse->gen);
keys_info->num_keys = get_unaligned_le16(&rse->regctl);
num_keys = min(num_keys, keys_info->num_keys);
for (i = 0; i < num_keys; i++) {
if (eds) {
keys_info->keys[i] =
le64_to_cpu(rse->regctl_eds[i].rkey);
} else {
struct nvme_reservation_status *rs;
rs = (struct nvme_reservation_status *)rse;
keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey);
}
}
free_rse:
kfree(rse);
return ret;
}
static int nvme_pr_read_reservation(struct block_device *bdev,
struct pr_held_reservation *resv)
{
struct nvme_reservation_status_ext tmp_rse, *rse;
int ret, i, num_regs;
u32 rse_len;
bool eds;
get_num_regs:
/*
* Get the number of registrations so we know how big to allocate
* the response buffer.
*/
ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds);
if (ret)
return ret;
num_regs = get_unaligned_le16(&tmp_rse.regctl);
if (!num_regs) {
resv->generation = le32_to_cpu(tmp_rse.gen);
return 0;
}
rse_len = struct_size(rse, regctl_eds, num_regs);
rse = kzalloc(rse_len, GFP_KERNEL);
if (!rse)
return -ENOMEM;
ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
if (ret)
goto free_rse;
if (num_regs != get_unaligned_le16(&rse->regctl)) {
kfree(rse);
goto get_num_regs;
}
resv->generation = le32_to_cpu(rse->gen);
resv->type = block_pr_type_from_nvme(rse->rtype);
for (i = 0; i < num_regs; i++) {
if (eds) {
if (rse->regctl_eds[i].rcsts) {
resv->key = le64_to_cpu(rse->regctl_eds[i].rkey);
break;
}
} else {
struct nvme_reservation_status *rs;
rs = (struct nvme_reservation_status *)rse;
if (rs->regctl_ds[i].rcsts) {
resv->key = le64_to_cpu(rs->regctl_ds[i].rkey);
break;
}
}
}
free_rse:
kfree(rse);
return ret;
}
const struct pr_ops nvme_pr_ops = {
.pr_register = nvme_pr_register,
.pr_reserve = nvme_pr_reserve,
.pr_release = nvme_pr_release,
.pr_preempt = nvme_pr_preempt,
.pr_clear = nvme_pr_clear,
.pr_read_keys = nvme_pr_read_keys,
.pr_read_reservation = nvme_pr_read_reservation,
};
|