1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
|
#!/bin/env python3
# SPDX-License-Identifier: GPL-2.0
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017 Benjamin Tissoires <benjamin.tissoires@gmail.com>
# Copyright (c) 2017 Red Hat, Inc.
# Copyright (c) 2020 Wacom Technology Corp.
#
# Authors:
# Jason Gerecke <jason.gerecke@wacom.com>
"""
Tests for the Wacom driver generic codepath.
This module tests the function of the Wacom driver's generic codepath.
The generic codepath is used by devices which are not explicitly listed
in the driver's device table. It uses the device's HID descriptor to
decode reports sent by the device.
"""
from .descriptors_wacom import (
wacom_pth660_v145,
wacom_pth660_v150,
wacom_pth860_v145,
wacom_pth860_v150,
wacom_pth460_v105,
)
import attr
from collections import namedtuple
from enum import Enum
from hidtools.hut import HUT
from hidtools.hid import HidUnit
from . import base
from . import test_multitouch
import libevdev
import pytest
import logging
logger = logging.getLogger("hidtools.test.wacom")
KERNEL_MODULE = ("wacom", "wacom")
class ProximityState(Enum):
"""
Enumeration of allowed proximity states.
"""
# Tool is not able to be sensed by the device
OUT = 0
# Tool is close enough to be sensed, but some data may be invalid
# or inaccurate
IN_PROXIMITY = 1
# Tool is close enough to be sensed with high accuracy. All data
# valid.
IN_RANGE = 2
def fill(self, reportdata):
"""Fill a report with approrpiate HID properties/values."""
reportdata.inrange = self in [ProximityState.IN_RANGE]
reportdata.wacomsense = self in [
ProximityState.IN_PROXIMITY,
ProximityState.IN_RANGE,
]
class ReportData:
"""
Placeholder for HID report values.
"""
pass
@attr.s
class Buttons:
"""
Stylus button state.
Describes the state of each of the buttons / "side switches" that
may be present on a stylus. Buttons set to 'None' indicate the
state is "unchanged" since the previous event.
"""
primary = attr.ib(default=None)
secondary = attr.ib(default=None)
tertiary = attr.ib(default=None)
@staticmethod
def clear():
"""Button object with all states cleared."""
return Buttons(False, False, False)
def fill(self, reportdata):
"""Fill a report with approrpiate HID properties/values."""
reportdata.barrelswitch = int(self.primary or 0)
reportdata.secondarybarrelswitch = int(self.secondary or 0)
reportdata.b3 = int(self.tertiary or 0)
@attr.s
class ToolID:
"""
Stylus tool identifiers.
Contains values used to identify a specific stylus, e.g. its serial
number and tool-type identifier. Values of ``0`` may sometimes be
used for the out-of-range condition.
"""
serial = attr.ib()
tooltype = attr.ib()
@staticmethod
def clear():
"""ToolID object with all fields cleared."""
return ToolID(0, 0)
def fill(self, reportdata):
"""Fill a report with approrpiate HID properties/values."""
reportdata.transducerserialnumber = self.serial & 0xFFFFFFFF
reportdata.serialhi = (self.serial >> 32) & 0xFFFFFFFF
reportdata.tooltype = self.tooltype
@attr.s
class PhysRange:
"""
Range of HID physical values, with units.
"""
unit = attr.ib()
min_size = attr.ib()
max_size = attr.ib()
CENTIMETER = HidUnit.from_string("SILinear: cm")
DEGREE = HidUnit.from_string("EnglishRotation: deg")
def contains(self, field):
"""
Check if the physical size of the provided field is in range.
Compare the physical size described by the provided HID field
against the range of sizes described by this object. This is
an exclusive range comparison (e.g. 0 cm is not within the
range 0 cm - 5 cm) and exact unit comparison (e.g. 1 inch is
not within the range 0 cm - 5 cm).
"""
phys_size = (field.physical_max - field.physical_min) * 10 ** (field.unit_exp)
return (
field.unit == self.unit.value
and phys_size > self.min_size
and phys_size < self.max_size
)
class BaseTablet(base.UHIDTestDevice):
"""
Skeleton object for all kinds of tablet devices.
"""
def __init__(self, rdesc, name=None, info=None):
assert rdesc is not None
super().__init__(name, "Pen", input_info=info, rdesc=rdesc)
self.buttons = Buttons.clear()
self.toolid = ToolID.clear()
self.proximity = ProximityState.OUT
self.offset = 0
self.ring = -1
self.ek0 = False
def match_evdev_rule(self, application, evdev):
"""
Filter out evdev nodes based on the requested application.
The Wacom driver may create several device nodes for each USB
interface device. It is crucial that we run tests with the
expected device node or things will obviously go off the rails.
Use the Wacom driver's usual naming conventions to apply a
sensible default filter.
"""
if application in ["Pen", "Pad"]:
return evdev.name.endswith(application)
else:
return True
def create_report(
self, x, y, pressure, buttons=None, toolid=None, proximity=None, reportID=None
):
"""
Return an input report for this device.
:param x: absolute x
:param y: absolute y
:param pressure: pressure
:param buttons: stylus button state. Use ``None`` for unchanged.
:param toolid: tool identifiers. Use ``None`` for unchanged.
:param proximity: a ProximityState indicating the sensor's ability
to detect and report attributes of this tool. Use ``None``
for unchanged.
:param reportID: the numeric report ID for this report, if needed
"""
if buttons is not None:
self.buttons = buttons
buttons = self.buttons
if toolid is not None:
self.toolid = toolid
toolid = self.toolid
if proximity is not None:
self.proximity = proximity
proximity = self.proximity
reportID = reportID or self.default_reportID
report = ReportData()
report.x = x
report.y = y
report.tippressure = pressure
report.tipswitch = pressure > 0
buttons.fill(report)
proximity.fill(report)
toolid.fill(report)
return super().create_report(report, reportID=reportID)
def create_report_heartbeat(self, reportID):
"""
Return a heartbeat input report for this device.
Heartbeat reports generally contain battery status information,
among other things.
"""
report = ReportData()
report.wacombatterycharging = 1
return super().create_report(report, reportID=reportID)
def create_report_pad(self, reportID, ring, ek0):
report = ReportData()
if ring is not None:
self.ring = ring
ring = self.ring
if ek0 is not None:
self.ek0 = ek0
ek0 = self.ek0
if ring >= 0:
report.wacomtouchring = ring
report.wacomtouchringstatus = 1
else:
report.wacomtouchring = 0x7F
report.wacomtouchringstatus = 0
report.wacomexpresskey00 = ek0
return super().create_report(report, reportID=reportID)
def event(self, x, y, pressure, buttons=None, toolid=None, proximity=None):
"""
Send an input event on the default report ID.
:param x: absolute x
:param y: absolute y
:param buttons: stylus button state. Use ``None`` for unchanged.
:param toolid: tool identifiers. Use ``None`` for unchanged.
:param proximity: a ProximityState indicating the sensor's ability
to detect and report attributes of this tool. Use ``None``
for unchanged.
"""
r = self.create_report(x, y, pressure, buttons, toolid, proximity)
self.call_input_event(r)
return [r]
def event_heartbeat(self, reportID):
"""
Send a heartbeat event on the requested report ID.
"""
r = self.create_report_heartbeat(reportID)
self.call_input_event(r)
return [r]
def event_pad(self, reportID, ring=None, ek0=None):
"""
Send a pad event on the requested report ID.
"""
r = self.create_report_pad(reportID, ring, ek0)
self.call_input_event(r)
return [r]
def get_report(self, req, rnum, rtype):
if rtype != self.UHID_FEATURE_REPORT:
return (1, [])
rdesc = None
for v in self.parsed_rdesc.feature_reports.values():
if v.report_ID == rnum:
rdesc = v
if rdesc is None:
return (1, [])
result = (1, [])
result = self.create_report_offset(rdesc) or result
return result
def create_report_offset(self, rdesc):
require = [
"Wacom Offset Left",
"Wacom Offset Top",
"Wacom Offset Right",
"Wacom Offset Bottom",
]
if not set(require).issubset(set([f.usage_name for f in rdesc])):
return None
report = ReportData()
report.wacomoffsetleft = self.offset
report.wacomoffsettop = self.offset
report.wacomoffsetright = self.offset
report.wacomoffsetbottom = self.offset
r = rdesc.create_report([report], None)
return (0, r)
class OpaqueTablet(BaseTablet):
"""
Bare-bones opaque tablet with a minimum of features.
A tablet stripped down to its absolute core. It is capable of
reporting X/Y position and if the pen is in contact. No pressure,
no barrel switches, no eraser. Notably it *does* report an "In
Range" flag, but this is only because the Wacom driver expects
one to function properly. The device uses only standard HID usages,
not any of Wacom's vendor-defined pages.
"""
# fmt: off
report_descriptor = [
0x05, 0x0D, # . Usage Page (Digitizer),
0x09, 0x01, # . Usage (Digitizer),
0xA1, 0x01, # . Collection (Application),
0x85, 0x01, # . Report ID (1),
0x09, 0x20, # . Usage (Stylus),
0xA1, 0x00, # . Collection (Physical),
0x09, 0x42, # . Usage (Tip Switch),
0x09, 0x32, # . Usage (In Range),
0x15, 0x00, # . Logical Minimum (0),
0x25, 0x01, # . Logical Maximum (1),
0x75, 0x01, # . Report Size (1),
0x95, 0x02, # . Report Count (2),
0x81, 0x02, # . Input (Variable),
0x95, 0x06, # . Report Count (6),
0x81, 0x03, # . Input (Constant, Variable),
0x05, 0x01, # . Usage Page (Desktop),
0x09, 0x30, # . Usage (X),
0x27, 0x80, 0x3E, 0x00, 0x00, # . Logical Maximum (16000),
0x47, 0x80, 0x3E, 0x00, 0x00, # . Physical Maximum (16000),
0x65, 0x11, # . Unit (Centimeter),
0x55, 0x0D, # . Unit Exponent (13),
0x75, 0x10, # . Report Size (16),
0x95, 0x01, # . Report Count (1),
0x81, 0x02, # . Input (Variable),
0x09, 0x31, # . Usage (Y),
0x27, 0x28, 0x23, 0x00, 0x00, # . Logical Maximum (9000),
0x47, 0x28, 0x23, 0x00, 0x00, # . Physical Maximum (9000),
0x81, 0x02, # . Input (Variable),
0xC0, # . End Collection,
0xC0, # . End Collection,
]
# fmt: on
def __init__(self, rdesc=report_descriptor, name=None, info=(0x3, 0x056A, 0x9999)):
super().__init__(rdesc, name, info)
self.default_reportID = 1
class OpaqueCTLTablet(BaseTablet):
"""
Opaque tablet similar to something in the CTL product line.
A pen-only tablet with most basic features you would expect from
an actual device. Position, eraser, pressure, barrel buttons.
Uses the Wacom vendor-defined usage page.
"""
# fmt: off
report_descriptor = [
0x06, 0x0D, 0xFF, # . Usage Page (Vnd Wacom Emr),
0x09, 0x01, # . Usage (Digitizer),
0xA1, 0x01, # . Collection (Application),
0x85, 0x10, # . Report ID (16),
0x09, 0x20, # . Usage (Stylus),
0x35, 0x00, # . Physical Minimum (0),
0x45, 0x00, # . Physical Maximum (0),
0x15, 0x00, # . Logical Minimum (0),
0x25, 0x01, # . Logical Maximum (1),
0xA1, 0x00, # . Collection (Physical),
0x09, 0x42, # . Usage (Tip Switch),
0x09, 0x44, # . Usage (Barrel Switch),
0x09, 0x5A, # . Usage (Secondary Barrel Switch),
0x09, 0x45, # . Usage (Eraser),
0x09, 0x3C, # . Usage (Invert),
0x09, 0x32, # . Usage (In Range),
0x09, 0x36, # . Usage (In Proximity),
0x25, 0x01, # . Logical Maximum (1),
0x75, 0x01, # . Report Size (1),
0x95, 0x07, # . Report Count (7),
0x81, 0x02, # . Input (Variable),
0x95, 0x01, # . Report Count (1),
0x81, 0x03, # . Input (Constant, Variable),
0x0A, 0x30, 0x01, # . Usage (X),
0x65, 0x11, # . Unit (Centimeter),
0x55, 0x0D, # . Unit Exponent (13),
0x47, 0x80, 0x3E, 0x00, 0x00, # . Physical Maximum (16000),
0x27, 0x80, 0x3E, 0x00, 0x00, # . Logical Maximum (16000),
0x75, 0x18, # . Report Size (24),
0x95, 0x01, # . Report Count (1),
0x81, 0x02, # . Input (Variable),
0x0A, 0x31, 0x01, # . Usage (Y),
0x47, 0x28, 0x23, 0x00, 0x00, # . Physical Maximum (9000),
0x27, 0x28, 0x23, 0x00, 0x00, # . Logical Maximum (9000),
0x81, 0x02, # . Input (Variable),
0x09, 0x30, # . Usage (Tip Pressure),
0x55, 0x00, # . Unit Exponent (0),
0x65, 0x00, # . Unit,
0x47, 0x00, 0x00, 0x00, 0x00, # . Physical Maximum (0),
0x26, 0xFF, 0x0F, # . Logical Maximum (4095),
0x75, 0x10, # . Report Size (16),
0x81, 0x02, # . Input (Variable),
0x75, 0x08, # . Report Size (8),
0x95, 0x06, # . Report Count (6),
0x81, 0x03, # . Input (Constant, Variable),
0x0A, 0x32, 0x01, # . Usage (Z),
0x25, 0x3F, # . Logical Maximum (63),
0x75, 0x08, # . Report Size (8),
0x95, 0x01, # . Report Count (1),
0x81, 0x02, # . Input (Variable),
0x09, 0x5B, # . Usage (Transducer Serial Number),
0x09, 0x5C, # . Usage (Transducer Serial Number Hi),
0x17, 0x00, 0x00, 0x00, 0x80, # . Logical Minimum (-2147483648),
0x27, 0xFF, 0xFF, 0xFF, 0x7F, # . Logical Maximum (2147483647),
0x75, 0x20, # . Report Size (32),
0x95, 0x02, # . Report Count (2),
0x81, 0x02, # . Input (Variable),
0x09, 0x77, # . Usage (Tool Type),
0x15, 0x00, # . Logical Minimum (0),
0x26, 0xFF, 0x0F, # . Logical Maximum (4095),
0x75, 0x10, # . Report Size (16),
0x95, 0x01, # . Report Count (1),
0x81, 0x02, # . Input (Variable),
0xC0, # . End Collection,
0xC0 # . End Collection
]
# fmt: on
def __init__(self, rdesc=report_descriptor, name=None, info=(0x3, 0x056A, 0x9999)):
super().__init__(rdesc, name, info)
self.default_reportID = 16
class PTHX60_Pen(BaseTablet):
"""
Pen interface of a PTH-660 / PTH-860 / PTH-460 tablet.
This generation of devices are nearly identical to each other, though
the PTH-460 uses a slightly different descriptor construction (splits
the pad among several physical collections)
"""
def __init__(self, rdesc=None, name=None, info=None):
super().__init__(rdesc, name, info)
self.default_reportID = 16
class BaseTest:
class TestTablet(base.BaseTestCase.TestUhid):
kernel_modules = [KERNEL_MODULE]
def sync_and_assert_events(
self, report, expected_events, auto_syn=True, strict=False
):
"""
Assert we see the expected events in response to a report.
"""
uhdev = self.uhdev
syn_event = self.syn_event
if auto_syn:
expected_events.append(syn_event)
actual_events = uhdev.next_sync_events()
self.debug_reports(report, uhdev, actual_events)
if strict:
self.assertInputEvents(expected_events, actual_events)
else:
self.assertInputEventsIn(expected_events, actual_events)
def get_usages(self, uhdev):
def get_report_usages(report):
application = report.application
for field in report.fields:
if field.usages is not None:
for usage in field.usages:
yield (field, usage, application)
else:
yield (field, field.usage, application)
desc = uhdev.parsed_rdesc
reports = [
*desc.input_reports.values(),
*desc.feature_reports.values(),
*desc.output_reports.values(),
]
for report in reports:
for usage in get_report_usages(report):
yield usage
def assertName(self, uhdev, type):
"""
Assert that the name is as we expect.
The Wacom driver applies a number of decorations to the name
provided by the hardware. We cannot rely on the definition of
this assertion from the base class to work properly.
"""
evdev = uhdev.get_evdev()
expected_name = uhdev.name + type
if "wacom" not in expected_name.lower():
expected_name = "Wacom " + expected_name
assert evdev.name == expected_name
def test_descriptor_physicals(self):
"""
Verify that all HID usages which should have a physical range
actually do, and those which shouldn't don't. Also verify that
the associated unit is correct and within a sensible range.
"""
def usage_id(page_name, usage_name):
page = HUT.usage_page_from_name(page_name)
return (page.page_id << 16) | page[usage_name].usage
required = {
usage_id("Generic Desktop", "X"): PhysRange(
PhysRange.CENTIMETER, 5, 150
),
usage_id("Generic Desktop", "Y"): PhysRange(
PhysRange.CENTIMETER, 5, 150
),
usage_id("Digitizers", "Width"): PhysRange(
PhysRange.CENTIMETER, 5, 150
),
usage_id("Digitizers", "Height"): PhysRange(
PhysRange.CENTIMETER, 5, 150
),
usage_id("Digitizers", "X Tilt"): PhysRange(PhysRange.DEGREE, 90, 180),
usage_id("Digitizers", "Y Tilt"): PhysRange(PhysRange.DEGREE, 90, 180),
usage_id("Digitizers", "Twist"): PhysRange(PhysRange.DEGREE, 358, 360),
usage_id("Wacom", "X Tilt"): PhysRange(PhysRange.DEGREE, 90, 180),
usage_id("Wacom", "Y Tilt"): PhysRange(PhysRange.DEGREE, 90, 180),
usage_id("Wacom", "Twist"): PhysRange(PhysRange.DEGREE, 358, 360),
usage_id("Wacom", "X"): PhysRange(PhysRange.CENTIMETER, 5, 150),
usage_id("Wacom", "Y"): PhysRange(PhysRange.CENTIMETER, 5, 150),
usage_id("Wacom", "Wacom TouchRing"): PhysRange(
PhysRange.DEGREE, 358, 360
),
usage_id("Wacom", "Wacom Offset Left"): PhysRange(
PhysRange.CENTIMETER, 0, 0.5
),
usage_id("Wacom", "Wacom Offset Top"): PhysRange(
PhysRange.CENTIMETER, 0, 0.5
),
usage_id("Wacom", "Wacom Offset Right"): PhysRange(
PhysRange.CENTIMETER, 0, 0.5
),
usage_id("Wacom", "Wacom Offset Bottom"): PhysRange(
PhysRange.CENTIMETER, 0, 0.5
),
}
for field, usage, application in self.get_usages(self.uhdev):
if application == usage_id("Generic Desktop", "Mouse"):
# Ignore the vestigial Mouse collection which exists
# on Wacom tablets only for backwards compatibility.
continue
expect_physical = usage in required
phys_set = field.physical_min != 0 or field.physical_max != 0
assert phys_set == expect_physical
unit_set = field.unit != 0
assert unit_set == expect_physical
if unit_set:
assert required[usage].contains(field)
def test_prop_direct(self):
"""
Todo: Verify that INPUT_PROP_DIRECT is set on display devices.
"""
pass
def test_prop_pointer(self):
"""
Todo: Verify that INPUT_PROP_POINTER is set on opaque devices.
"""
pass
class PenTabletTest(BaseTest.TestTablet):
def assertName(self, uhdev):
super().assertName(uhdev, " Pen")
class TouchTabletTest(BaseTest.TestTablet):
def assertName(self, uhdev):
super().assertName(uhdev, " Finger")
class TestOpaqueTablet(PenTabletTest):
def create_device(self):
return OpaqueTablet()
def test_sanity(self):
"""
Bring a pen into contact with the tablet, then remove it.
Ensure that we get the basic tool/touch/motion events that should
be sent by the driver.
"""
uhdev = self.uhdev
self.sync_and_assert_events(
uhdev.event(
100,
200,
pressure=300,
buttons=Buttons.clear(),
toolid=ToolID(serial=1, tooltype=1),
proximity=ProximityState.IN_RANGE,
),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_TOOL_PEN, 1),
libevdev.InputEvent(libevdev.EV_ABS.ABS_X, 100),
libevdev.InputEvent(libevdev.EV_ABS.ABS_Y, 200),
libevdev.InputEvent(libevdev.EV_KEY.BTN_TOUCH, 1),
],
)
self.sync_and_assert_events(
uhdev.event(110, 220, pressure=0),
[
libevdev.InputEvent(libevdev.EV_ABS.ABS_X, 110),
libevdev.InputEvent(libevdev.EV_ABS.ABS_Y, 220),
libevdev.InputEvent(libevdev.EV_KEY.BTN_TOUCH, 0),
],
)
self.sync_and_assert_events(
uhdev.event(
120,
230,
pressure=0,
toolid=ToolID.clear(),
proximity=ProximityState.OUT,
),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_TOOL_PEN, 0),
],
)
self.sync_and_assert_events(
uhdev.event(130, 240, pressure=0), [], auto_syn=False, strict=True
)
class TestOpaqueCTLTablet(TestOpaqueTablet):
def create_device(self):
return OpaqueCTLTablet()
def test_buttons(self):
"""
Test that the barrel buttons (side switches) work as expected.
Press and release each button individually to verify that we get
the expected events.
"""
uhdev = self.uhdev
self.sync_and_assert_events(
uhdev.event(
100,
200,
pressure=0,
buttons=Buttons.clear(),
toolid=ToolID(serial=1, tooltype=1),
proximity=ProximityState.IN_RANGE,
),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_TOOL_PEN, 1),
libevdev.InputEvent(libevdev.EV_ABS.ABS_X, 100),
libevdev.InputEvent(libevdev.EV_ABS.ABS_Y, 200),
libevdev.InputEvent(libevdev.EV_MSC.MSC_SERIAL, 1),
],
)
self.sync_and_assert_events(
uhdev.event(100, 200, pressure=0, buttons=Buttons(primary=True)),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_STYLUS, 1),
libevdev.InputEvent(libevdev.EV_MSC.MSC_SERIAL, 1),
],
)
self.sync_and_assert_events(
uhdev.event(100, 200, pressure=0, buttons=Buttons(primary=False)),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_STYLUS, 0),
libevdev.InputEvent(libevdev.EV_MSC.MSC_SERIAL, 1),
],
)
self.sync_and_assert_events(
uhdev.event(100, 200, pressure=0, buttons=Buttons(secondary=True)),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_STYLUS2, 1),
libevdev.InputEvent(libevdev.EV_MSC.MSC_SERIAL, 1),
],
)
self.sync_and_assert_events(
uhdev.event(100, 200, pressure=0, buttons=Buttons(secondary=False)),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_STYLUS2, 0),
libevdev.InputEvent(libevdev.EV_MSC.MSC_SERIAL, 1),
],
)
PTHX60_Devices = [
{"rdesc": wacom_pth660_v145, "info": (0x3, 0x056A, 0x0357)},
{"rdesc": wacom_pth660_v150, "info": (0x3, 0x056A, 0x0357)},
{"rdesc": wacom_pth860_v145, "info": (0x3, 0x056A, 0x0358)},
{"rdesc": wacom_pth860_v150, "info": (0x3, 0x056A, 0x0358)},
{"rdesc": wacom_pth460_v105, "info": (0x3, 0x056A, 0x0392)},
]
PTHX60_Names = [
"PTH-660/v145",
"PTH-660/v150",
"PTH-860/v145",
"PTH-860/v150",
"PTH-460/v105",
]
class TestPTHX60_Pen(TestOpaqueCTLTablet):
@pytest.fixture(
autouse=True, scope="class", params=PTHX60_Devices, ids=PTHX60_Names
)
def set_device_params(self, request):
request.cls.device_params = request.param
def create_device(self):
return PTHX60_Pen(**self.device_params)
@pytest.mark.xfail
def test_descriptor_physicals(self):
# XFAIL: Various documented errata
super().test_descriptor_physicals()
def test_heartbeat_spurious(self):
"""
Test that the heartbeat report does not send spurious events.
"""
uhdev = self.uhdev
self.sync_and_assert_events(
uhdev.event(
100,
200,
pressure=300,
buttons=Buttons.clear(),
toolid=ToolID(serial=1, tooltype=0x822),
proximity=ProximityState.IN_RANGE,
),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_TOOL_PEN, 1),
libevdev.InputEvent(libevdev.EV_ABS.ABS_X, 100),
libevdev.InputEvent(libevdev.EV_ABS.ABS_Y, 200),
libevdev.InputEvent(libevdev.EV_KEY.BTN_TOUCH, 1),
],
)
# Exactly zero events: not even a SYN
self.sync_and_assert_events(
uhdev.event_heartbeat(19), [], auto_syn=False, strict=True
)
self.sync_and_assert_events(
uhdev.event(110, 200, pressure=300),
[
libevdev.InputEvent(libevdev.EV_ABS.ABS_X, 110),
],
)
def test_empty_pad_sync(self):
self.empty_pad_sync(num=3, denom=16, reverse=True)
def empty_pad_sync(self, num, denom, reverse):
"""
Test that multiple pad collections do not trigger empty syncs.
"""
def offset_rotation(value):
"""
Offset touchring rotation values by the same factor as the
Linux kernel. Tablets historically don't use the same origin
as HID, and it sometimes changes from tablet to tablet...
"""
evdev = self.uhdev.get_evdev()
info = evdev.absinfo[libevdev.EV_ABS.ABS_WHEEL]
delta = info.maximum - info.minimum + 1
if reverse:
value = info.maximum - value
value += num * delta // denom
if value > info.maximum:
value -= delta
elif value < info.minimum:
value += delta
return value
uhdev = self.uhdev
uhdev.application = "Pad"
evdev = uhdev.get_evdev()
print(evdev.name)
self.sync_and_assert_events(
uhdev.event_pad(reportID=17, ring=0, ek0=1),
[
libevdev.InputEvent(libevdev.EV_KEY.BTN_0, 1),
libevdev.InputEvent(libevdev.EV_ABS.ABS_WHEEL, offset_rotation(0)),
libevdev.InputEvent(libevdev.EV_ABS.ABS_MISC, 15),
],
)
self.sync_and_assert_events(
uhdev.event_pad(reportID=17, ring=1, ek0=1),
[libevdev.InputEvent(libevdev.EV_ABS.ABS_WHEEL, offset_rotation(1))],
)
self.sync_and_assert_events(
uhdev.event_pad(reportID=17, ring=2, ek0=0),
[
libevdev.InputEvent(libevdev.EV_ABS.ABS_WHEEL, offset_rotation(2)),
libevdev.InputEvent(libevdev.EV_KEY.BTN_0, 0),
],
)
class TestDTH2452Tablet(test_multitouch.BaseTest.TestMultitouch, TouchTabletTest):
ContactIds = namedtuple("ContactIds", "contact_id, tracking_id, slot_num")
def create_device(self):
return test_multitouch.Digitizer(
"DTH 2452",
rdesc="05 0d 09 04 a1 01 85 0c 95 01 75 08 15 00 26 ff 00 81 03 09 54 81 02 09 22 a1 02 05 0d 95 01 75 01 25 01 09 42 81 02 81 03 09 47 81 02 95 05 81 03 09 51 26 ff 00 75 10 95 01 81 02 35 00 65 11 55 0e 05 01 09 30 26 a0 44 46 96 14 81 42 09 31 26 9a 26 46 95 0b 81 42 05 0d 75 08 95 01 15 00 09 48 26 5f 00 46 7c 14 81 02 09 49 25 35 46 7d 0b 81 02 45 00 65 00 55 00 c0 05 0d 09 22 a1 02 05 0d 95 01 75 01 25 01 09 42 81 02 81 03 09 47 81 02 95 05 81 03 09 51 26 ff 00 75 10 95 01 81 02 35 00 65 11 55 0e 05 01 09 30 26 a0 44 46 96 14 81 42 09 31 26 9a 26 46 95 0b 81 42 05 0d 75 08 95 01 15 00 09 48 26 5f 00 46 7c 14 81 02 09 49 25 35 46 7d 0b 81 02 45 00 65 00 55 00 c0 05 0d 09 22 a1 02 05 0d 95 01 75 01 25 01 09 42 81 02 81 03 09 47 81 02 95 05 81 03 09 51 26 ff 00 75 10 95 01 81 02 35 00 65 11 55 0e 05 01 09 30 26 a0 44 46 96 14 81 42 09 31 26 9a 26 46 95 0b 81 42 05 0d 75 08 95 01 15 00 09 48 26 5f 00 46 7c 14 81 02 09 49 25 35 46 7d 0b 81 02 45 00 65 00 55 00 c0 05 0d 09 22 a1 02 05 0d 95 01 75 01 25 01 09 42 81 02 81 03 09 47 81 02 95 05 81 03 09 51 26 ff 00 75 10 95 01 81 02 35 00 65 11 55 0e 05 01 09 30 26 a0 44 46 96 14 81 42 09 31 26 9a 26 46 95 0b 81 42 05 0d 75 08 95 01 15 00 09 48 26 5f 00 46 7c 14 81 02 09 49 25 35 46 7d 0b 81 02 45 00 65 00 55 00 c0 05 0d 09 22 a1 02 05 0d 95 01 75 01 25 01 09 42 81 02 81 03 09 47 81 02 95 05 81 03 09 51 26 ff 00 75 10 95 01 81 02 35 00 65 11 55 0e 05 01 09 30 26 a0 44 46 96 14 81 42 09 31 26 9a 26 46 95 0b 81 42 05 0d 75 08 95 01 15 00 09 48 26 5f 00 46 7c 14 81 02 09 49 25 35 46 7d 0b 81 02 45 00 65 00 55 00 c0 05 0d 27 ff ff 00 00 75 10 95 01 09 56 81 02 75 08 95 0e 81 03 09 55 26 ff 00 75 08 b1 02 85 0a 06 00 ff 09 c5 96 00 01 b1 02 c0 06 00 ff 09 01 a1 01 09 01 85 13 15 00 26 ff 00 75 08 95 3f 81 02 06 00 ff 09 01 15 00 26 ff 00 75 08 95 3f 91 02 c0",
input_info=(0x3, 0x056A, 0x0383),
)
def make_contact(self, contact_id=0, t=0):
"""
Make a single touch contact that can move over time.
Creates a touch object that has a well-known position in space that
does not overlap with other contacts. The value of `t` may be
incremented over time to move the point along a linear path.
"""
x = 50 + 10 * contact_id + t * 11
y = 100 + 100 * contact_id + t * 11
return test_multitouch.Touch(contact_id, x, y)
def make_contacts(self, n, t=0):
"""
Make multiple touch contacts that can move over time.
Returns a list of `n` touch objects that are positioned at well-known
locations. The value of `t` may be incremented over time to move the
points along a linear path.
"""
return [ self.make_contact(id, t) for id in range(0, n) ]
def assert_contact(self, uhdev, evdev, contact_ids, t=0):
"""
Assert properties of a contact generated by make_contact.
"""
contact_id = contact_ids.contact_id
tracking_id = contact_ids.tracking_id
slot_num = contact_ids.slot_num
x = 50 + 10 * contact_id + t * 11
y = 100 + 100 * contact_id + t * 11
# If the data isn't supposed to be stored in any slots, there is
# nothing we can check for in the evdev stream.
if slot_num is None:
assert tracking_id == -1
return
assert evdev.slots[slot_num][libevdev.EV_ABS.ABS_MT_TRACKING_ID] == tracking_id
if tracking_id != -1:
assert evdev.slots[slot_num][libevdev.EV_ABS.ABS_MT_POSITION_X] == x
assert evdev.slots[slot_num][libevdev.EV_ABS.ABS_MT_POSITION_Y] == y
def assert_contacts(self, uhdev, evdev, data, t=0):
"""
Assert properties of a list of contacts generated by make_contacts.
"""
for contact_ids in data:
self.assert_contact(uhdev, evdev, contact_ids, t)
def test_contact_id_0(self):
"""
Bring a finger in contact with the tablet, then hold it down and remove it.
Ensure that even with contact ID = 0 which is usually given as an invalid
touch event by most tablets with the exception of a few, that given the
confidence bit is set to 1 it should process it as a valid touch to cover
the few tablets using contact ID = 0 as a valid touch value.
"""
uhdev = self.uhdev
evdev = uhdev.get_evdev()
t0 = test_multitouch.Touch(0, 50, 100)
r = uhdev.event([t0])
events = uhdev.next_sync_events()
self.debug_reports(r, uhdev, events)
slot = self.get_slot(uhdev, t0, 0)
assert libevdev.InputEvent(libevdev.EV_KEY.BTN_TOUCH, 1) in events
assert evdev.slots[slot][libevdev.EV_ABS.ABS_MT_TRACKING_ID] == 0
assert evdev.slots[slot][libevdev.EV_ABS.ABS_MT_POSITION_X] == 50
assert evdev.slots[slot][libevdev.EV_ABS.ABS_MT_POSITION_Y] == 100
t0.tipswitch = False
if uhdev.quirks is None or "VALID_IS_INRANGE" not in uhdev.quirks:
t0.inrange = False
r = uhdev.event([t0])
events = uhdev.next_sync_events()
self.debug_reports(r, uhdev, events)
assert libevdev.InputEvent(libevdev.EV_KEY.BTN_TOUCH, 0) in events
assert evdev.slots[slot][libevdev.EV_ABS.ABS_MT_TRACKING_ID] == -1
def test_confidence_false(self):
"""
Bring a finger in contact with the tablet with confidence set to false.
Ensure that the confidence bit being set to false should not result in a touch event.
"""
uhdev = self.uhdev
_evdev = uhdev.get_evdev()
t0 = test_multitouch.Touch(1, 50, 100)
t0.confidence = False
r = uhdev.event([t0])
events = uhdev.next_sync_events()
self.debug_reports(r, uhdev, events)
_slot = self.get_slot(uhdev, t0, 0)
assert not events
def test_confidence_multitouch(self):
"""
Bring multiple fingers in contact with the tablet, some with the
confidence bit set, and some without.
Ensure that all confident touches are reported and that all non-
confident touches are ignored.
"""
uhdev = self.uhdev
evdev = uhdev.get_evdev()
touches = self.make_contacts(5)
touches[0].confidence = False
touches[2].confidence = False
touches[4].confidence = False
r = uhdev.event(touches)
events = uhdev.next_sync_events()
self.debug_reports(r, uhdev, events)
assert libevdev.InputEvent(libevdev.EV_KEY.BTN_TOUCH, 1) in events
self.assert_contacts(uhdev, evdev,
[ self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = None),
self.ContactIds(contact_id = 1, tracking_id = 0, slot_num = 0),
self.ContactIds(contact_id = 2, tracking_id = -1, slot_num = None),
self.ContactIds(contact_id = 3, tracking_id = 1, slot_num = 1),
self.ContactIds(contact_id = 4, tracking_id = -1, slot_num = None) ])
def confidence_change_assert_playback(self, uhdev, evdev, timeline):
"""
Assert proper behavior of contacts that move and change tipswitch /
confidence status over time.
Given a `timeline` list of touch states to iterate over, verify
that the contacts move and are reported as up/down as expected
by the state of the tipswitch and confidence bits.
"""
t = 0
for state in timeline:
touches = self.make_contacts(len(state), t)
for item in zip(touches, state):
item[0].tipswitch = item[1][1]
item[0].confidence = item[1][2]
r = uhdev.event(touches)
events = uhdev.next_sync_events()
self.debug_reports(r, uhdev, events)
ids = [ x[0] for x in state ]
self.assert_contacts(uhdev, evdev, ids, t)
t += 1
def test_confidence_loss_a(self):
"""
Transition a confident contact to a non-confident contact by
first clearing the tipswitch.
Ensure that the driver reports the transitioned contact as
being removed and that other contacts continue to report
normally. This mode of confidence loss is used by the
DTH-2452.
"""
uhdev = self.uhdev
evdev = uhdev.get_evdev()
self.confidence_change_assert_playback(uhdev, evdev, [
# t=0: Contact 0 == Down + confident; Contact 1 == Down + confident
# Both fingers confidently in contact
[(self.ContactIds(contact_id = 0, tracking_id = 0, slot_num = 0), True, True),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=1: Contact 0 == !Down + confident; Contact 1 == Down + confident
# First finger looses confidence and clears only the tipswitch flag
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, True),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=2: Contact 0 == !Down + !confident; Contact 1 == Down + confident
# First finger has lost confidence and has both flags cleared
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=3: Contact 0 == !Down + !confident; Contact 1 == Down + confident
# First finger has lost confidence and has both flags cleared
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)]
])
def test_confidence_loss_b(self):
"""
Transition a confident contact to a non-confident contact by
cleraing both tipswitch and confidence bits simultaneously.
Ensure that the driver reports the transitioned contact as
being removed and that other contacts continue to report
normally. This mode of confidence loss is used by some
AES devices.
"""
uhdev = self.uhdev
evdev = uhdev.get_evdev()
self.confidence_change_assert_playback(uhdev, evdev, [
# t=0: Contact 0 == Down + confident; Contact 1 == Down + confident
# Both fingers confidently in contact
[(self.ContactIds(contact_id = 0, tracking_id = 0, slot_num = 0), True, True),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=1: Contact 0 == !Down + !confident; Contact 1 == Down + confident
# First finger looses confidence and has both flags cleared simultaneously
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=2: Contact 0 == !Down + !confident; Contact 1 == Down + confident
# First finger has lost confidence and has both flags cleared
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=3: Contact 0 == !Down + !confident; Contact 1 == Down + confident
# First finger has lost confidence and has both flags cleared
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)]
])
def test_confidence_loss_c(self):
"""
Transition a confident contact to a non-confident contact by
clearing only the confidence bit.
Ensure that the driver reports the transitioned contact as
being removed and that other contacts continue to report
normally.
"""
uhdev = self.uhdev
evdev = uhdev.get_evdev()
self.confidence_change_assert_playback(uhdev, evdev, [
# t=0: Contact 0 == Down + confident; Contact 1 == Down + confident
# Both fingers confidently in contact
[(self.ContactIds(contact_id = 0, tracking_id = 0, slot_num = 0), True, True),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=1: Contact 0 == Down + !confident; Contact 1 == Down + confident
# First finger looses confidence and clears only the confidence flag
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), True, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=2: Contact 0 == !Down + !confident; Contact 1 == Down + confident
# First finger has lost confidence and has both flags cleared
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=3: Contact 0 == !Down + !confident; Contact 1 == Down + confident
# First finger has lost confidence and has both flags cleared
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)]
])
def test_confidence_gain_a(self):
"""
Transition a contact that was always non-confident to confident.
Ensure that the confident contact is reported normally.
"""
uhdev = self.uhdev
evdev = uhdev.get_evdev()
self.confidence_change_assert_playback(uhdev, evdev, [
# t=0: Contact 0 == Down + !confident; Contact 1 == Down + confident
# Only second finger is confidently in contact
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = None), True, False),
(self.ContactIds(contact_id = 1, tracking_id = 0, slot_num = 0), True, True)],
# t=1: Contact 0 == Down + !confident; Contact 1 == Down + confident
# First finger gains confidence
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = None), True, False),
(self.ContactIds(contact_id = 1, tracking_id = 0, slot_num = 0), True, True)],
# t=2: Contact 0 == Down + confident; Contact 1 == Down + confident
# First finger remains confident
[(self.ContactIds(contact_id = 0, tracking_id = 1, slot_num = 1), True, True),
(self.ContactIds(contact_id = 1, tracking_id = 0, slot_num = 0), True, True)],
# t=3: Contact 0 == Down + confident; Contact 1 == Down + confident
# First finger remains confident
[(self.ContactIds(contact_id = 0, tracking_id = 1, slot_num = 1), True, True),
(self.ContactIds(contact_id = 1, tracking_id = 0, slot_num = 0), True, True)]
])
def test_confidence_gain_b(self):
"""
Transition a contact from non-confident to confident.
Ensure that the confident contact is reported normally.
"""
uhdev = self.uhdev
evdev = uhdev.get_evdev()
self.confidence_change_assert_playback(uhdev, evdev, [
# t=0: Contact 0 == Down + confident; Contact 1 == Down + confident
# First and second finger confidently in contact
[(self.ContactIds(contact_id = 0, tracking_id = 0, slot_num = 0), True, True),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=1: Contact 0 == Down + !confident; Contact 1 == Down + confident
# Firtst finger looses confidence
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), True, False),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=2: Contact 0 == Down + confident; Contact 1 == Down + confident
# First finger gains confidence
[(self.ContactIds(contact_id = 0, tracking_id = 2, slot_num = 0), True, True),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)],
# t=3: Contact 0 == !Down + confident; Contact 1 == Down + confident
# First finger goes up
[(self.ContactIds(contact_id = 0, tracking_id = -1, slot_num = 0), False, True),
(self.ContactIds(contact_id = 1, tracking_id = 1, slot_num = 1), True, True)]
])
|