1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#include "bpf_experimental.h"
struct val_t {
long b, c, d;
};
struct elem {
long sum;
struct val_t __percpu_kptr *pc;
};
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, int);
__type(value, struct elem);
} array SEC(".maps");
void bpf_rcu_read_lock(void) __ksym;
void bpf_rcu_read_unlock(void) __ksym;
const volatile int nr_cpus;
/* Initialize the percpu object */
SEC("?fentry/bpf_fentry_test1")
int BPF_PROG(test_array_map_1)
{
struct val_t __percpu_kptr *p;
struct elem *e;
int index = 0;
e = bpf_map_lookup_elem(&array, &index);
if (!e)
return 0;
p = bpf_percpu_obj_new(struct val_t);
if (!p)
return 0;
p = bpf_kptr_xchg(&e->pc, p);
if (p)
bpf_percpu_obj_drop(p);
return 0;
}
/* Update percpu data */
SEC("?fentry/bpf_fentry_test2")
int BPF_PROG(test_array_map_2)
{
struct val_t __percpu_kptr *p;
struct val_t *v;
struct elem *e;
int index = 0;
e = bpf_map_lookup_elem(&array, &index);
if (!e)
return 0;
p = e->pc;
if (!p)
return 0;
v = bpf_per_cpu_ptr(p, 0);
if (!v)
return 0;
v->c = 1;
v->d = 2;
return 0;
}
int cpu0_field_d, sum_field_c;
int my_pid;
/* Summarize percpu data */
SEC("?fentry/bpf_fentry_test3")
int BPF_PROG(test_array_map_3)
{
struct val_t __percpu_kptr *p;
int i, index = 0;
struct val_t *v;
struct elem *e;
if ((bpf_get_current_pid_tgid() >> 32) != my_pid)
return 0;
e = bpf_map_lookup_elem(&array, &index);
if (!e)
return 0;
p = e->pc;
if (!p)
return 0;
bpf_for(i, 0, nr_cpus) {
v = bpf_per_cpu_ptr(p, i);
if (v) {
if (i == 0)
cpu0_field_d = v->d;
sum_field_c += v->c;
}
}
return 0;
}
/* Explicitly free allocated percpu data */
SEC("?fentry/bpf_fentry_test4")
int BPF_PROG(test_array_map_4)
{
struct val_t __percpu_kptr *p;
struct elem *e;
int index = 0;
e = bpf_map_lookup_elem(&array, &index);
if (!e)
return 0;
/* delete */
p = bpf_kptr_xchg(&e->pc, NULL);
if (p) {
bpf_percpu_obj_drop(p);
}
return 0;
}
SEC("?fentry.s/bpf_fentry_test1")
int BPF_PROG(test_array_map_10)
{
struct val_t __percpu_kptr *p, *p1;
int i, index = 0;
struct val_t *v;
struct elem *e;
if ((bpf_get_current_pid_tgid() >> 32) != my_pid)
return 0;
e = bpf_map_lookup_elem(&array, &index);
if (!e)
return 0;
bpf_rcu_read_lock();
p = e->pc;
if (!p) {
p = bpf_percpu_obj_new(struct val_t);
if (!p)
goto out;
p1 = bpf_kptr_xchg(&e->pc, p);
if (p1) {
/* race condition */
bpf_percpu_obj_drop(p1);
}
}
v = bpf_this_cpu_ptr(p);
v->c = 3;
v = bpf_this_cpu_ptr(p);
v->c = 0;
v = bpf_per_cpu_ptr(p, 0);
if (!v)
goto out;
v->c = 1;
v->d = 2;
/* delete */
p1 = bpf_kptr_xchg(&e->pc, NULL);
if (!p1)
goto out;
bpf_for(i, 0, nr_cpus) {
v = bpf_per_cpu_ptr(p, i);
if (v) {
if (i == 0)
cpu0_field_d = v->d;
sum_field_c += v->c;
}
}
/* finally release p */
bpf_percpu_obj_drop(p1);
out:
bpf_rcu_read_unlock();
return 0;
}
char _license[] SEC("license") = "GPL";
|