1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include "xe_devcoredump.h"
#include "xe_devcoredump_types.h"
#include <linux/ascii85.h>
#include <linux/devcoredump.h>
#include <generated/utsrelease.h>
#include <drm/drm_managed.h>
#include "xe_device.h"
#include "xe_exec_queue.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_guc_ct.h"
#include "xe_guc_submit.h"
#include "xe_hw_engine.h"
#include "xe_pm.h"
#include "xe_sched_job.h"
#include "xe_vm.h"
/**
* DOC: Xe device coredump
*
* Devices overview:
* Xe uses dev_coredump infrastructure for exposing the crash errors in a
* standardized way.
* devcoredump exposes a temporary device under /sys/class/devcoredump/
* which is linked with our card device directly.
* The core dump can be accessed either from
* /sys/class/drm/card<n>/device/devcoredump/ or from
* /sys/class/devcoredump/devcd<m> where
* /sys/class/devcoredump/devcd<m>/failing_device is a link to
* /sys/class/drm/card<n>/device/.
*
* Snapshot at hang:
* The 'data' file is printed with a drm_printer pointer at devcoredump read
* time. For this reason, we need to take snapshots from when the hang has
* happened, and not only when the user is reading the file. Otherwise the
* information is outdated since the resets might have happened in between.
*
* 'First' failure snapshot:
* In general, the first hang is the most critical one since the following hangs
* can be a consequence of the initial hang. For this reason we only take the
* snapshot of the 'first' failure and ignore subsequent calls of this function,
* at least while the coredump device is alive. Dev_coredump has a delayed work
* queue that will eventually delete the device and free all the dump
* information.
*/
#ifdef CONFIG_DEV_COREDUMP
/* 1 hour timeout */
#define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
{
return container_of(coredump, struct xe_device, devcoredump);
}
static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
{
return &q->gt->uc.guc;
}
static ssize_t __xe_devcoredump_read(char *buffer, size_t count,
struct xe_devcoredump *coredump)
{
struct xe_device *xe;
struct xe_devcoredump_snapshot *ss;
struct drm_printer p;
struct drm_print_iterator iter;
struct timespec64 ts;
int i;
xe = coredump_to_xe(coredump);
ss = &coredump->snapshot;
iter.data = buffer;
iter.start = 0;
iter.remain = count;
p = drm_coredump_printer(&iter);
drm_puts(&p, "**** Xe Device Coredump ****\n");
drm_puts(&p, "kernel: " UTS_RELEASE "\n");
drm_puts(&p, "module: " KBUILD_MODNAME "\n");
ts = ktime_to_timespec64(ss->snapshot_time);
drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
ts = ktime_to_timespec64(ss->boot_time);
drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
drm_printf(&p, "Process: %s\n", ss->process_name);
xe_device_snapshot_print(xe, &p);
drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
drm_puts(&p, "\n**** GuC CT ****\n");
xe_guc_ct_snapshot_print(ss->ct, &p);
drm_puts(&p, "\n**** Contexts ****\n");
xe_guc_exec_queue_snapshot_print(ss->ge, &p);
drm_puts(&p, "\n**** Job ****\n");
xe_sched_job_snapshot_print(ss->job, &p);
drm_puts(&p, "\n**** HW Engines ****\n");
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
if (ss->hwe[i])
xe_hw_engine_snapshot_print(ss->hwe[i], &p);
drm_puts(&p, "\n**** VM state ****\n");
xe_vm_snapshot_print(ss->vm, &p);
return count - iter.remain;
}
static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
{
int i;
xe_guc_ct_snapshot_free(ss->ct);
ss->ct = NULL;
xe_guc_exec_queue_snapshot_free(ss->ge);
ss->ge = NULL;
xe_sched_job_snapshot_free(ss->job);
ss->job = NULL;
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
if (ss->hwe[i]) {
xe_hw_engine_snapshot_free(ss->hwe[i]);
ss->hwe[i] = NULL;
}
xe_vm_snapshot_free(ss->vm);
ss->vm = NULL;
}
static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
size_t count, void *data, size_t datalen)
{
struct xe_devcoredump *coredump = data;
struct xe_devcoredump_snapshot *ss;
ssize_t byte_copied;
if (!coredump)
return -ENODEV;
ss = &coredump->snapshot;
/* Ensure delayed work is captured before continuing */
flush_work(&ss->work);
if (!ss->read.buffer)
return -ENODEV;
if (offset >= ss->read.size)
return 0;
byte_copied = count < ss->read.size - offset ? count :
ss->read.size - offset;
memcpy(buffer, ss->read.buffer + offset, byte_copied);
return byte_copied;
}
static void xe_devcoredump_free(void *data)
{
struct xe_devcoredump *coredump = data;
/* Our device is gone. Nothing to do... */
if (!data || !coredump_to_xe(coredump))
return;
cancel_work_sync(&coredump->snapshot.work);
xe_devcoredump_snapshot_free(&coredump->snapshot);
kvfree(coredump->snapshot.read.buffer);
/* To prevent stale data on next snapshot, clear everything */
memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
coredump->captured = false;
drm_info(&coredump_to_xe(coredump)->drm,
"Xe device coredump has been deleted.\n");
}
static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
{
struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
struct xe_device *xe = coredump_to_xe(coredump);
/*
* NB: Despite passing a GFP_ flags parameter here, more allocations are done
* internally using GFP_KERNEL expliictly. Hence this call must be in the worker
* thread and not in the initial capture call.
*/
dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
xe_devcoredump_read, xe_devcoredump_free,
XE_COREDUMP_TIMEOUT_JIFFIES);
xe_pm_runtime_get(xe);
/* keep going if fw fails as we still want to save the memory and SW data */
if (xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL))
xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
xe_vm_snapshot_capture_delayed(ss->vm);
xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
xe_force_wake_put(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
xe_pm_runtime_put(xe);
/* Calculate devcoredump size */
ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump);
ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
if (!ss->read.buffer)
return;
__xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump);
xe_devcoredump_snapshot_free(ss);
}
static void devcoredump_snapshot(struct xe_devcoredump *coredump,
struct xe_sched_job *job)
{
struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
struct xe_exec_queue *q = job->q;
struct xe_guc *guc = exec_queue_to_guc(q);
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
u32 adj_logical_mask = q->logical_mask;
u32 width_mask = (0x1 << q->width) - 1;
const char *process_name = "no process";
int i;
bool cookie;
ss->snapshot_time = ktime_get_real();
ss->boot_time = ktime_get_boottime();
if (q->vm && q->vm->xef)
process_name = q->vm->xef->process_name;
strscpy(ss->process_name, process_name);
ss->gt = q->gt;
INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
cookie = dma_fence_begin_signalling();
for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
if (adj_logical_mask & BIT(i)) {
adj_logical_mask |= width_mask << i;
i += q->width;
} else {
++i;
}
}
/* keep going if fw fails as we still want to save the memory and SW data */
if (xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL))
xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
ss->ct = xe_guc_ct_snapshot_capture(&guc->ct, true);
ss->ge = xe_guc_exec_queue_snapshot_capture(q);
ss->job = xe_sched_job_snapshot_capture(job);
ss->vm = xe_vm_snapshot_capture(q->vm);
for_each_hw_engine(hwe, q->gt, id) {
if (hwe->class != q->hwe->class ||
!(BIT(hwe->logical_instance) & adj_logical_mask)) {
ss->hwe[id] = NULL;
continue;
}
ss->hwe[id] = xe_hw_engine_snapshot_capture(hwe);
}
queue_work(system_unbound_wq, &ss->work);
xe_force_wake_put(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
dma_fence_end_signalling(cookie);
}
/**
* xe_devcoredump - Take the required snapshots and initialize coredump device.
* @job: The faulty xe_sched_job, where the issue was detected.
*
* This function should be called at the crash time within the serialized
* gt_reset. It is skipped if we still have the core dump device available
* with the information of the 'first' snapshot.
*/
void xe_devcoredump(struct xe_sched_job *job)
{
struct xe_device *xe = gt_to_xe(job->q->gt);
struct xe_devcoredump *coredump = &xe->devcoredump;
if (coredump->captured) {
drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
return;
}
coredump->captured = true;
devcoredump_snapshot(coredump, job);
drm_info(&xe->drm, "Xe device coredump has been created\n");
drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
xe->drm.primary->index);
}
static void xe_driver_devcoredump_fini(void *arg)
{
struct drm_device *drm = arg;
dev_coredump_put(drm->dev);
}
int xe_devcoredump_init(struct xe_device *xe)
{
return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
}
#endif
/**
* xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
*
* The output is split into multiple calls to drm_puts() because some print
* targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may
* add newlines, as is the case with dmesg: each drm_puts() call creates a
* separate line.
*
* There is also a scheduler yield call to prevent the 'task has been stuck for
* 120s' kernel hang check feature from firing when printing to a slow target
* such as dmesg over a serial port.
*
* @p: the printer object to output to
* @prefix: optional prefix to add to output string
* @suffix: optional suffix to add at the end. 0 disables it and is
* not added to the output, which is useful when using multiple calls
* to dump data to @p
* @blob: the Binary Large OBject to dump out
* @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
* @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
*/
void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix,
const void *blob, size_t offset, size_t size)
{
const u32 *blob32 = (const u32 *)blob;
char buff[ASCII85_BUFSZ], *line_buff;
size_t line_pos = 0;
#define DMESG_MAX_LINE_LEN 800
/* Always leave space for the suffix char and the \0 */
#define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */
if (size & 3)
drm_printf(p, "Size not word aligned: %zu", size);
if (offset & 3)
drm_printf(p, "Offset not word aligned: %zu", size);
line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL);
if (IS_ERR_OR_NULL(line_buff)) {
drm_printf(p, "Failed to allocate line buffer: %pe", line_buff);
return;
}
blob32 += offset / sizeof(*blob32);
size /= sizeof(*blob32);
if (prefix) {
strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
line_pos = strlen(line_buff);
line_buff[line_pos++] = ':';
line_buff[line_pos++] = ' ';
}
while (size--) {
u32 val = *(blob32++);
strscpy(line_buff + line_pos, ascii85_encode(val, buff),
DMESG_MAX_LINE_LEN - line_pos);
line_pos += strlen(line_buff + line_pos);
if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
line_buff[line_pos++] = 0;
drm_puts(p, line_buff);
line_pos = 0;
/* Prevent 'stuck thread' time out errors */
cond_resched();
}
}
if (suffix)
line_buff[line_pos++] = suffix;
if (line_pos) {
line_buff[line_pos++] = 0;
drm_puts(p, line_buff);
}
kfree(line_buff);
#undef MIN_SPACE
#undef DMESG_MAX_LINE_LEN
}
|