1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
|
// SPDX-License-Identifier: GPL-2.0
/*
* x86 CPU caches detection and configuration
*
* Previous changes
* - Venkatesh Pallipadi: Cache identification through CPUID(0x4)
* - Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure
* - Andi Kleen / Andreas Herrmann: CPUID(0x4) emulation on AMD
*/
#include <linux/cacheinfo.h>
#include <linux/cpu.h>
#include <linux/cpuhotplug.h>
#include <linux/stop_machine.h>
#include <asm/amd/nb.h>
#include <asm/cacheinfo.h>
#include <asm/cpufeature.h>
#include <asm/cpuid/api.h>
#include <asm/mtrr.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>
#include "cpu.h"
/* Shared last level cache maps */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
/* Shared L2 cache maps */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
static cpumask_var_t cpu_cacheinfo_mask;
/* Kernel controls MTRR and/or PAT MSRs. */
unsigned int memory_caching_control __ro_after_init;
enum _cache_type {
CTYPE_NULL = 0,
CTYPE_DATA = 1,
CTYPE_INST = 2,
CTYPE_UNIFIED = 3
};
union _cpuid4_leaf_eax {
struct {
enum _cache_type type :5;
unsigned int level :3;
unsigned int is_self_initializing :1;
unsigned int is_fully_associative :1;
unsigned int reserved :4;
unsigned int num_threads_sharing :12;
unsigned int num_cores_on_die :6;
} split;
u32 full;
};
union _cpuid4_leaf_ebx {
struct {
unsigned int coherency_line_size :12;
unsigned int physical_line_partition :10;
unsigned int ways_of_associativity :10;
} split;
u32 full;
};
union _cpuid4_leaf_ecx {
struct {
unsigned int number_of_sets :32;
} split;
u32 full;
};
struct _cpuid4_info {
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned int id;
unsigned long size;
};
/* Map CPUID(0x4) EAX.cache_type to <linux/cacheinfo.h> types */
static const enum cache_type cache_type_map[] = {
[CTYPE_NULL] = CACHE_TYPE_NOCACHE,
[CTYPE_DATA] = CACHE_TYPE_DATA,
[CTYPE_INST] = CACHE_TYPE_INST,
[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
};
/*
* Fallback AMD CPUID(0x4) emulation
* AMD CPUs with TOPOEXT can just use CPUID(0x8000001d)
*
* @AMD_L2_L3_INVALID_ASSOC: cache info for the respective L2/L3 cache should
* be determined from CPUID(0x8000001d) instead of CPUID(0x80000006).
*/
#define AMD_CPUID4_FULLY_ASSOCIATIVE 0xffff
#define AMD_L2_L3_INVALID_ASSOC 0x9
union l1_cache {
struct {
unsigned line_size :8;
unsigned lines_per_tag :8;
unsigned assoc :8;
unsigned size_in_kb :8;
};
unsigned int val;
};
union l2_cache {
struct {
unsigned line_size :8;
unsigned lines_per_tag :4;
unsigned assoc :4;
unsigned size_in_kb :16;
};
unsigned int val;
};
union l3_cache {
struct {
unsigned line_size :8;
unsigned lines_per_tag :4;
unsigned assoc :4;
unsigned res :2;
unsigned size_encoded :14;
};
unsigned int val;
};
/* L2/L3 associativity mapping */
static const unsigned short assocs[] = {
[1] = 1,
[2] = 2,
[3] = 3,
[4] = 4,
[5] = 6,
[6] = 8,
[8] = 16,
[0xa] = 32,
[0xb] = 48,
[0xc] = 64,
[0xd] = 96,
[0xe] = 128,
[0xf] = AMD_CPUID4_FULLY_ASSOCIATIVE
};
static const unsigned char levels[] = { 1, 1, 2, 3 };
static const unsigned char types[] = { 1, 2, 3, 3 };
static void legacy_amd_cpuid4(int index, union _cpuid4_leaf_eax *eax,
union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ecx *ecx)
{
unsigned int dummy, line_size, lines_per_tag, assoc, size_in_kb;
union l1_cache l1i, l1d, *l1;
union l2_cache l2;
union l3_cache l3;
eax->full = 0;
ebx->full = 0;
ecx->full = 0;
cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
l1 = &l1d;
switch (index) {
case 1:
l1 = &l1i;
fallthrough;
case 0:
if (!l1->val)
return;
assoc = (l1->assoc == 0xff) ? AMD_CPUID4_FULLY_ASSOCIATIVE : l1->assoc;
line_size = l1->line_size;
lines_per_tag = l1->lines_per_tag;
size_in_kb = l1->size_in_kb;
break;
case 2:
if (!l2.assoc || l2.assoc == AMD_L2_L3_INVALID_ASSOC)
return;
/* Use x86_cache_size as it might have K7 errata fixes */
assoc = assocs[l2.assoc];
line_size = l2.line_size;
lines_per_tag = l2.lines_per_tag;
size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
break;
case 3:
if (!l3.assoc || l3.assoc == AMD_L2_L3_INVALID_ASSOC)
return;
assoc = assocs[l3.assoc];
line_size = l3.line_size;
lines_per_tag = l3.lines_per_tag;
size_in_kb = l3.size_encoded * 512;
if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
size_in_kb = size_in_kb >> 1;
assoc = assoc >> 1;
}
break;
default:
return;
}
eax->split.is_self_initializing = 1;
eax->split.type = types[index];
eax->split.level = levels[index];
eax->split.num_threads_sharing = 0;
eax->split.num_cores_on_die = topology_num_cores_per_package();
if (assoc == AMD_CPUID4_FULLY_ASSOCIATIVE)
eax->split.is_fully_associative = 1;
ebx->split.coherency_line_size = line_size - 1;
ebx->split.ways_of_associativity = assoc - 1;
ebx->split.physical_line_partition = lines_per_tag - 1;
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
(ebx->split.ways_of_associativity + 1) - 1;
}
static int cpuid4_info_fill_done(struct _cpuid4_info *id4, union _cpuid4_leaf_eax eax,
union _cpuid4_leaf_ebx ebx, union _cpuid4_leaf_ecx ecx)
{
if (eax.split.type == CTYPE_NULL)
return -EIO;
id4->eax = eax;
id4->ebx = ebx;
id4->ecx = ecx;
id4->size = (ecx.split.number_of_sets + 1) *
(ebx.split.coherency_line_size + 1) *
(ebx.split.physical_line_partition + 1) *
(ebx.split.ways_of_associativity + 1);
return 0;
}
static int amd_fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
u32 ignored;
if (boot_cpu_has(X86_FEATURE_TOPOEXT) || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
cpuid_count(0x8000001d, index, &eax.full, &ebx.full, &ecx.full, &ignored);
else
legacy_amd_cpuid4(index, &eax, &ebx, &ecx);
return cpuid4_info_fill_done(id4, eax, ebx, ecx);
}
static int intel_fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
u32 ignored;
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &ignored);
return cpuid4_info_fill_done(id4, eax, ebx, ecx);
}
static int fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
u8 cpu_vendor = boot_cpu_data.x86_vendor;
return (cpu_vendor == X86_VENDOR_AMD || cpu_vendor == X86_VENDOR_HYGON) ?
amd_fill_cpuid4_info(index, id4) :
intel_fill_cpuid4_info(index, id4);
}
static int find_num_cache_leaves(struct cpuinfo_x86 *c)
{
unsigned int eax, ebx, ecx, edx, op;
union _cpuid4_leaf_eax cache_eax;
int i = -1;
/* Do a CPUID(op) loop to calculate num_cache_leaves */
op = (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) ? 0x8000001d : 4;
do {
++i;
cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax;
} while (cache_eax.split.type != CTYPE_NULL);
return i;
}
/*
* AMD/Hygon CPUs may have multiple LLCs if L3 caches exist.
*/
void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, u16 die_id)
{
if (!cpuid_amd_hygon_has_l3_cache())
return;
if (c->x86 < 0x17) {
/* Pre-Zen: LLC is at the node level */
c->topo.llc_id = die_id;
} else if (c->x86 == 0x17 && c->x86_model <= 0x1F) {
/*
* Family 17h up to 1F models: LLC is at the core
* complex level. Core complex ID is ApicId[3].
*/
c->topo.llc_id = c->topo.apicid >> 3;
} else {
/*
* Newer families: LLC ID is calculated from the number
* of threads sharing the L3 cache.
*/
u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
u32 llc_index = find_num_cache_leaves(c) - 1;
cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
if (eax)
num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
if (num_sharing_cache) {
int index_msb = get_count_order(num_sharing_cache);
c->topo.llc_id = c->topo.apicid >> index_msb;
}
}
}
void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c)
{
if (!cpuid_amd_hygon_has_l3_cache())
return;
/*
* Hygons are similar to AMD Family 17h up to 1F models: LLC is
* at the core complex level. Core complex ID is ApicId[3].
*/
c->topo.llc_id = c->topo.apicid >> 3;
}
void init_amd_cacheinfo(struct cpuinfo_x86 *c)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
if (boot_cpu_has(X86_FEATURE_TOPOEXT))
ci->num_leaves = find_num_cache_leaves(c);
else if (c->extended_cpuid_level >= 0x80000006)
ci->num_leaves = (cpuid_edx(0x80000006) & 0xf000) ? 4 : 3;
}
void init_hygon_cacheinfo(struct cpuinfo_x86 *c)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
ci->num_leaves = find_num_cache_leaves(c);
}
static void intel_cacheinfo_done(struct cpuinfo_x86 *c, unsigned int l3,
unsigned int l2, unsigned int l1i, unsigned int l1d)
{
/*
* If llc_id is still unset, then cpuid_level < 4, which implies
* that the only possibility left is SMT. Since CPUID(0x2) doesn't
* specify any shared caches and SMT shares all caches, we can
* unconditionally set LLC ID to the package ID so that all
* threads share it.
*/
if (c->topo.llc_id == BAD_APICID)
c->topo.llc_id = c->topo.pkg_id;
c->x86_cache_size = l3 ? l3 : (l2 ? l2 : l1i + l1d);
if (!l2)
cpu_detect_cache_sizes(c);
}
/*
* Legacy Intel CPUID(0x2) path if CPUID(0x4) is not available.
*/
static void intel_cacheinfo_0x2(struct cpuinfo_x86 *c)
{
unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0;
const struct leaf_0x2_table *desc;
union leaf_0x2_regs regs;
u8 *ptr;
if (c->cpuid_level < 2)
return;
cpuid_leaf_0x2(®s);
for_each_cpuid_0x2_desc(regs, ptr, desc) {
switch (desc->c_type) {
case CACHE_L1_INST: l1i += desc->c_size; break;
case CACHE_L1_DATA: l1d += desc->c_size; break;
case CACHE_L2: l2 += desc->c_size; break;
case CACHE_L3: l3 += desc->c_size; break;
}
}
intel_cacheinfo_done(c, l3, l2, l1i, l1d);
}
static unsigned int calc_cache_topo_id(struct cpuinfo_x86 *c, const struct _cpuid4_info *id4)
{
unsigned int num_threads_sharing;
int index_msb;
num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
return c->topo.apicid & ~((1 << index_msb) - 1);
}
static bool intel_cacheinfo_0x4(struct cpuinfo_x86 *c)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
unsigned int l2_id = BAD_APICID, l3_id = BAD_APICID;
unsigned int l1d = 0, l1i = 0, l2 = 0, l3 = 0;
if (c->cpuid_level < 4)
return false;
/*
* There should be at least one leaf. A non-zero value means
* that the number of leaves has been previously initialized.
*/
if (!ci->num_leaves)
ci->num_leaves = find_num_cache_leaves(c);
if (!ci->num_leaves)
return false;
for (int i = 0; i < ci->num_leaves; i++) {
struct _cpuid4_info id4 = {};
int ret;
ret = intel_fill_cpuid4_info(i, &id4);
if (ret < 0)
continue;
switch (id4.eax.split.level) {
case 1:
if (id4.eax.split.type == CTYPE_DATA)
l1d = id4.size / 1024;
else if (id4.eax.split.type == CTYPE_INST)
l1i = id4.size / 1024;
break;
case 2:
l2 = id4.size / 1024;
l2_id = calc_cache_topo_id(c, &id4);
break;
case 3:
l3 = id4.size / 1024;
l3_id = calc_cache_topo_id(c, &id4);
break;
default:
break;
}
}
c->topo.l2c_id = l2_id;
c->topo.llc_id = (l3_id == BAD_APICID) ? l2_id : l3_id;
intel_cacheinfo_done(c, l3, l2, l1i, l1d);
return true;
}
void init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
/* Don't use CPUID(0x2) if CPUID(0x4) is supported. */
if (intel_cacheinfo_0x4(c))
return;
intel_cacheinfo_0x2(c);
}
/*
* <linux/cacheinfo.h> shared_cpu_map setup, AMD/Hygon
*/
static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
const struct _cpuid4_info *id4)
{
struct cpu_cacheinfo *this_cpu_ci;
struct cacheinfo *ci;
int i, sibling;
/*
* For L3, always use the pre-calculated cpu_llc_shared_mask
* to derive shared_cpu_map.
*/
if (index == 3) {
for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
this_cpu_ci = get_cpu_cacheinfo(i);
if (!this_cpu_ci->info_list)
continue;
ci = this_cpu_ci->info_list + index;
for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
if (!cpu_online(sibling))
continue;
cpumask_set_cpu(sibling, &ci->shared_cpu_map);
}
}
} else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
unsigned int apicid, nshared, first, last;
nshared = id4->eax.split.num_threads_sharing + 1;
apicid = cpu_data(cpu).topo.apicid;
first = apicid - (apicid % nshared);
last = first + nshared - 1;
for_each_online_cpu(i) {
this_cpu_ci = get_cpu_cacheinfo(i);
if (!this_cpu_ci->info_list)
continue;
apicid = cpu_data(i).topo.apicid;
if ((apicid < first) || (apicid > last))
continue;
ci = this_cpu_ci->info_list + index;
for_each_online_cpu(sibling) {
apicid = cpu_data(sibling).topo.apicid;
if ((apicid < first) || (apicid > last))
continue;
cpumask_set_cpu(sibling, &ci->shared_cpu_map);
}
}
} else
return 0;
return 1;
}
/*
* <linux/cacheinfo.h> shared_cpu_map setup, Intel + fallback AMD/Hygon
*/
static void __cache_cpumap_setup(unsigned int cpu, int index,
const struct _cpuid4_info *id4)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct cacheinfo *ci, *sibling_ci;
unsigned long num_threads_sharing;
int index_msb, i;
if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
if (__cache_amd_cpumap_setup(cpu, index, id4))
return;
}
ci = this_cpu_ci->info_list + index;
num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
cpumask_set_cpu(cpu, &ci->shared_cpu_map);
if (num_threads_sharing == 1)
return;
index_msb = get_count_order(num_threads_sharing);
for_each_online_cpu(i)
if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) {
struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
/* Skip if itself or no cacheinfo */
if (i == cpu || !sib_cpu_ci->info_list)
continue;
sibling_ci = sib_cpu_ci->info_list + index;
cpumask_set_cpu(i, &ci->shared_cpu_map);
cpumask_set_cpu(cpu, &sibling_ci->shared_cpu_map);
}
}
static void ci_info_init(struct cacheinfo *ci, const struct _cpuid4_info *id4,
struct amd_northbridge *nb)
{
ci->id = id4->id;
ci->attributes = CACHE_ID;
ci->level = id4->eax.split.level;
ci->type = cache_type_map[id4->eax.split.type];
ci->coherency_line_size = id4->ebx.split.coherency_line_size + 1;
ci->ways_of_associativity = id4->ebx.split.ways_of_associativity + 1;
ci->size = id4->size;
ci->number_of_sets = id4->ecx.split.number_of_sets + 1;
ci->physical_line_partition = id4->ebx.split.physical_line_partition + 1;
ci->priv = nb;
}
int init_cache_level(unsigned int cpu)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);
/* There should be at least one leaf. */
if (!ci->num_leaves)
return -ENOENT;
return 0;
}
/*
* The max shared threads number comes from CPUID(0x4) EAX[25-14] with input
* ECX as cache index. Then right shift apicid by the number's order to get
* cache id for this cache node.
*/
static void get_cache_id(int cpu, struct _cpuid4_info *id4)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
unsigned long num_threads_sharing;
int index_msb;
num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
id4->id = c->topo.apicid >> index_msb;
}
int populate_cache_leaves(unsigned int cpu)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cacheinfo *ci = this_cpu_ci->info_list;
u8 cpu_vendor = boot_cpu_data.x86_vendor;
struct amd_northbridge *nb = NULL;
struct _cpuid4_info id4 = {};
int idx, ret;
for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
ret = fill_cpuid4_info(idx, &id4);
if (ret)
return ret;
get_cache_id(cpu, &id4);
if (cpu_vendor == X86_VENDOR_AMD || cpu_vendor == X86_VENDOR_HYGON)
nb = amd_init_l3_cache(idx);
ci_info_init(ci++, &id4, nb);
__cache_cpumap_setup(cpu, idx, &id4);
}
this_cpu_ci->cpu_map_populated = true;
return 0;
}
/*
* Disable and enable caches. Needed for changing MTRRs and the PAT MSR.
*
* Since we are disabling the cache don't allow any interrupts,
* they would run extremely slow and would only increase the pain.
*
* The caller must ensure that local interrupts are disabled and
* are reenabled after cache_enable() has been called.
*/
static unsigned long saved_cr4;
static DEFINE_RAW_SPINLOCK(cache_disable_lock);
/*
* Cache flushing is the most time-consuming step when programming the
* MTRRs. On many Intel CPUs without known erratas, it can be skipped
* if the CPU declares cache self-snooping support.
*/
static void maybe_flush_caches(void)
{
if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
wbinvd();
}
void cache_disable(void) __acquires(cache_disable_lock)
{
unsigned long cr0;
/*
* This is not ideal since the cache is only flushed/disabled
* for this CPU while the MTRRs are changed, but changing this
* requires more invasive changes to the way the kernel boots.
*/
raw_spin_lock(&cache_disable_lock);
/* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
cr0 = read_cr0() | X86_CR0_CD;
write_cr0(cr0);
maybe_flush_caches();
/* Save value of CR4 and clear Page Global Enable (bit 7) */
if (cpu_feature_enabled(X86_FEATURE_PGE)) {
saved_cr4 = __read_cr4();
__write_cr4(saved_cr4 & ~X86_CR4_PGE);
}
/* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
flush_tlb_local();
if (cpu_feature_enabled(X86_FEATURE_MTRR))
mtrr_disable();
maybe_flush_caches();
}
void cache_enable(void) __releases(cache_disable_lock)
{
/* Flush TLBs (no need to flush caches - they are disabled) */
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
flush_tlb_local();
if (cpu_feature_enabled(X86_FEATURE_MTRR))
mtrr_enable();
/* Enable caches */
write_cr0(read_cr0() & ~X86_CR0_CD);
/* Restore value of CR4 */
if (cpu_feature_enabled(X86_FEATURE_PGE))
__write_cr4(saved_cr4);
raw_spin_unlock(&cache_disable_lock);
}
static void cache_cpu_init(void)
{
unsigned long flags;
local_irq_save(flags);
if (memory_caching_control & CACHE_MTRR) {
cache_disable();
mtrr_generic_set_state();
cache_enable();
}
if (memory_caching_control & CACHE_PAT)
pat_cpu_init();
local_irq_restore(flags);
}
static bool cache_aps_delayed_init = true;
void set_cache_aps_delayed_init(bool val)
{
cache_aps_delayed_init = val;
}
bool get_cache_aps_delayed_init(void)
{
return cache_aps_delayed_init;
}
static int cache_rendezvous_handler(void *unused)
{
if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id()))
cache_cpu_init();
return 0;
}
void __init cache_bp_init(void)
{
mtrr_bp_init();
pat_bp_init();
if (memory_caching_control)
cache_cpu_init();
}
void cache_bp_restore(void)
{
if (memory_caching_control)
cache_cpu_init();
}
static int cache_ap_online(unsigned int cpu)
{
cpumask_set_cpu(cpu, cpu_cacheinfo_mask);
if (!memory_caching_control || get_cache_aps_delayed_init())
return 0;
/*
* Ideally we should hold mtrr_mutex here to avoid MTRR entries
* changed, but this routine will be called in CPU boot time,
* holding the lock breaks it.
*
* This routine is called in two cases:
*
* 1. very early time of software resume, when there absolutely
* isn't MTRR entry changes;
*
* 2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug
* lock to prevent MTRR entry changes
*/
stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL,
cpu_cacheinfo_mask);
return 0;
}
static int cache_ap_offline(unsigned int cpu)
{
cpumask_clear_cpu(cpu, cpu_cacheinfo_mask);
return 0;
}
/*
* Delayed cache initialization for all AP's
*/
void cache_aps_init(void)
{
if (!memory_caching_control || !get_cache_aps_delayed_init())
return;
stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask);
set_cache_aps_delayed_init(false);
}
static int __init cache_ap_register(void)
{
zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL);
cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask);
cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING,
"x86/cachectrl:starting",
cache_ap_online, cache_ap_offline);
return 0;
}
early_initcall(cache_ap_register);
|