1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __KVM_X86_VMX_H
#define __KVM_X86_VMX_H
#include <linux/kvm_host.h>
#include <asm/kvm.h>
#include <asm/intel_pt.h>
#include <asm/perf_event.h>
#include <asm/posted_intr.h>
#include "capabilities.h"
#include "../kvm_cache_regs.h"
#include "vmcs.h"
#include "vmx_ops.h"
#include "../cpuid.h"
#include "run_flags.h"
#include "../mmu.h"
#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
#ifdef CONFIG_X86_64
#define MAX_NR_USER_RETURN_MSRS 7
#else
#define MAX_NR_USER_RETURN_MSRS 4
#endif
#define MAX_NR_LOADSTORE_MSRS 8
struct vmx_msrs {
unsigned int nr;
struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS];
};
struct vmx_uret_msr {
bool load_into_hardware;
u64 data;
u64 mask;
};
enum segment_cache_field {
SEG_FIELD_SEL = 0,
SEG_FIELD_BASE = 1,
SEG_FIELD_LIMIT = 2,
SEG_FIELD_AR = 3,
SEG_FIELD_NR = 4
};
#define RTIT_ADDR_RANGE 4
struct pt_ctx {
u64 ctl;
u64 status;
u64 output_base;
u64 output_mask;
u64 cr3_match;
u64 addr_a[RTIT_ADDR_RANGE];
u64 addr_b[RTIT_ADDR_RANGE];
};
struct pt_desc {
u64 ctl_bitmask;
u32 num_address_ranges;
u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
struct pt_ctx host;
struct pt_ctx guest;
};
union vmx_exit_reason {
struct {
u32 basic : 16;
u32 reserved16 : 1;
u32 reserved17 : 1;
u32 reserved18 : 1;
u32 reserved19 : 1;
u32 reserved20 : 1;
u32 reserved21 : 1;
u32 reserved22 : 1;
u32 reserved23 : 1;
u32 reserved24 : 1;
u32 reserved25 : 1;
u32 bus_lock_detected : 1;
u32 enclave_mode : 1;
u32 smi_pending_mtf : 1;
u32 smi_from_vmx_root : 1;
u32 reserved30 : 1;
u32 failed_vmentry : 1;
};
u32 full;
};
struct lbr_desc {
/* Basic info about guest LBR records. */
struct x86_pmu_lbr records;
/*
* Emulate LBR feature via passthrough LBR registers when the
* per-vcpu guest LBR event is scheduled on the current pcpu.
*
* The records may be inaccurate if the host reclaims the LBR.
*/
struct perf_event *event;
/* True if LBRs are marked as not intercepted in the MSR bitmap */
bool msr_passthrough;
};
extern struct x86_pmu_lbr vmx_lbr_caps;
/*
* The nested_vmx structure is part of vcpu_vmx, and holds information we need
* for correct emulation of VMX (i.e., nested VMX) on this vcpu.
*/
struct nested_vmx {
/* Has the level1 guest done vmxon? */
bool vmxon;
gpa_t vmxon_ptr;
bool pml_full;
/* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr;
/*
* Cache of the guest's VMCS, existing outside of guest memory.
* Loaded from guest memory during VMPTRLD. Flushed to guest
* memory during VMCLEAR and VMPTRLD.
*/
struct vmcs12 *cached_vmcs12;
/*
* Cache of the guest's shadow VMCS, existing outside of guest
* memory. Loaded from guest memory during VM entry. Flushed
* to guest memory during VM exit.
*/
struct vmcs12 *cached_shadow_vmcs12;
/*
* GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
*/
struct gfn_to_hva_cache shadow_vmcs12_cache;
/*
* GPA to HVA cache for VMCS12
*/
struct gfn_to_hva_cache vmcs12_cache;
/*
* Indicates if the shadow vmcs or enlightened vmcs must be updated
* with the data held by struct vmcs12.
*/
bool need_vmcs12_to_shadow_sync;
bool dirty_vmcs12;
/*
* Indicates whether MSR bitmap for L2 needs to be rebuilt due to
* changes in MSR bitmap for L1 or switching to a different L2. Note,
* this flag can only be used reliably in conjunction with a paravirt L1
* which informs L0 whether any changes to MSR bitmap for L2 were done
* on its side.
*/
bool force_msr_bitmap_recalc;
/*
* Indicates lazily loaded guest state has not yet been decached from
* vmcs02.
*/
bool need_sync_vmcs02_to_vmcs12_rare;
/*
* vmcs02 has been initialized, i.e. state that is constant for
* vmcs02 has been written to the backing VMCS. Initialization
* is delayed until L1 actually attempts to run a nested VM.
*/
bool vmcs02_initialized;
bool change_vmcs01_virtual_apic_mode;
bool reload_vmcs01_apic_access_page;
bool update_vmcs01_cpu_dirty_logging;
bool update_vmcs01_apicv_status;
/*
* Enlightened VMCS has been enabled. It does not mean that L1 has to
* use it. However, VMX features available to L1 will be limited based
* on what the enlightened VMCS supports.
*/
bool enlightened_vmcs_enabled;
/* L2 must run next, and mustn't decide to exit to L1. */
bool nested_run_pending;
/* Pending MTF VM-exit into L1. */
bool mtf_pending;
struct loaded_vmcs vmcs02;
/*
* Guest pages referred to in the vmcs02 with host-physical
* pointers, so we must keep them pinned while L2 runs.
*/
struct kvm_host_map apic_access_page_map;
struct kvm_host_map virtual_apic_map;
struct kvm_host_map pi_desc_map;
struct kvm_host_map msr_bitmap_map;
struct pi_desc *pi_desc;
bool pi_pending;
u16 posted_intr_nv;
struct hrtimer preemption_timer;
u64 preemption_timer_deadline;
bool has_preemption_timer_deadline;
bool preemption_timer_expired;
/*
* Used to snapshot MSRs that are conditionally loaded on VM-Enter in
* order to propagate the guest's pre-VM-Enter value into vmcs02. For
* emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
* For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
* userspace restores MSRs before nested state. If userspace restores
* MSRs after nested state, the snapshot holds garbage, but KVM can't
* detect that, and the garbage value in vmcs02 will be overwritten by
* MSR restoration in any case.
*/
u64 pre_vmenter_debugctl;
u64 pre_vmenter_bndcfgs;
/* to migrate it to L1 if L2 writes to L1's CR8 directly */
int l1_tpr_threshold;
u16 vpid02;
u16 last_vpid;
struct nested_vmx_msrs msrs;
/* SMM related state */
struct {
/* in VMX operation on SMM entry? */
bool vmxon;
/* in guest mode on SMM entry? */
bool guest_mode;
} smm;
#ifdef CONFIG_KVM_HYPERV
gpa_t hv_evmcs_vmptr;
struct kvm_host_map hv_evmcs_map;
struct hv_enlightened_vmcs *hv_evmcs;
#endif
};
struct vcpu_vmx {
struct kvm_vcpu vcpu;
u8 fail;
u8 x2apic_msr_bitmap_mode;
/*
* If true, host state has been stored in vmx->loaded_vmcs for
* the CPU registers that only need to be switched when transitioning
* to/from the kernel, and the registers have been loaded with guest
* values. If false, host state is loaded in the CPU registers
* and vmx->loaded_vmcs->host_state is invalid.
*/
bool guest_state_loaded;
unsigned long exit_qualification;
u32 exit_intr_info;
u32 idt_vectoring_info;
ulong rflags;
/*
* User return MSRs are always emulated when enabled in the guest, but
* only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
* of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
* be loaded into hardware if those conditions aren't met.
*/
struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
bool guest_uret_msrs_loaded;
#ifdef CONFIG_X86_64
u64 msr_host_kernel_gs_base;
u64 msr_guest_kernel_gs_base;
#endif
u64 spec_ctrl;
u32 msr_ia32_umwait_control;
/*
* loaded_vmcs points to the VMCS currently used in this vcpu. For a
* non-nested (L1) guest, it always points to vmcs01. For a nested
* guest (L2), it points to a different VMCS.
*/
struct loaded_vmcs vmcs01;
struct loaded_vmcs *loaded_vmcs;
struct msr_autoload {
struct vmx_msrs guest;
struct vmx_msrs host;
} msr_autoload;
struct msr_autostore {
struct vmx_msrs guest;
} msr_autostore;
struct {
int vm86_active;
ulong save_rflags;
struct kvm_segment segs[8];
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment {
u16 selector;
unsigned long base;
u32 limit;
u32 ar;
} seg[8];
} segment_cache;
int vpid;
bool emulation_required;
union vmx_exit_reason exit_reason;
/* Posted interrupt descriptor */
struct pi_desc pi_desc;
/* Used if this vCPU is waiting for PI notification wakeup. */
struct list_head pi_wakeup_list;
/* Support for a guest hypervisor (nested VMX) */
struct nested_vmx nested;
/* Dynamic PLE window. */
unsigned int ple_window;
bool ple_window_dirty;
/* Support for PML */
#define PML_ENTITY_NUM 512
struct page *pml_pg;
/* apic deadline value in host tsc */
u64 hv_deadline_tsc;
unsigned long host_debugctlmsr;
/*
* Only bits masked by msr_ia32_feature_control_valid_bits can be set in
* msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
* in msr_ia32_feature_control_valid_bits.
*/
u64 msr_ia32_feature_control;
u64 msr_ia32_feature_control_valid_bits;
/* SGX Launch Control public key hash */
u64 msr_ia32_sgxlepubkeyhash[4];
u64 msr_ia32_mcu_opt_ctrl;
bool disable_fb_clear;
struct pt_desc pt_desc;
struct lbr_desc lbr_desc;
/* Save desired MSR intercept (read: pass-through) state */
#define MAX_POSSIBLE_PASSTHROUGH_MSRS 16
struct {
DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
} shadow_msr_intercept;
/* ve_info must be page aligned. */
struct vmx_ve_information *ve_info;
};
struct kvm_vmx {
struct kvm kvm;
unsigned int tss_addr;
bool ept_identity_pagetable_done;
gpa_t ept_identity_map_addr;
/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
u64 *pid_table;
};
void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
struct loaded_vmcs *buddy);
int allocate_vpid(void);
void free_vpid(int vpid);
void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
unsigned long fs_base, unsigned long gs_base);
int vmx_get_cpl(struct kvm_vcpu *vcpu);
bool vmx_emulation_required(struct kvm_vcpu *vcpu);
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
void ept_save_pdptrs(struct kvm_vcpu *vcpu);
void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
unsigned int flags);
int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
int type, bool value)
{
if (value)
vmx_enable_intercept_for_msr(vcpu, msr, type);
else
vmx_disable_intercept_for_msr(vcpu, msr, type);
}
void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
/*
* Note, early Intel manuals have the write-low and read-high bitmap offsets
* the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and
* 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and
* 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and
* 0xc00-0xfff for writes. MSRs not covered by either of the ranges always
* VM-Exit.
*/
#define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \
static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \
u32 msr) \
{ \
int f = sizeof(unsigned long); \
\
if (msr <= 0x1fff) \
return bitop##_bit(msr, bitmap + base / f); \
else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \
return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
return (rtype)true; \
}
#define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \
__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \
__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
static inline u8 vmx_get_rvi(void)
{
return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
}
#define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
(VM_ENTRY_LOAD_DEBUG_CONTROLS)
#ifdef CONFIG_X86_64
#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
(__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS | \
VM_ENTRY_IA32E_MODE)
#else
#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
#endif
#define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS \
(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | \
VM_ENTRY_LOAD_IA32_PAT | \
VM_ENTRY_LOAD_IA32_EFER | \
VM_ENTRY_LOAD_BNDCFGS | \
VM_ENTRY_PT_CONCEAL_PIP | \
VM_ENTRY_LOAD_IA32_RTIT_CTL)
#define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
(VM_EXIT_SAVE_DEBUG_CONTROLS | \
VM_EXIT_ACK_INTR_ON_EXIT)
#ifdef CONFIG_X86_64
#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
(__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS | \
VM_EXIT_HOST_ADDR_SPACE_SIZE)
#else
#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
#endif
#define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS \
(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | \
VM_EXIT_SAVE_IA32_PAT | \
VM_EXIT_LOAD_IA32_PAT | \
VM_EXIT_SAVE_IA32_EFER | \
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | \
VM_EXIT_LOAD_IA32_EFER | \
VM_EXIT_CLEAR_BNDCFGS | \
VM_EXIT_PT_CONCEAL_PIP | \
VM_EXIT_CLEAR_IA32_RTIT_CTL)
#define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL \
(PIN_BASED_EXT_INTR_MASK | \
PIN_BASED_NMI_EXITING)
#define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL \
(PIN_BASED_VIRTUAL_NMIS | \
PIN_BASED_POSTED_INTR | \
PIN_BASED_VMX_PREEMPTION_TIMER)
#define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
(CPU_BASED_HLT_EXITING | \
CPU_BASED_CR3_LOAD_EXITING | \
CPU_BASED_CR3_STORE_EXITING | \
CPU_BASED_UNCOND_IO_EXITING | \
CPU_BASED_MOV_DR_EXITING | \
CPU_BASED_USE_TSC_OFFSETTING | \
CPU_BASED_MWAIT_EXITING | \
CPU_BASED_MONITOR_EXITING | \
CPU_BASED_INVLPG_EXITING | \
CPU_BASED_RDPMC_EXITING | \
CPU_BASED_INTR_WINDOW_EXITING)
#ifdef CONFIG_X86_64
#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
(__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL | \
CPU_BASED_CR8_LOAD_EXITING | \
CPU_BASED_CR8_STORE_EXITING)
#else
#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
#endif
#define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL \
(CPU_BASED_RDTSC_EXITING | \
CPU_BASED_TPR_SHADOW | \
CPU_BASED_USE_IO_BITMAPS | \
CPU_BASED_MONITOR_TRAP_FLAG | \
CPU_BASED_USE_MSR_BITMAPS | \
CPU_BASED_NMI_WINDOW_EXITING | \
CPU_BASED_PAUSE_EXITING | \
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS | \
CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
#define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
#define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL \
(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | \
SECONDARY_EXEC_WBINVD_EXITING | \
SECONDARY_EXEC_ENABLE_VPID | \
SECONDARY_EXEC_ENABLE_EPT | \
SECONDARY_EXEC_UNRESTRICTED_GUEST | \
SECONDARY_EXEC_PAUSE_LOOP_EXITING | \
SECONDARY_EXEC_DESC | \
SECONDARY_EXEC_ENABLE_RDTSCP | \
SECONDARY_EXEC_ENABLE_INVPCID | \
SECONDARY_EXEC_APIC_REGISTER_VIRT | \
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \
SECONDARY_EXEC_SHADOW_VMCS | \
SECONDARY_EXEC_ENABLE_XSAVES | \
SECONDARY_EXEC_RDSEED_EXITING | \
SECONDARY_EXEC_RDRAND_EXITING | \
SECONDARY_EXEC_ENABLE_PML | \
SECONDARY_EXEC_TSC_SCALING | \
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | \
SECONDARY_EXEC_PT_USE_GPA | \
SECONDARY_EXEC_PT_CONCEAL_VMX | \
SECONDARY_EXEC_ENABLE_VMFUNC | \
SECONDARY_EXEC_BUS_LOCK_DETECTION | \
SECONDARY_EXEC_NOTIFY_VM_EXITING | \
SECONDARY_EXEC_ENCLS_EXITING | \
SECONDARY_EXEC_EPT_VIOLATION_VE)
#define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
#define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL \
(TERTIARY_EXEC_IPI_VIRT)
#define BUILD_CONTROLS_SHADOW(lname, uname, bits) \
static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val) \
{ \
if (vmx->loaded_vmcs->controls_shadow.lname != val) { \
vmcs_write##bits(uname, val); \
vmx->loaded_vmcs->controls_shadow.lname = val; \
} \
} \
static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs) \
{ \
return vmcs->controls_shadow.lname; \
} \
static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx) \
{ \
return __##lname##_controls_get(vmx->loaded_vmcs); \
} \
static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val) \
{ \
BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \
lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \
} \
static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \
{ \
BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \
lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \
}
BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
/*
* VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
* cache on demand. Other registers not listed here are synced to
* the cache immediately after VM-Exit.
*/
#define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \
(1 << VCPU_REGS_RSP) | \
(1 << VCPU_EXREG_RFLAGS) | \
(1 << VCPU_EXREG_PDPTR) | \
(1 << VCPU_EXREG_SEGMENTS) | \
(1 << VCPU_EXREG_CR0) | \
(1 << VCPU_EXREG_CR3) | \
(1 << VCPU_EXREG_CR4) | \
(1 << VCPU_EXREG_EXIT_INFO_1) | \
(1 << VCPU_EXREG_EXIT_INFO_2))
static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
{
unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
/*
* CR0.WP needs to be intercepted when KVM is shadowing legacy paging
* in order to construct shadow PTEs with the correct protections.
* Note! CR0.WP technically can be passed through to the guest if
* paging is disabled, but checking CR0.PG would generate a cyclical
* dependency of sorts due to forcing the caller to ensure CR0 holds
* the correct value prior to determining which CR0 bits can be owned
* by L1. Keep it simple and limit the optimization to EPT.
*/
if (!enable_ept)
bits &= ~X86_CR0_WP;
return bits;
}
static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
{
return container_of(kvm, struct kvm_vmx, kvm);
}
static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
{
return &to_vmx(vcpu)->lbr_desc;
}
static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
{
return &vcpu_to_lbr_desc(vcpu)->records;
}
static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
{
return !!vcpu_to_lbr_records(vcpu)->nr;
}
void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
return vmx->exit_qualification;
}
static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
return vmx->exit_intr_info;
}
struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
void free_vmcs(struct vmcs *vmcs);
int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
static inline struct vmcs *alloc_vmcs(bool shadow)
{
return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
GFP_KERNEL_ACCOUNT);
}
static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
{
return secondary_exec_controls_get(vmx) &
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
}
static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
{
if (!enable_ept)
return true;
return allow_smaller_maxphyaddr &&
cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr;
}
static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
{
return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
(secondary_exec_controls_get(to_vmx(vcpu)) &
SECONDARY_EXEC_UNRESTRICTED_GUEST));
}
bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
{
return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
}
void dump_vmcs(struct kvm_vcpu *vcpu);
static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
{
return (vmx_instr_info >> 28) & 0xf;
}
static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
{
return lapic_in_kernel(vcpu) && enable_ipiv;
}
static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
{
vmx->segment_cache.bitmask = 0;
}
#endif /* __KVM_X86_VMX_H */
|