1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
/*
* Broadcom BCM63XX High Speed SPI Controller driver
*
* Copyright 2000-2010 Broadcom Corporation
* Copyright 2012-2013 Jonas Gorski <jonas.gorski@gmail.com>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/spi/spi-mem.h>
#include <linux/mtd/spi-nor.h>
#include <linux/reset.h>
#include <linux/pm_runtime.h>
#define HSSPI_GLOBAL_CTRL_REG 0x0
#define GLOBAL_CTRL_CS_POLARITY_SHIFT 0
#define GLOBAL_CTRL_CS_POLARITY_MASK 0x000000ff
#define GLOBAL_CTRL_PLL_CLK_CTRL_SHIFT 8
#define GLOBAL_CTRL_PLL_CLK_CTRL_MASK 0x0000ff00
#define GLOBAL_CTRL_CLK_GATE_SSOFF BIT(16)
#define GLOBAL_CTRL_CLK_POLARITY BIT(17)
#define GLOBAL_CTRL_MOSI_IDLE BIT(18)
#define HSSPI_GLOBAL_EXT_TRIGGER_REG 0x4
#define HSSPI_INT_STATUS_REG 0x8
#define HSSPI_INT_STATUS_MASKED_REG 0xc
#define HSSPI_INT_MASK_REG 0x10
#define HSSPI_PINGx_CMD_DONE(i) BIT((i * 8) + 0)
#define HSSPI_PINGx_RX_OVER(i) BIT((i * 8) + 1)
#define HSSPI_PINGx_TX_UNDER(i) BIT((i * 8) + 2)
#define HSSPI_PINGx_POLL_TIMEOUT(i) BIT((i * 8) + 3)
#define HSSPI_PINGx_CTRL_INVAL(i) BIT((i * 8) + 4)
#define HSSPI_INT_CLEAR_ALL 0xff001f1f
#define HSSPI_PINGPONG_COMMAND_REG(x) (0x80 + (x) * 0x40)
#define PINGPONG_CMD_COMMAND_MASK 0xf
#define PINGPONG_COMMAND_NOOP 0
#define PINGPONG_COMMAND_START_NOW 1
#define PINGPONG_COMMAND_START_TRIGGER 2
#define PINGPONG_COMMAND_HALT 3
#define PINGPONG_COMMAND_FLUSH 4
#define PINGPONG_CMD_PROFILE_SHIFT 8
#define PINGPONG_CMD_SS_SHIFT 12
#define HSSPI_PINGPONG_STATUS_REG(x) (0x84 + (x) * 0x40)
#define HSSPI_PINGPONG_STATUS_SRC_BUSY BIT(1)
#define HSSPI_PROFILE_CLK_CTRL_REG(x) (0x100 + (x) * 0x20)
#define CLK_CTRL_FREQ_CTRL_MASK 0x0000ffff
#define CLK_CTRL_SPI_CLK_2X_SEL BIT(14)
#define CLK_CTRL_ACCUM_RST_ON_LOOP BIT(15)
#define HSSPI_PROFILE_SIGNAL_CTRL_REG(x) (0x104 + (x) * 0x20)
#define SIGNAL_CTRL_LATCH_RISING BIT(12)
#define SIGNAL_CTRL_LAUNCH_RISING BIT(13)
#define SIGNAL_CTRL_ASYNC_INPUT_PATH BIT(16)
#define HSSPI_PROFILE_MODE_CTRL_REG(x) (0x108 + (x) * 0x20)
#define MODE_CTRL_MULTIDATA_RD_STRT_SHIFT 8
#define MODE_CTRL_MULTIDATA_WR_STRT_SHIFT 12
#define MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT 16
#define MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT 18
#define MODE_CTRL_MODE_3WIRE BIT(20)
#define MODE_CTRL_PREPENDBYTE_CNT_SHIFT 24
#define HSSPI_FIFO_REG(x) (0x200 + (x) * 0x200)
#define HSSPI_OP_MULTIBIT BIT(11)
#define HSSPI_OP_CODE_SHIFT 13
#define HSSPI_OP_SLEEP (0 << HSSPI_OP_CODE_SHIFT)
#define HSSPI_OP_READ_WRITE (1 << HSSPI_OP_CODE_SHIFT)
#define HSSPI_OP_WRITE (2 << HSSPI_OP_CODE_SHIFT)
#define HSSPI_OP_READ (3 << HSSPI_OP_CODE_SHIFT)
#define HSSPI_OP_SETIRQ (4 << HSSPI_OP_CODE_SHIFT)
#define HSSPI_BUFFER_LEN 512
#define HSSPI_OPCODE_LEN 2
#define HSSPI_MAX_PREPEND_LEN 15
/*
* Some chip require 30MHz but other require 25MHz. Use smaller value to cover
* both cases.
*/
#define HSSPI_MAX_SYNC_CLOCK 25000000
#define HSSPI_SPI_MAX_CS 8
#define HSSPI_BUS_NUM 1 /* 0 is legacy SPI */
#define HSSPI_POLL_STATUS_TIMEOUT_MS 100
#define HSSPI_WAIT_MODE_POLLING 0
#define HSSPI_WAIT_MODE_INTR 1
#define HSSPI_WAIT_MODE_MAX HSSPI_WAIT_MODE_INTR
/*
* Default transfer mode is auto. If the msg is prependable, use the prepend
* mode. If not, falls back to use the dummy cs workaround mode but limit the
* clock to 25MHz to make sure it works in all board design.
*/
#define HSSPI_XFER_MODE_AUTO 0
#define HSSPI_XFER_MODE_PREPEND 1
#define HSSPI_XFER_MODE_DUMMYCS 2
#define HSSPI_XFER_MODE_MAX HSSPI_XFER_MODE_DUMMYCS
#define bcm63xx_prepend_printk_on_checkfail(bs, fmt, ...) \
do { \
if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) \
dev_dbg(&bs->pdev->dev, fmt, ##__VA_ARGS__); \
else if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) \
dev_err(&bs->pdev->dev, fmt, ##__VA_ARGS__); \
} while (0)
struct bcm63xx_hsspi {
struct completion done;
struct mutex bus_mutex;
struct mutex msg_mutex;
struct platform_device *pdev;
struct clk *clk;
struct clk *pll_clk;
void __iomem *regs;
u8 __iomem *fifo;
u32 speed_hz;
u8 cs_polarity;
u32 wait_mode;
u32 xfer_mode;
u32 prepend_cnt;
u8 *prepend_buf;
};
static ssize_t wait_mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl);
return sprintf(buf, "%d\n", bs->wait_mode);
}
static ssize_t wait_mode_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl);
u32 val;
if (kstrtou32(buf, 10, &val))
return -EINVAL;
if (val > HSSPI_WAIT_MODE_MAX) {
dev_warn(dev, "invalid wait mode %u\n", val);
return -EINVAL;
}
mutex_lock(&bs->msg_mutex);
bs->wait_mode = val;
/* clear interrupt status to avoid spurious int on next transfer */
if (val == HSSPI_WAIT_MODE_INTR)
__raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
mutex_unlock(&bs->msg_mutex);
return count;
}
static DEVICE_ATTR_RW(wait_mode);
static ssize_t xfer_mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl);
return sprintf(buf, "%d\n", bs->xfer_mode);
}
static ssize_t xfer_mode_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl);
u32 val;
if (kstrtou32(buf, 10, &val))
return -EINVAL;
if (val > HSSPI_XFER_MODE_MAX) {
dev_warn(dev, "invalid xfer mode %u\n", val);
return -EINVAL;
}
mutex_lock(&bs->msg_mutex);
bs->xfer_mode = val;
mutex_unlock(&bs->msg_mutex);
return count;
}
static DEVICE_ATTR_RW(xfer_mode);
static struct attribute *bcm63xx_hsspi_attrs[] = {
&dev_attr_wait_mode.attr,
&dev_attr_xfer_mode.attr,
NULL,
};
static const struct attribute_group bcm63xx_hsspi_group = {
.attrs = bcm63xx_hsspi_attrs,
};
static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs,
struct spi_device *spi, int hz);
static size_t bcm63xx_hsspi_max_message_size(struct spi_device *spi)
{
return HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN;
}
static int bcm63xx_hsspi_wait_cmd(struct bcm63xx_hsspi *bs)
{
unsigned long limit;
u32 reg = 0;
int rc = 0;
if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) {
if (wait_for_completion_timeout(&bs->done, HZ) == 0)
rc = 1;
} else {
/* polling mode checks for status busy bit */
limit = jiffies + msecs_to_jiffies(HSSPI_POLL_STATUS_TIMEOUT_MS);
while (!time_after(jiffies, limit)) {
reg = __raw_readl(bs->regs + HSSPI_PINGPONG_STATUS_REG(0));
if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY)
cpu_relax();
else
break;
}
if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY)
rc = 1;
}
if (rc)
dev_err(&bs->pdev->dev, "transfer timed out!\n");
return rc;
}
static bool bcm63xx_prepare_prepend_transfer(struct spi_controller *host,
struct spi_message *msg,
struct spi_transfer *t_prepend)
{
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
bool tx_only = false;
struct spi_transfer *t;
/*
* Multiple transfers within a message may be combined into one transfer
* to the controller using its prepend feature. A SPI message is prependable
* only if the following are all true:
* 1. One or more half duplex write transfer in single bit mode
* 2. Optional full duplex read/write at the end
* 3. No delay and cs_change between transfers
*/
bs->prepend_cnt = 0;
list_for_each_entry(t, &msg->transfers, transfer_list) {
if ((spi_delay_to_ns(&t->delay, t) > 0) || t->cs_change) {
bcm63xx_prepend_printk_on_checkfail(bs,
"Delay or cs change not supported in prepend mode!\n");
return false;
}
tx_only = false;
if (t->tx_buf && !t->rx_buf) {
tx_only = true;
if (bs->prepend_cnt + t->len >
(HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) {
bcm63xx_prepend_printk_on_checkfail(bs,
"exceed max buf len, abort prepending transfers!\n");
return false;
}
if (t->tx_nbits > SPI_NBITS_SINGLE &&
!list_is_last(&t->transfer_list, &msg->transfers)) {
bcm63xx_prepend_printk_on_checkfail(bs,
"multi-bit prepend buf not supported!\n");
return false;
}
if (t->tx_nbits == SPI_NBITS_SINGLE) {
memcpy(bs->prepend_buf + bs->prepend_cnt, t->tx_buf, t->len);
bs->prepend_cnt += t->len;
}
} else {
if (!list_is_last(&t->transfer_list, &msg->transfers)) {
bcm63xx_prepend_printk_on_checkfail(bs,
"rx/tx_rx transfer not supported when it is not last one!\n");
return false;
}
}
if (list_is_last(&t->transfer_list, &msg->transfers)) {
memcpy(t_prepend, t, sizeof(struct spi_transfer));
if (tx_only && t->tx_nbits == SPI_NBITS_SINGLE) {
/*
* if the last one is also a single bit tx only transfer, merge
* all of them into one single tx transfer
*/
t_prepend->len = bs->prepend_cnt;
t_prepend->tx_buf = bs->prepend_buf;
bs->prepend_cnt = 0;
} else {
/*
* if the last one is not a tx only transfer or dual tx xfer, all
* the previous transfers are sent through prepend bytes and
* make sure it does not exceed the max prepend len
*/
if (bs->prepend_cnt > HSSPI_MAX_PREPEND_LEN) {
bcm63xx_prepend_printk_on_checkfail(bs,
"exceed max prepend len, abort prepending transfers!\n");
return false;
}
}
}
}
return true;
}
static int bcm63xx_hsspi_do_prepend_txrx(struct spi_device *spi,
struct spi_transfer *t)
{
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller);
unsigned int chip_select = spi_get_chipselect(spi, 0);
u16 opcode = 0, val;
const u8 *tx = t->tx_buf;
u8 *rx = t->rx_buf;
u32 reg = 0;
/*
* shouldn't happen as we set the max_message_size in the probe.
* but check it again in case some driver does not honor the max size
*/
if (t->len + bs->prepend_cnt > (HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) {
dev_warn(&bs->pdev->dev,
"Prepend message large than fifo size len %d prepend %d\n",
t->len, bs->prepend_cnt);
return -EINVAL;
}
bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz);
if (tx && rx)
opcode = HSSPI_OP_READ_WRITE;
else if (tx)
opcode = HSSPI_OP_WRITE;
else if (rx)
opcode = HSSPI_OP_READ;
if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) ||
(opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) {
opcode |= HSSPI_OP_MULTIBIT;
if (t->rx_nbits == SPI_NBITS_DUAL) {
reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT;
reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_RD_STRT_SHIFT;
}
if (t->tx_nbits == SPI_NBITS_DUAL) {
reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT;
reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_WR_STRT_SHIFT;
}
}
reg |= bs->prepend_cnt << MODE_CTRL_PREPENDBYTE_CNT_SHIFT;
__raw_writel(reg | 0xff,
bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select));
reinit_completion(&bs->done);
if (bs->prepend_cnt)
memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, bs->prepend_buf,
bs->prepend_cnt);
if (tx)
memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN + bs->prepend_cnt, tx,
t->len);
*(__be16 *)(&val) = cpu_to_be16(opcode | t->len);
__raw_writew(val, bs->fifo);
/* enable interrupt */
if (bs->wait_mode == HSSPI_WAIT_MODE_INTR)
__raw_writel(HSSPI_PINGx_CMD_DONE(0), bs->regs + HSSPI_INT_MASK_REG);
/* start the transfer */
reg = chip_select << PINGPONG_CMD_SS_SHIFT |
chip_select << PINGPONG_CMD_PROFILE_SHIFT |
PINGPONG_COMMAND_START_NOW;
__raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0));
if (bcm63xx_hsspi_wait_cmd(bs))
return -ETIMEDOUT;
if (rx)
memcpy_fromio(rx, bs->fifo, t->len);
return 0;
}
static void bcm63xx_hsspi_set_cs(struct bcm63xx_hsspi *bs, unsigned int cs,
bool active)
{
u32 reg;
mutex_lock(&bs->bus_mutex);
reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
reg &= ~BIT(cs);
if (active == !(bs->cs_polarity & BIT(cs)))
reg |= BIT(cs);
__raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
mutex_unlock(&bs->bus_mutex);
}
static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs,
struct spi_device *spi, int hz)
{
unsigned int profile = spi_get_chipselect(spi, 0);
u32 reg;
reg = DIV_ROUND_UP(2048, DIV_ROUND_UP(bs->speed_hz, hz));
__raw_writel(CLK_CTRL_ACCUM_RST_ON_LOOP | reg,
bs->regs + HSSPI_PROFILE_CLK_CTRL_REG(profile));
reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile));
if (hz > HSSPI_MAX_SYNC_CLOCK)
reg |= SIGNAL_CTRL_ASYNC_INPUT_PATH;
else
reg &= ~SIGNAL_CTRL_ASYNC_INPUT_PATH;
__raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile));
mutex_lock(&bs->bus_mutex);
/* setup clock polarity */
reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
reg &= ~GLOBAL_CTRL_CLK_POLARITY;
if (spi->mode & SPI_CPOL)
reg |= GLOBAL_CTRL_CLK_POLARITY;
__raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
mutex_unlock(&bs->bus_mutex);
}
static int bcm63xx_hsspi_do_txrx(struct spi_device *spi, struct spi_transfer *t)
{
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller);
unsigned int chip_select = spi_get_chipselect(spi, 0);
u16 opcode = 0, val;
int pending = t->len;
int step_size = HSSPI_BUFFER_LEN;
const u8 *tx = t->tx_buf;
u8 *rx = t->rx_buf;
u32 reg = 0;
bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz);
if (!t->cs_off)
bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true);
if (tx && rx)
opcode = HSSPI_OP_READ_WRITE;
else if (tx)
opcode = HSSPI_OP_WRITE;
else if (rx)
opcode = HSSPI_OP_READ;
if (opcode != HSSPI_OP_READ)
step_size -= HSSPI_OPCODE_LEN;
if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) ||
(opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) {
opcode |= HSSPI_OP_MULTIBIT;
if (t->rx_nbits == SPI_NBITS_DUAL)
reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT;
if (t->tx_nbits == SPI_NBITS_DUAL)
reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT;
}
__raw_writel(reg | 0xff,
bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select));
while (pending > 0) {
int curr_step = min_t(int, step_size, pending);
reinit_completion(&bs->done);
if (tx) {
memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, tx, curr_step);
tx += curr_step;
}
*(__be16 *)(&val) = cpu_to_be16(opcode | curr_step);
__raw_writew(val, bs->fifo);
/* enable interrupt */
if (bs->wait_mode == HSSPI_WAIT_MODE_INTR)
__raw_writel(HSSPI_PINGx_CMD_DONE(0),
bs->regs + HSSPI_INT_MASK_REG);
reg = !chip_select << PINGPONG_CMD_SS_SHIFT |
chip_select << PINGPONG_CMD_PROFILE_SHIFT |
PINGPONG_COMMAND_START_NOW;
__raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0));
if (bcm63xx_hsspi_wait_cmd(bs))
return -ETIMEDOUT;
if (rx) {
memcpy_fromio(rx, bs->fifo, curr_step);
rx += curr_step;
}
pending -= curr_step;
}
return 0;
}
static int bcm63xx_hsspi_setup(struct spi_device *spi)
{
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller);
u32 reg;
reg = __raw_readl(bs->regs +
HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0)));
reg &= ~(SIGNAL_CTRL_LAUNCH_RISING | SIGNAL_CTRL_LATCH_RISING);
if (spi->mode & SPI_CPHA)
reg |= SIGNAL_CTRL_LAUNCH_RISING;
else
reg |= SIGNAL_CTRL_LATCH_RISING;
__raw_writel(reg, bs->regs +
HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0)));
mutex_lock(&bs->bus_mutex);
reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
/* only change actual polarities if there is no transfer */
if ((reg & GLOBAL_CTRL_CS_POLARITY_MASK) == bs->cs_polarity) {
if (spi->mode & SPI_CS_HIGH)
reg |= BIT(spi_get_chipselect(spi, 0));
else
reg &= ~BIT(spi_get_chipselect(spi, 0));
__raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
}
if (spi->mode & SPI_CS_HIGH)
bs->cs_polarity |= BIT(spi_get_chipselect(spi, 0));
else
bs->cs_polarity &= ~BIT(spi_get_chipselect(spi, 0));
mutex_unlock(&bs->bus_mutex);
return 0;
}
static int bcm63xx_hsspi_do_dummy_cs_txrx(struct spi_device *spi,
struct spi_message *msg)
{
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller);
int status = -EINVAL;
int dummy_cs;
bool keep_cs = false;
struct spi_transfer *t;
/*
* This controller does not support keeping CS active during idle.
* To work around this, we use the following ugly hack:
*
* a. Invert the target chip select's polarity so it will be active.
* b. Select a "dummy" chip select to use as the hardware target.
* c. Invert the dummy chip select's polarity so it will be inactive
* during the actual transfers.
* d. Tell the hardware to send to the dummy chip select. Thanks to
* the multiplexed nature of SPI the actual target will receive
* the transfer and we see its response.
*
* e. At the end restore the polarities again to their default values.
*/
dummy_cs = !spi_get_chipselect(spi, 0);
bcm63xx_hsspi_set_cs(bs, dummy_cs, true);
list_for_each_entry(t, &msg->transfers, transfer_list) {
/*
* We are here because one of reasons below:
* a. Message is not prependable and in default auto xfer mode. This mean
* we fallback to dummy cs mode at maximum 25MHz safe clock rate.
* b. User set to use the dummy cs mode.
*/
if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) {
if (t->speed_hz > HSSPI_MAX_SYNC_CLOCK) {
t->speed_hz = HSSPI_MAX_SYNC_CLOCK;
dev_warn_once(&bs->pdev->dev,
"Force to dummy cs mode. Reduce the speed to %dHz",
t->speed_hz);
}
}
status = bcm63xx_hsspi_do_txrx(spi, t);
if (status)
break;
msg->actual_length += t->len;
spi_transfer_delay_exec(t);
/* use existing cs change logic from spi_transfer_one_message */
if (t->cs_change) {
if (list_is_last(&t->transfer_list, &msg->transfers)) {
keep_cs = true;
} else {
if (!t->cs_off)
bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false);
spi_transfer_cs_change_delay_exec(msg, t);
if (!list_next_entry(t, transfer_list)->cs_off)
bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true);
}
} else if (!list_is_last(&t->transfer_list, &msg->transfers) &&
t->cs_off != list_next_entry(t, transfer_list)->cs_off) {
bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), t->cs_off);
}
}
bcm63xx_hsspi_set_cs(bs, dummy_cs, false);
if (status || !keep_cs)
bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false);
return status;
}
static int bcm63xx_hsspi_transfer_one(struct spi_controller *host,
struct spi_message *msg)
{
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
struct spi_device *spi = msg->spi;
int status = -EINVAL;
bool prependable = false;
struct spi_transfer t_prepend;
mutex_lock(&bs->msg_mutex);
if (bs->xfer_mode != HSSPI_XFER_MODE_DUMMYCS)
prependable = bcm63xx_prepare_prepend_transfer(host, msg, &t_prepend);
if (prependable) {
status = bcm63xx_hsspi_do_prepend_txrx(spi, &t_prepend);
msg->actual_length = (t_prepend.len + bs->prepend_cnt);
} else {
if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) {
dev_err(&bs->pdev->dev,
"User sets prepend mode but msg not prependable! Abort transfer\n");
status = -EINVAL;
} else
status = bcm63xx_hsspi_do_dummy_cs_txrx(spi, msg);
}
mutex_unlock(&bs->msg_mutex);
msg->status = status;
spi_finalize_current_message(host);
return 0;
}
static bool bcm63xx_hsspi_mem_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
/* Controller doesn't support spi mem dual io mode */
if ((op->cmd.opcode == SPINOR_OP_READ_1_2_2) ||
(op->cmd.opcode == SPINOR_OP_READ_1_2_2_4B) ||
(op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR) ||
(op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR_4B))
return false;
return true;
}
static const struct spi_controller_mem_ops bcm63xx_hsspi_mem_ops = {
.supports_op = bcm63xx_hsspi_mem_supports_op,
};
static irqreturn_t bcm63xx_hsspi_interrupt(int irq, void *dev_id)
{
struct bcm63xx_hsspi *bs = (struct bcm63xx_hsspi *)dev_id;
if (__raw_readl(bs->regs + HSSPI_INT_STATUS_MASKED_REG) == 0)
return IRQ_NONE;
__raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
__raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
complete(&bs->done);
return IRQ_HANDLED;
}
static int bcm63xx_hsspi_probe(struct platform_device *pdev)
{
struct spi_controller *host;
struct bcm63xx_hsspi *bs;
void __iomem *regs;
struct device *dev = &pdev->dev;
struct clk *clk, *pll_clk = NULL;
int irq, ret;
u32 reg, rate, num_cs = HSSPI_SPI_MAX_CS;
struct reset_control *reset;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
clk = devm_clk_get(dev, "hsspi");
if (IS_ERR(clk))
return PTR_ERR(clk);
reset = devm_reset_control_get_optional_shared(dev, NULL);
if (IS_ERR(reset))
return PTR_ERR(reset);
ret = clk_prepare_enable(clk);
if (ret)
return ret;
ret = reset_control_reset(reset);
if (ret) {
dev_err(dev, "unable to reset device: %d\n", ret);
goto out_disable_clk;
}
rate = clk_get_rate(clk);
if (!rate) {
pll_clk = devm_clk_get(dev, "pll");
if (IS_ERR(pll_clk)) {
ret = PTR_ERR(pll_clk);
goto out_disable_clk;
}
ret = clk_prepare_enable(pll_clk);
if (ret)
goto out_disable_clk;
rate = clk_get_rate(pll_clk);
if (!rate) {
ret = -EINVAL;
goto out_disable_pll_clk;
}
}
host = spi_alloc_host(&pdev->dev, sizeof(*bs));
if (!host) {
ret = -ENOMEM;
goto out_disable_pll_clk;
}
bs = spi_controller_get_devdata(host);
bs->pdev = pdev;
bs->clk = clk;
bs->pll_clk = pll_clk;
bs->regs = regs;
bs->speed_hz = rate;
bs->fifo = (u8 __iomem *)(bs->regs + HSSPI_FIFO_REG(0));
bs->wait_mode = HSSPI_WAIT_MODE_POLLING;
bs->prepend_buf = devm_kzalloc(dev, HSSPI_BUFFER_LEN, GFP_KERNEL);
if (!bs->prepend_buf) {
ret = -ENOMEM;
goto out_put_host;
}
mutex_init(&bs->bus_mutex);
mutex_init(&bs->msg_mutex);
init_completion(&bs->done);
host->mem_ops = &bcm63xx_hsspi_mem_ops;
host->dev.of_node = dev->of_node;
if (!dev->of_node)
host->bus_num = HSSPI_BUS_NUM;
of_property_read_u32(dev->of_node, "num-cs", &num_cs);
if (num_cs > 8) {
dev_warn(dev, "unsupported number of cs (%i), reducing to 8\n",
num_cs);
num_cs = HSSPI_SPI_MAX_CS;
}
host->num_chipselect = num_cs;
host->setup = bcm63xx_hsspi_setup;
host->transfer_one_message = bcm63xx_hsspi_transfer_one;
host->max_transfer_size = bcm63xx_hsspi_max_message_size;
host->max_message_size = bcm63xx_hsspi_max_message_size;
host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
SPI_RX_DUAL | SPI_TX_DUAL;
host->bits_per_word_mask = SPI_BPW_MASK(8);
host->auto_runtime_pm = true;
platform_set_drvdata(pdev, host);
/* Initialize the hardware */
__raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
/* clean up any pending interrupts */
__raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
/* read out default CS polarities */
reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
bs->cs_polarity = reg & GLOBAL_CTRL_CS_POLARITY_MASK;
__raw_writel(reg | GLOBAL_CTRL_CLK_GATE_SSOFF,
bs->regs + HSSPI_GLOBAL_CTRL_REG);
if (irq > 0) {
ret = devm_request_irq(dev, irq, bcm63xx_hsspi_interrupt, IRQF_SHARED,
pdev->name, bs);
if (ret)
goto out_put_host;
}
pm_runtime_enable(&pdev->dev);
ret = sysfs_create_group(&pdev->dev.kobj, &bcm63xx_hsspi_group);
if (ret) {
dev_err(&pdev->dev, "couldn't register sysfs group\n");
goto out_pm_disable;
}
/* register and we are done */
ret = devm_spi_register_controller(dev, host);
if (ret)
goto out_sysgroup_disable;
dev_info(dev, "Broadcom 63XX High Speed SPI Controller driver");
return 0;
out_sysgroup_disable:
sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group);
out_pm_disable:
pm_runtime_disable(&pdev->dev);
out_put_host:
spi_controller_put(host);
out_disable_pll_clk:
clk_disable_unprepare(pll_clk);
out_disable_clk:
clk_disable_unprepare(clk);
return ret;
}
static void bcm63xx_hsspi_remove(struct platform_device *pdev)
{
struct spi_controller *host = platform_get_drvdata(pdev);
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
/* reset the hardware and block queue progress */
__raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
clk_disable_unprepare(bs->pll_clk);
clk_disable_unprepare(bs->clk);
sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group);
}
#ifdef CONFIG_PM_SLEEP
static int bcm63xx_hsspi_suspend(struct device *dev)
{
struct spi_controller *host = dev_get_drvdata(dev);
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
spi_controller_suspend(host);
clk_disable_unprepare(bs->pll_clk);
clk_disable_unprepare(bs->clk);
return 0;
}
static int bcm63xx_hsspi_resume(struct device *dev)
{
struct spi_controller *host = dev_get_drvdata(dev);
struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
int ret;
ret = clk_prepare_enable(bs->clk);
if (ret)
return ret;
if (bs->pll_clk) {
ret = clk_prepare_enable(bs->pll_clk);
if (ret) {
clk_disable_unprepare(bs->clk);
return ret;
}
}
spi_controller_resume(host);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(bcm63xx_hsspi_pm_ops, bcm63xx_hsspi_suspend,
bcm63xx_hsspi_resume);
static const struct of_device_id bcm63xx_hsspi_of_match[] = {
{ .compatible = "brcm,bcm6328-hsspi", },
{ .compatible = "brcm,bcmbca-hsspi-v1.0", },
{ },
};
MODULE_DEVICE_TABLE(of, bcm63xx_hsspi_of_match);
static struct platform_driver bcm63xx_hsspi_driver = {
.driver = {
.name = "bcm63xx-hsspi",
.pm = &bcm63xx_hsspi_pm_ops,
.of_match_table = bcm63xx_hsspi_of_match,
},
.probe = bcm63xx_hsspi_probe,
.remove_new = bcm63xx_hsspi_remove,
};
module_platform_driver(bcm63xx_hsspi_driver);
MODULE_ALIAS("platform:bcm63xx_hsspi");
MODULE_DESCRIPTION("Broadcom BCM63xx High Speed SPI Controller driver");
MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>");
MODULE_LICENSE("GPL");
|