1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 SiFive
*/
#include <linux/acpi.h>
#include <linux/of.h>
#include <linux/prctl.h>
#include <asm/acpi.h>
#include <asm/cacheflush.h>
#ifdef CONFIG_SMP
#include <asm/sbi.h>
static void ipi_remote_fence_i(void *info)
{
return local_flush_icache_all();
}
void flush_icache_all(void)
{
local_flush_icache_all();
if (num_online_cpus() < 2)
return;
/*
* Make sure all previous writes to the D$ are ordered before making
* the IPI. The RISC-V spec states that a hart must execute a data fence
* before triggering a remote fence.i in order to make the modification
* visable for remote harts.
*
* IPIs on RISC-V are triggered by MMIO writes to either CLINT or
* S-IMSIC, so the fence ensures previous data writes "happen before"
* the MMIO.
*/
RISCV_FENCE(w, o);
if (riscv_use_sbi_for_rfence())
sbi_remote_fence_i(NULL);
else
on_each_cpu(ipi_remote_fence_i, NULL, 1);
}
EXPORT_SYMBOL(flush_icache_all);
/*
* Performs an icache flush for the given MM context. RISC-V has no direct
* mechanism for instruction cache shoot downs, so instead we send an IPI that
* informs the remote harts they need to flush their local instruction caches.
* To avoid pathologically slow behavior in a common case (a bunch of
* single-hart processes on a many-hart machine, ie 'make -j') we avoid the
* IPIs for harts that are not currently executing a MM context and instead
* schedule a deferred local instruction cache flush to be performed before
* execution resumes on each hart.
*/
void flush_icache_mm(struct mm_struct *mm, bool local)
{
unsigned int cpu;
cpumask_t others, *mask;
preempt_disable();
/* Mark every hart's icache as needing a flush for this MM. */
mask = &mm->context.icache_stale_mask;
cpumask_setall(mask);
/* Flush this hart's I$ now, and mark it as flushed. */
cpu = smp_processor_id();
cpumask_clear_cpu(cpu, mask);
local_flush_icache_all();
/*
* Flush the I$ of other harts concurrently executing, and mark them as
* flushed.
*/
cpumask_andnot(&others, mm_cpumask(mm), cpumask_of(cpu));
local |= cpumask_empty(&others);
if (mm == current->active_mm && local) {
/*
* It's assumed that at least one strongly ordered operation is
* performed on this hart between setting a hart's cpumask bit
* and scheduling this MM context on that hart. Sending an SBI
* remote message will do this, but in the case where no
* messages are sent we still need to order this hart's writes
* with flush_icache_deferred().
*/
smp_mb();
} else if (riscv_use_sbi_for_rfence()) {
sbi_remote_fence_i(&others);
} else {
on_each_cpu_mask(&others, ipi_remote_fence_i, NULL, 1);
}
preempt_enable();
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_MMU
void flush_icache_pte(struct mm_struct *mm, pte_t pte)
{
struct folio *folio = page_folio(pte_page(pte));
if (!test_bit(PG_dcache_clean, &folio->flags)) {
flush_icache_mm(mm, false);
set_bit(PG_dcache_clean, &folio->flags);
}
}
#endif /* CONFIG_MMU */
unsigned int riscv_cbom_block_size;
EXPORT_SYMBOL_GPL(riscv_cbom_block_size);
unsigned int riscv_cboz_block_size;
EXPORT_SYMBOL_GPL(riscv_cboz_block_size);
static void __init cbo_get_block_size(struct device_node *node,
const char *name, u32 *block_size,
unsigned long *first_hartid)
{
unsigned long hartid;
u32 val;
if (riscv_of_processor_hartid(node, &hartid))
return;
if (of_property_read_u32(node, name, &val))
return;
if (!*block_size) {
*block_size = val;
*first_hartid = hartid;
} else if (*block_size != val) {
pr_warn("%s mismatched between harts %lu and %lu\n",
name, *first_hartid, hartid);
}
}
void __init riscv_init_cbo_blocksizes(void)
{
unsigned long cbom_hartid, cboz_hartid;
u32 cbom_block_size = 0, cboz_block_size = 0;
struct device_node *node;
struct acpi_table_header *rhct;
acpi_status status;
if (acpi_disabled) {
for_each_of_cpu_node(node) {
/* set block-size for cbom and/or cboz extension if available */
cbo_get_block_size(node, "riscv,cbom-block-size",
&cbom_block_size, &cbom_hartid);
cbo_get_block_size(node, "riscv,cboz-block-size",
&cboz_block_size, &cboz_hartid);
}
} else {
status = acpi_get_table(ACPI_SIG_RHCT, 0, &rhct);
if (ACPI_FAILURE(status))
return;
acpi_get_cbo_block_size(rhct, &cbom_block_size, &cboz_block_size, NULL);
acpi_put_table((struct acpi_table_header *)rhct);
}
if (cbom_block_size)
riscv_cbom_block_size = cbom_block_size;
if (cboz_block_size)
riscv_cboz_block_size = cboz_block_size;
}
#ifdef CONFIG_SMP
static void set_icache_stale_mask(void)
{
int cpu = get_cpu();
cpumask_t *mask;
bool stale_cpu;
/*
* Mark every other hart's icache as needing a flush for
* this MM. Maintain the previous value of the current
* cpu to handle the case when this function is called
* concurrently on different harts.
*/
mask = ¤t->mm->context.icache_stale_mask;
stale_cpu = cpumask_test_cpu(cpu, mask);
cpumask_setall(mask);
cpumask_assign_cpu(cpu, mask, stale_cpu);
put_cpu();
}
#endif
/**
* riscv_set_icache_flush_ctx() - Enable/disable icache flushing instructions in
* userspace.
* @ctx: Set the type of icache flushing instructions permitted/prohibited in
* userspace. Supported values described below.
*
* Supported values for ctx:
*
* * %PR_RISCV_CTX_SW_FENCEI_ON: Allow fence.i in user space.
*
* * %PR_RISCV_CTX_SW_FENCEI_OFF: Disallow fence.i in user space. All threads in
* a process will be affected when ``scope == PR_RISCV_SCOPE_PER_PROCESS``.
* Therefore, caution must be taken; use this flag only when you can guarantee
* that no thread in the process will emit fence.i from this point onward.
*
* @scope: Set scope of where icache flushing instructions are allowed to be
* emitted. Supported values described below.
*
* Supported values for scope:
*
* * %PR_RISCV_SCOPE_PER_PROCESS: Ensure the icache of any thread in this process
* is coherent with instruction storage upon
* migration.
*
* * %PR_RISCV_SCOPE_PER_THREAD: Ensure the icache of the current thread is
* coherent with instruction storage upon
* migration.
*
* When ``scope == PR_RISCV_SCOPE_PER_PROCESS``, all threads in the process are
* permitted to emit icache flushing instructions. Whenever any thread in the
* process is migrated, the corresponding hart's icache will be guaranteed to be
* consistent with instruction storage. This does not enforce any guarantees
* outside of migration. If a thread modifies an instruction that another thread
* may attempt to execute, the other thread must still emit an icache flushing
* instruction before attempting to execute the potentially modified
* instruction. This must be performed by the user-space program.
*
* In per-thread context (eg. ``scope == PR_RISCV_SCOPE_PER_THREAD``) only the
* thread calling this function is permitted to emit icache flushing
* instructions. When the thread is migrated, the corresponding hart's icache
* will be guaranteed to be consistent with instruction storage.
*
* On kernels configured without SMP, this function is a nop as migrations
* across harts will not occur.
*/
int riscv_set_icache_flush_ctx(unsigned long ctx, unsigned long scope)
{
#ifdef CONFIG_SMP
switch (ctx) {
case PR_RISCV_CTX_SW_FENCEI_ON:
switch (scope) {
case PR_RISCV_SCOPE_PER_PROCESS:
current->mm->context.force_icache_flush = true;
break;
case PR_RISCV_SCOPE_PER_THREAD:
current->thread.force_icache_flush = true;
break;
default:
return -EINVAL;
}
break;
case PR_RISCV_CTX_SW_FENCEI_OFF:
switch (scope) {
case PR_RISCV_SCOPE_PER_PROCESS:
set_icache_stale_mask();
current->mm->context.force_icache_flush = false;
break;
case PR_RISCV_SCOPE_PER_THREAD:
set_icache_stale_mask();
current->thread.force_icache_flush = false;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
#else
switch (ctx) {
case PR_RISCV_CTX_SW_FENCEI_ON:
case PR_RISCV_CTX_SW_FENCEI_OFF:
return 0;
default:
return -EINVAL;
}
#endif
}
|