1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2024 Meta, Inc */
#include <linux/bpf.h>
#include <linux/bpf_crypto.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/filter.h>
#include <linux/scatterlist.h>
#include <linux/skbuff.h>
#include <crypto/skcipher.h>
struct bpf_crypto_type_list {
const struct bpf_crypto_type *type;
struct list_head list;
};
/* BPF crypto initialization parameters struct */
/**
* struct bpf_crypto_params - BPF crypto initialization parameters structure
* @type: The string of crypto operation type.
* @reserved: Reserved member, will be reused for more options in future
* Values:
* 0
* @algo: The string of algorithm to initialize.
* @key: The cipher key used to init crypto algorithm.
* @key_len: The length of cipher key.
* @authsize: The length of authentication tag used by algorithm.
*/
struct bpf_crypto_params {
char type[14];
u8 reserved[2];
char algo[128];
u8 key[256];
u32 key_len;
u32 authsize;
};
static LIST_HEAD(bpf_crypto_types);
static DECLARE_RWSEM(bpf_crypto_types_sem);
/**
* struct bpf_crypto_ctx - refcounted BPF crypto context structure
* @type: The pointer to bpf crypto type
* @tfm: The pointer to instance of crypto API struct.
* @siv_len: Size of IV and state storage for cipher
* @rcu: The RCU head used to free the crypto context with RCU safety.
* @usage: Object reference counter. When the refcount goes to 0, the
* memory is released back to the BPF allocator, which provides
* RCU safety.
*/
struct bpf_crypto_ctx {
const struct bpf_crypto_type *type;
void *tfm;
u32 siv_len;
struct rcu_head rcu;
refcount_t usage;
};
int bpf_crypto_register_type(const struct bpf_crypto_type *type)
{
struct bpf_crypto_type_list *node;
int err = -EEXIST;
down_write(&bpf_crypto_types_sem);
list_for_each_entry(node, &bpf_crypto_types, list) {
if (!strcmp(node->type->name, type->name))
goto unlock;
}
node = kmalloc(sizeof(*node), GFP_KERNEL);
err = -ENOMEM;
if (!node)
goto unlock;
node->type = type;
list_add(&node->list, &bpf_crypto_types);
err = 0;
unlock:
up_write(&bpf_crypto_types_sem);
return err;
}
EXPORT_SYMBOL_GPL(bpf_crypto_register_type);
int bpf_crypto_unregister_type(const struct bpf_crypto_type *type)
{
struct bpf_crypto_type_list *node;
int err = -ENOENT;
down_write(&bpf_crypto_types_sem);
list_for_each_entry(node, &bpf_crypto_types, list) {
if (strcmp(node->type->name, type->name))
continue;
list_del(&node->list);
kfree(node);
err = 0;
break;
}
up_write(&bpf_crypto_types_sem);
return err;
}
EXPORT_SYMBOL_GPL(bpf_crypto_unregister_type);
static const struct bpf_crypto_type *bpf_crypto_get_type(const char *name)
{
const struct bpf_crypto_type *type = ERR_PTR(-ENOENT);
struct bpf_crypto_type_list *node;
down_read(&bpf_crypto_types_sem);
list_for_each_entry(node, &bpf_crypto_types, list) {
if (strcmp(node->type->name, name))
continue;
if (try_module_get(node->type->owner))
type = node->type;
break;
}
up_read(&bpf_crypto_types_sem);
return type;
}
__bpf_kfunc_start_defs();
/**
* bpf_crypto_ctx_create() - Create a mutable BPF crypto context.
*
* Allocates a crypto context that can be used, acquired, and released by
* a BPF program. The crypto context returned by this function must either
* be embedded in a map as a kptr, or freed with bpf_crypto_ctx_release().
* As crypto API functions use GFP_KERNEL allocations, this function can
* only be used in sleepable BPF programs.
*
* bpf_crypto_ctx_create() allocates memory for crypto context.
* It may return NULL if no memory is available.
* @params: pointer to struct bpf_crypto_params which contains all the
* details needed to initialise crypto context.
* @params__sz: size of steuct bpf_crypto_params usef by bpf program
* @err: integer to store error code when NULL is returned.
*/
__bpf_kfunc struct bpf_crypto_ctx *
bpf_crypto_ctx_create(const struct bpf_crypto_params *params, u32 params__sz,
int *err)
{
const struct bpf_crypto_type *type;
struct bpf_crypto_ctx *ctx;
if (!params || params->reserved[0] || params->reserved[1] ||
params__sz != sizeof(struct bpf_crypto_params)) {
*err = -EINVAL;
return NULL;
}
type = bpf_crypto_get_type(params->type);
if (IS_ERR(type)) {
*err = PTR_ERR(type);
return NULL;
}
if (!type->has_algo(params->algo)) {
*err = -EOPNOTSUPP;
goto err_module_put;
}
if (!!params->authsize ^ !!type->setauthsize) {
*err = -EOPNOTSUPP;
goto err_module_put;
}
if (!params->key_len || params->key_len > sizeof(params->key)) {
*err = -EINVAL;
goto err_module_put;
}
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
*err = -ENOMEM;
goto err_module_put;
}
ctx->type = type;
ctx->tfm = type->alloc_tfm(params->algo);
if (IS_ERR(ctx->tfm)) {
*err = PTR_ERR(ctx->tfm);
goto err_free_ctx;
}
if (params->authsize) {
*err = type->setauthsize(ctx->tfm, params->authsize);
if (*err)
goto err_free_tfm;
}
*err = type->setkey(ctx->tfm, params->key, params->key_len);
if (*err)
goto err_free_tfm;
if (type->get_flags(ctx->tfm) & CRYPTO_TFM_NEED_KEY) {
*err = -EINVAL;
goto err_free_tfm;
}
ctx->siv_len = type->ivsize(ctx->tfm) + type->statesize(ctx->tfm);
refcount_set(&ctx->usage, 1);
return ctx;
err_free_tfm:
type->free_tfm(ctx->tfm);
err_free_ctx:
kfree(ctx);
err_module_put:
module_put(type->owner);
return NULL;
}
static void crypto_free_cb(struct rcu_head *head)
{
struct bpf_crypto_ctx *ctx;
ctx = container_of(head, struct bpf_crypto_ctx, rcu);
ctx->type->free_tfm(ctx->tfm);
module_put(ctx->type->owner);
kfree(ctx);
}
/**
* bpf_crypto_ctx_acquire() - Acquire a reference to a BPF crypto context.
* @ctx: The BPF crypto context being acquired. The ctx must be a trusted
* pointer.
*
* Acquires a reference to a BPF crypto context. The context returned by this function
* must either be embedded in a map as a kptr, or freed with
* bpf_crypto_ctx_release().
*/
__bpf_kfunc struct bpf_crypto_ctx *
bpf_crypto_ctx_acquire(struct bpf_crypto_ctx *ctx)
{
if (!refcount_inc_not_zero(&ctx->usage))
return NULL;
return ctx;
}
/**
* bpf_crypto_ctx_release() - Release a previously acquired BPF crypto context.
* @ctx: The crypto context being released.
*
* Releases a previously acquired reference to a BPF crypto context. When the final
* reference of the BPF crypto context has been released, its memory
* will be released.
*/
__bpf_kfunc void bpf_crypto_ctx_release(struct bpf_crypto_ctx *ctx)
{
if (refcount_dec_and_test(&ctx->usage))
call_rcu(&ctx->rcu, crypto_free_cb);
}
static int bpf_crypto_crypt(const struct bpf_crypto_ctx *ctx,
const struct bpf_dynptr_kern *src,
const struct bpf_dynptr_kern *dst,
const struct bpf_dynptr_kern *siv,
bool decrypt)
{
u32 src_len, dst_len, siv_len;
const u8 *psrc;
u8 *pdst, *piv;
int err;
if (__bpf_dynptr_is_rdonly(dst))
return -EINVAL;
siv_len = siv ? __bpf_dynptr_size(siv) : 0;
src_len = __bpf_dynptr_size(src);
dst_len = __bpf_dynptr_size(dst);
if (!src_len || !dst_len)
return -EINVAL;
if (siv_len != ctx->siv_len)
return -EINVAL;
psrc = __bpf_dynptr_data(src, src_len);
if (!psrc)
return -EINVAL;
pdst = __bpf_dynptr_data_rw(dst, dst_len);
if (!pdst)
return -EINVAL;
piv = siv_len ? __bpf_dynptr_data_rw(siv, siv_len) : NULL;
if (siv_len && !piv)
return -EINVAL;
err = decrypt ? ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv)
: ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
return err;
}
/**
* bpf_crypto_decrypt() - Decrypt buffer using configured context and IV provided.
* @ctx: The crypto context being used. The ctx must be a trusted pointer.
* @src: bpf_dynptr to the encrypted data. Must be a trusted pointer.
* @dst: bpf_dynptr to the buffer where to store the result. Must be a trusted pointer.
* @siv__nullable: bpf_dynptr to IV data and state data to be used by decryptor. May be NULL.
*
* Decrypts provided buffer using IV data and the crypto context. Crypto context must be configured.
*/
__bpf_kfunc int bpf_crypto_decrypt(struct bpf_crypto_ctx *ctx,
const struct bpf_dynptr *src,
const struct bpf_dynptr *dst,
const struct bpf_dynptr *siv__nullable)
{
const struct bpf_dynptr_kern *src_kern = (struct bpf_dynptr_kern *)src;
const struct bpf_dynptr_kern *dst_kern = (struct bpf_dynptr_kern *)dst;
const struct bpf_dynptr_kern *siv_kern = (struct bpf_dynptr_kern *)siv__nullable;
return bpf_crypto_crypt(ctx, src_kern, dst_kern, siv_kern, true);
}
/**
* bpf_crypto_encrypt() - Encrypt buffer using configured context and IV provided.
* @ctx: The crypto context being used. The ctx must be a trusted pointer.
* @src: bpf_dynptr to the plain data. Must be a trusted pointer.
* @dst: bpf_dynptr to the buffer where to store the result. Must be a trusted pointer.
* @siv__nullable: bpf_dynptr to IV data and state data to be used by decryptor. May be NULL.
*
* Encrypts provided buffer using IV data and the crypto context. Crypto context must be configured.
*/
__bpf_kfunc int bpf_crypto_encrypt(struct bpf_crypto_ctx *ctx,
const struct bpf_dynptr *src,
const struct bpf_dynptr *dst,
const struct bpf_dynptr *siv__nullable)
{
const struct bpf_dynptr_kern *src_kern = (struct bpf_dynptr_kern *)src;
const struct bpf_dynptr_kern *dst_kern = (struct bpf_dynptr_kern *)dst;
const struct bpf_dynptr_kern *siv_kern = (struct bpf_dynptr_kern *)siv__nullable;
return bpf_crypto_crypt(ctx, src_kern, dst_kern, siv_kern, false);
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(crypt_init_kfunc_btf_ids)
BTF_ID_FLAGS(func, bpf_crypto_ctx_create, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
BTF_ID_FLAGS(func, bpf_crypto_ctx_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_crypto_ctx_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_KFUNCS_END(crypt_init_kfunc_btf_ids)
static const struct btf_kfunc_id_set crypt_init_kfunc_set = {
.owner = THIS_MODULE,
.set = &crypt_init_kfunc_btf_ids,
};
BTF_KFUNCS_START(crypt_kfunc_btf_ids)
BTF_ID_FLAGS(func, bpf_crypto_decrypt, KF_RCU)
BTF_ID_FLAGS(func, bpf_crypto_encrypt, KF_RCU)
BTF_KFUNCS_END(crypt_kfunc_btf_ids)
static const struct btf_kfunc_id_set crypt_kfunc_set = {
.owner = THIS_MODULE,
.set = &crypt_kfunc_btf_ids,
};
BTF_ID_LIST(bpf_crypto_dtor_ids)
BTF_ID(struct, bpf_crypto_ctx)
BTF_ID(func, bpf_crypto_ctx_release)
static int __init crypto_kfunc_init(void)
{
int ret;
const struct btf_id_dtor_kfunc bpf_crypto_dtors[] = {
{
.btf_id = bpf_crypto_dtor_ids[0],
.kfunc_btf_id = bpf_crypto_dtor_ids[1]
},
};
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &crypt_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &crypt_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &crypt_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
&crypt_init_kfunc_set);
return ret ?: register_btf_id_dtor_kfuncs(bpf_crypto_dtors,
ARRAY_SIZE(bpf_crypto_dtors),
THIS_MODULE);
}
late_initcall(crypto_kfunc_init);
|