1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
|
// SPDX-License-Identifier: GPL-2.0
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/minmax.h>
#include <linux/smp.h>
#include <linux/string.h>
#include <linux/types.h>
#ifdef CONFIG_X86_64
#include <linux/topology.h>
#endif
#include <asm/bugs.h>
#include <asm/cpu_device_id.h>
#include <asm/cpufeature.h>
#include <asm/cpu.h>
#include <asm/cpuid/api.h>
#include <asm/hwcap2.h>
#include <asm/intel-family.h>
#include <asm/microcode.h>
#include <asm/msr.h>
#include <asm/numa.h>
#include <asm/resctrl.h>
#include <asm/thermal.h>
#include <asm/uaccess.h>
#include "cpu.h"
/*
* Processors which have self-snooping capability can handle conflicting
* memory type across CPUs by snooping its own cache. However, there exists
* CPU models in which having conflicting memory types still leads to
* unpredictable behavior, machine check errors, or hangs. Clear this
* feature to prevent its use on machines with known erratas.
*/
static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
{
switch (c->x86_vfm) {
case INTEL_CORE_YONAH:
case INTEL_CORE2_MEROM:
case INTEL_CORE2_MEROM_L:
case INTEL_CORE2_PENRYN:
case INTEL_CORE2_DUNNINGTON:
case INTEL_NEHALEM:
case INTEL_NEHALEM_G:
case INTEL_NEHALEM_EP:
case INTEL_NEHALEM_EX:
case INTEL_WESTMERE:
case INTEL_WESTMERE_EP:
case INTEL_SANDYBRIDGE:
setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
}
}
static bool ring3mwait_disabled __read_mostly;
static int __init ring3mwait_disable(char *__unused)
{
ring3mwait_disabled = true;
return 1;
}
__setup("ring3mwait=disable", ring3mwait_disable);
static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
{
/*
* Ring 3 MONITOR/MWAIT feature cannot be detected without
* cpu model and family comparison.
*/
if (c->x86 != 6)
return;
switch (c->x86_vfm) {
case INTEL_XEON_PHI_KNL:
case INTEL_XEON_PHI_KNM:
break;
default:
return;
}
if (ring3mwait_disabled)
return;
set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
this_cpu_or(msr_misc_features_shadow,
1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
if (c == &boot_cpu_data)
ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
}
/*
* Early microcode releases for the Spectre v2 mitigation were broken.
* Information taken from;
* - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
* - https://kb.vmware.com/s/article/52345
* - Microcode revisions observed in the wild
* - Release note from 20180108 microcode release
*/
struct sku_microcode {
u32 vfm;
u8 stepping;
u32 microcode;
};
static const struct sku_microcode spectre_bad_microcodes[] = {
{ INTEL_KABYLAKE, 0x0B, 0x80 },
{ INTEL_KABYLAKE, 0x0A, 0x80 },
{ INTEL_KABYLAKE, 0x09, 0x80 },
{ INTEL_KABYLAKE_L, 0x0A, 0x80 },
{ INTEL_KABYLAKE_L, 0x09, 0x80 },
{ INTEL_SKYLAKE_X, 0x03, 0x0100013e },
{ INTEL_SKYLAKE_X, 0x04, 0x0200003c },
{ INTEL_BROADWELL, 0x04, 0x28 },
{ INTEL_BROADWELL_G, 0x01, 0x1b },
{ INTEL_BROADWELL_D, 0x02, 0x14 },
{ INTEL_BROADWELL_D, 0x03, 0x07000011 },
{ INTEL_BROADWELL_X, 0x01, 0x0b000025 },
{ INTEL_HASWELL_L, 0x01, 0x21 },
{ INTEL_HASWELL_G, 0x01, 0x18 },
{ INTEL_HASWELL, 0x03, 0x23 },
{ INTEL_HASWELL_X, 0x02, 0x3b },
{ INTEL_HASWELL_X, 0x04, 0x10 },
{ INTEL_IVYBRIDGE_X, 0x04, 0x42a },
/* Observed in the wild */
{ INTEL_SANDYBRIDGE_X, 0x06, 0x61b },
{ INTEL_SANDYBRIDGE_X, 0x07, 0x712 },
};
static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
{
int i;
/*
* We know that the hypervisor lie to us on the microcode version so
* we may as well hope that it is running the correct version.
*/
if (cpu_has(c, X86_FEATURE_HYPERVISOR))
return false;
for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
if (c->x86_vfm == spectre_bad_microcodes[i].vfm &&
c->x86_stepping == spectre_bad_microcodes[i].stepping)
return (c->microcode <= spectre_bad_microcodes[i].microcode);
}
return false;
}
#define MSR_IA32_TME_ACTIVATE 0x982
/* Helpers to access TME_ACTIVATE MSR */
#define TME_ACTIVATE_LOCKED(x) (x & 0x1)
#define TME_ACTIVATE_ENABLED(x) (x & 0x2)
#define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
static void detect_tme_early(struct cpuinfo_x86 *c)
{
u64 tme_activate;
int keyid_bits;
rdmsrq(MSR_IA32_TME_ACTIVATE, tme_activate);
if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
pr_info_once("x86/tme: not enabled by BIOS\n");
clear_cpu_cap(c, X86_FEATURE_TME);
return;
}
pr_info_once("x86/tme: enabled by BIOS\n");
keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
if (!keyid_bits)
return;
/*
* KeyID bits are set by BIOS and can be present regardless
* of whether the kernel is using them. They effectively lower
* the number of physical address bits.
*
* Update cpuinfo_x86::x86_phys_bits accordingly.
*/
c->x86_phys_bits -= keyid_bits;
pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n",
keyid_bits);
}
void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
{
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return;
if (c->x86_vfm < INTEL_PENTIUM_M_DOTHAN)
return;
/*
* The BIOS can have limited CPUID to leaf 2, which breaks feature
* enumeration. Unlock it and update the maximum leaf info.
*/
if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
c->cpuid_level = cpuid_eax(0);
}
static void early_init_intel(struct cpuinfo_x86 *c)
{
u64 misc_enable;
if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
c->microcode = intel_get_microcode_revision();
/* Now if any of them are set, check the blacklist and clear the lot */
if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
setup_clear_cpu_cap(X86_FEATURE_IBRS);
setup_clear_cpu_cap(X86_FEATURE_IBPB);
setup_clear_cpu_cap(X86_FEATURE_STIBP);
setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
setup_clear_cpu_cap(X86_FEATURE_SSBD);
setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
}
/*
* Atom erratum AAE44/AAF40/AAG38/AAH41:
*
* A race condition between speculative fetches and invalidating
* a large page. This is worked around in microcode, but we
* need the microcode to have already been loaded... so if it is
* not, recommend a BIOS update and disable large pages.
*/
if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 &&
c->microcode < 0x20e) {
pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
clear_cpu_cap(c, X86_FEATURE_PSE);
}
#ifdef CONFIG_X86_64
set_cpu_cap(c, X86_FEATURE_SYSENTER32);
#else
/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
if (c->x86 == 15 && c->x86_cache_alignment == 64)
c->x86_cache_alignment = 128;
#endif
/* CPUID workaround for 0F33/0F34 CPU */
if (c->x86_vfm == INTEL_P4_PRESCOTT &&
(c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
c->x86_phys_bits = 36;
/*
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
* with P/T states and does not stop in deep C-states.
*
* It is also reliable across cores and sockets. (but not across
* cabinets - we turn it off in that case explicitly.)
*
* Use a model-specific check for some older CPUs that have invariant
* TSC but may not report it architecturally via 8000_0007.
*/
if (c->x86_power & (1 << 8)) {
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
} else if ((c->x86_vfm >= INTEL_P4_PRESCOTT && c->x86_vfm <= INTEL_P4_WILLAMETTE) ||
(c->x86_vfm >= INTEL_CORE_YONAH && c->x86_vfm <= INTEL_IVYBRIDGE)) {
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
}
/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
switch (c->x86_vfm) {
case INTEL_ATOM_SALTWELL_MID:
case INTEL_ATOM_SALTWELL_TABLET:
case INTEL_ATOM_SILVERMONT_MID:
case INTEL_ATOM_AIRMONT_NP:
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
break;
}
/*
* PAT is broken on early family 6 CPUs, the last of which
* is "Yonah" where the erratum is named "AN7":
*
* Page with PAT (Page Attribute Table) Set to USWC
* (Uncacheable Speculative Write Combine) While
* Associated MTRR (Memory Type Range Register) Is UC
* (Uncacheable) May Consolidate to UC
*
* Disable PAT and fall back to MTRR on these CPUs.
*/
if (c->x86_vfm >= INTEL_PENTIUM_PRO &&
c->x86_vfm <= INTEL_CORE_YONAH)
clear_cpu_cap(c, X86_FEATURE_PAT);
/*
* Modern CPUs are generally expected to have a sane fast string
* implementation. However, BIOSes typically have a knob to tweak
* the architectural MISC_ENABLE.FAST_STRING enable bit.
*
* Adhere to the preference and program the Linux-defined fast
* string flag and enhanced fast string capabilities accordingly.
*/
if (c->x86_vfm >= INTEL_PENTIUM_M_DOTHAN) {
rdmsrq(MSR_IA32_MISC_ENABLE, misc_enable);
if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
/* X86_FEATURE_ERMS is set based on CPUID */
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
} else {
pr_info("Disabled fast string operations\n");
setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
setup_clear_cpu_cap(X86_FEATURE_ERMS);
}
}
/*
* Intel Quark Core DevMan_001.pdf section 6.4.11
* "The operating system also is required to invalidate (i.e., flush)
* the TLB when any changes are made to any of the page table entries.
* The operating system must reload CR3 to cause the TLB to be flushed"
*
* As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
* should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
* to be modified.
*/
if (c->x86_vfm == INTEL_QUARK_X1000) {
pr_info("Disabling PGE capability bit\n");
setup_clear_cpu_cap(X86_FEATURE_PGE);
}
check_memory_type_self_snoop_errata(c);
/*
* Adjust the number of physical bits early because it affects the
* valid bits of the MTRR mask registers.
*/
if (cpu_has(c, X86_FEATURE_TME))
detect_tme_early(c);
}
static void bsp_init_intel(struct cpuinfo_x86 *c)
{
resctrl_cpu_detect(c);
}
#ifdef CONFIG_X86_32
/*
* Early probe support logic for ppro memory erratum #50
*
* This is called before we do cpu ident work
*/
int ppro_with_ram_bug(void)
{
/* Uses data from early_cpu_detect now */
if (boot_cpu_data.x86_vfm == INTEL_PENTIUM_PRO &&
boot_cpu_data.x86_stepping < 8) {
pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
return 1;
}
return 0;
}
static void intel_smp_check(struct cpuinfo_x86 *c)
{
/* calling is from identify_secondary_cpu() ? */
if (!c->cpu_index)
return;
/*
* Mask B, Pentium, but not Pentium MMX
*/
if (c->x86_vfm >= INTEL_FAM5_START && c->x86_vfm < INTEL_PENTIUM_MMX &&
c->x86_stepping >= 1 && c->x86_stepping <= 4) {
/*
* Remember we have B step Pentia with bugs
*/
WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
"with B stepping processors.\n");
}
}
static int forcepae;
static int __init forcepae_setup(char *__unused)
{
forcepae = 1;
return 1;
}
__setup("forcepae", forcepae_setup);
static void intel_workarounds(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_F00F_BUG
/*
* All models of Pentium and Pentium with MMX technology CPUs
* have the F0 0F bug, which lets nonprivileged users lock up the
* system. Announce that the fault handler will be checking for it.
* The Quark is also family 5, but does not have the same bug.
*/
clear_cpu_bug(c, X86_BUG_F00F);
if (c->x86_vfm >= INTEL_FAM5_START && c->x86_vfm < INTEL_QUARK_X1000) {
static int f00f_workaround_enabled;
set_cpu_bug(c, X86_BUG_F00F);
if (!f00f_workaround_enabled) {
pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
f00f_workaround_enabled = 1;
}
}
#endif
/*
* SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
* model 3 mask 3
*/
if ((c->x86_vfm == INTEL_PENTIUM_II_KLAMATH && c->x86_stepping < 3) ||
c->x86_vfm < INTEL_PENTIUM_II_KLAMATH)
clear_cpu_cap(c, X86_FEATURE_SEP);
/*
* PAE CPUID issue: many Pentium M report no PAE but may have a
* functionally usable PAE implementation.
* Forcefully enable PAE if kernel parameter "forcepae" is present.
*/
if (forcepae) {
pr_warn("PAE forced!\n");
set_cpu_cap(c, X86_FEATURE_PAE);
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
}
/*
* P4 Xeon erratum 037 workaround.
* Hardware prefetcher may cause stale data to be loaded into the cache.
*/
if (c->x86_vfm == INTEL_P4_WILLAMETTE && c->x86_stepping == 1) {
if (msr_set_bit(MSR_IA32_MISC_ENABLE,
MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
pr_info("CPU: C0 stepping P4 Xeon detected.\n");
pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
}
}
/*
* See if we have a good local APIC by checking for buggy Pentia,
* i.e. all B steppings and the C2 stepping of P54C when using their
* integrated APIC (see 11AP erratum in "Pentium Processor
* Specification Update").
*/
if (boot_cpu_has(X86_FEATURE_APIC) && c->x86_vfm == INTEL_PENTIUM_75 &&
(c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
set_cpu_bug(c, X86_BUG_11AP);
#ifdef CONFIG_X86_INTEL_USERCOPY
/*
* MOVSL bulk memory moves can be slow when source and dest are not
* both 8-byte aligned. PII/PIII only like MOVSL with 8-byte alignment.
*
* Set the preferred alignment for Pentium Pro and newer processors, as
* it has only been tested on these.
*/
if (c->x86_vfm >= INTEL_PENTIUM_PRO)
movsl_mask.mask = 7;
#endif
intel_smp_check(c);
}
#else
static void intel_workarounds(struct cpuinfo_x86 *c)
{
}
#endif
static void srat_detect_node(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_NUMA
unsigned node;
int cpu = smp_processor_id();
/* Don't do the funky fallback heuristics the AMD version employs
for now. */
node = numa_cpu_node(cpu);
if (node == NUMA_NO_NODE || !node_online(node)) {
/* reuse the value from init_cpu_to_node() */
node = cpu_to_node(cpu);
}
numa_set_node(cpu, node);
#endif
}
static void init_cpuid_fault(struct cpuinfo_x86 *c)
{
u64 msr;
if (!rdmsrq_safe(MSR_PLATFORM_INFO, &msr)) {
if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
}
}
static void init_intel_misc_features(struct cpuinfo_x86 *c)
{
u64 msr;
if (rdmsrq_safe(MSR_MISC_FEATURES_ENABLES, &msr))
return;
/* Clear all MISC features */
this_cpu_write(msr_misc_features_shadow, 0);
/* Check features and update capabilities and shadow control bits */
init_cpuid_fault(c);
probe_xeon_phi_r3mwait(c);
msr = this_cpu_read(msr_misc_features_shadow);
wrmsrq(MSR_MISC_FEATURES_ENABLES, msr);
}
/*
* This is a list of Intel CPUs that are known to suffer from downclocking when
* ZMM registers (512-bit vectors) are used. On these CPUs, when the kernel
* executes SIMD-optimized code such as cryptography functions or CRCs, it
* should prefer 256-bit (YMM) code to 512-bit (ZMM) code.
*/
static const struct x86_cpu_id zmm_exclusion_list[] = {
X86_MATCH_VFM(INTEL_SKYLAKE_X, 0),
X86_MATCH_VFM(INTEL_ICELAKE_X, 0),
X86_MATCH_VFM(INTEL_ICELAKE_D, 0),
X86_MATCH_VFM(INTEL_ICELAKE, 0),
X86_MATCH_VFM(INTEL_ICELAKE_L, 0),
X86_MATCH_VFM(INTEL_ICELAKE_NNPI, 0),
X86_MATCH_VFM(INTEL_TIGERLAKE_L, 0),
X86_MATCH_VFM(INTEL_TIGERLAKE, 0),
/* Allow Rocket Lake and later, and Sapphire Rapids and later. */
{},
};
static void init_intel(struct cpuinfo_x86 *c)
{
early_init_intel(c);
intel_workarounds(c);
init_intel_cacheinfo(c);
if (c->cpuid_level > 9) {
unsigned eax = cpuid_eax(10);
/* Check for version and the number of counters */
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
}
if (cpu_has(c, X86_FEATURE_XMM2))
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
if (boot_cpu_has(X86_FEATURE_DS)) {
unsigned int l1, l2;
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
set_cpu_cap(c, X86_FEATURE_BTS);
if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
set_cpu_cap(c, X86_FEATURE_PEBS);
}
if (boot_cpu_has(X86_FEATURE_CLFLUSH) &&
(c->x86_vfm == INTEL_CORE2_DUNNINGTON ||
c->x86_vfm == INTEL_NEHALEM_EX ||
c->x86_vfm == INTEL_WESTMERE_EX))
set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
if (boot_cpu_has(X86_FEATURE_MWAIT) &&
(c->x86_vfm == INTEL_ATOM_GOLDMONT ||
c->x86_vfm == INTEL_LUNARLAKE_M))
set_cpu_bug(c, X86_BUG_MONITOR);
#ifdef CONFIG_X86_64
if (c->x86 == 15)
c->x86_cache_alignment = c->x86_clflush_size * 2;
#else
/*
* Names for the Pentium II/Celeron processors
* detectable only by also checking the cache size.
* Dixon is NOT a Celeron.
*/
if (c->x86 == 6) {
unsigned int l2 = c->x86_cache_size;
char *p = NULL;
switch (c->x86_model) {
case 5:
if (l2 == 0)
p = "Celeron (Covington)";
else if (l2 == 256)
p = "Mobile Pentium II (Dixon)";
break;
case 6:
if (l2 == 128)
p = "Celeron (Mendocino)";
else if (c->x86_stepping == 0 || c->x86_stepping == 5)
p = "Celeron-A";
break;
case 8:
if (l2 == 128)
p = "Celeron (Coppermine)";
break;
}
if (p)
strcpy(c->x86_model_id, p);
}
#endif
if (x86_match_cpu(zmm_exclusion_list))
set_cpu_cap(c, X86_FEATURE_PREFER_YMM);
/* Work around errata */
srat_detect_node(c);
init_ia32_feat_ctl(c);
init_intel_misc_features(c);
split_lock_init();
intel_init_thermal(c);
}
#ifdef CONFIG_X86_32
static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
{
/*
* Intel PIII Tualatin. This comes in two flavours.
* One has 256kb of cache, the other 512. We have no way
* to determine which, so we use a boottime override
* for the 512kb model, and assume 256 otherwise.
*/
if (c->x86_vfm == INTEL_PENTIUM_III_TUALATIN && size == 0)
size = 256;
/*
* Intel Quark SoC X1000 contains a 4-way set associative
* 16K cache with a 16 byte cache line and 256 lines per tag
*/
if (c->x86_vfm == INTEL_QUARK_X1000)
size = 16;
return size;
}
#endif
static void intel_tlb_lookup(const struct leaf_0x2_table *desc)
{
short entries = desc->entries;
switch (desc->t_type) {
case STLB_4K:
tlb_lli_4k = max(tlb_lli_4k, entries);
tlb_lld_4k = max(tlb_lld_4k, entries);
break;
case STLB_4K_2M:
tlb_lli_4k = max(tlb_lli_4k, entries);
tlb_lld_4k = max(tlb_lld_4k, entries);
tlb_lli_2m = max(tlb_lli_2m, entries);
tlb_lld_2m = max(tlb_lld_2m, entries);
tlb_lli_4m = max(tlb_lli_4m, entries);
tlb_lld_4m = max(tlb_lld_4m, entries);
break;
case TLB_INST_ALL:
tlb_lli_4k = max(tlb_lli_4k, entries);
tlb_lli_2m = max(tlb_lli_2m, entries);
tlb_lli_4m = max(tlb_lli_4m, entries);
break;
case TLB_INST_4K:
tlb_lli_4k = max(tlb_lli_4k, entries);
break;
case TLB_INST_4M:
tlb_lli_4m = max(tlb_lli_4m, entries);
break;
case TLB_INST_2M_4M:
tlb_lli_2m = max(tlb_lli_2m, entries);
tlb_lli_4m = max(tlb_lli_4m, entries);
break;
case TLB_DATA_4K:
case TLB_DATA0_4K:
tlb_lld_4k = max(tlb_lld_4k, entries);
break;
case TLB_DATA_4M:
case TLB_DATA0_4M:
tlb_lld_4m = max(tlb_lld_4m, entries);
break;
case TLB_DATA_2M_4M:
case TLB_DATA0_2M_4M:
tlb_lld_2m = max(tlb_lld_2m, entries);
tlb_lld_4m = max(tlb_lld_4m, entries);
break;
case TLB_DATA_4K_4M:
tlb_lld_4k = max(tlb_lld_4k, entries);
tlb_lld_4m = max(tlb_lld_4m, entries);
break;
case TLB_DATA_1G_2M_4M:
tlb_lld_2m = max(tlb_lld_2m, TLB_0x63_2M_4M_ENTRIES);
tlb_lld_4m = max(tlb_lld_4m, TLB_0x63_2M_4M_ENTRIES);
fallthrough;
case TLB_DATA_1G:
tlb_lld_1g = max(tlb_lld_1g, entries);
break;
}
}
static void intel_detect_tlb(struct cpuinfo_x86 *c)
{
const struct leaf_0x2_table *desc;
union leaf_0x2_regs regs;
u8 *ptr;
if (c->cpuid_level < 2)
return;
cpuid_leaf_0x2(®s);
for_each_cpuid_0x2_desc(regs, ptr, desc)
intel_tlb_lookup(desc);
}
static const struct cpu_dev intel_cpu_dev = {
.c_vendor = "Intel",
.c_ident = { "GenuineIntel" },
#ifdef CONFIG_X86_32
.legacy_models = {
{ .family = 4, .model_names =
{
[0] = "486 DX-25/33",
[1] = "486 DX-50",
[2] = "486 SX",
[3] = "486 DX/2",
[4] = "486 SL",
[5] = "486 SX/2",
[7] = "486 DX/2-WB",
[8] = "486 DX/4",
[9] = "486 DX/4-WB"
}
},
{ .family = 5, .model_names =
{
[0] = "Pentium 60/66 A-step",
[1] = "Pentium 60/66",
[2] = "Pentium 75 - 200",
[3] = "OverDrive PODP5V83",
[4] = "Pentium MMX",
[7] = "Mobile Pentium 75 - 200",
[8] = "Mobile Pentium MMX",
[9] = "Quark SoC X1000",
}
},
{ .family = 6, .model_names =
{
[0] = "Pentium Pro A-step",
[1] = "Pentium Pro",
[3] = "Pentium II (Klamath)",
[4] = "Pentium II (Deschutes)",
[5] = "Pentium II (Deschutes)",
[6] = "Mobile Pentium II",
[7] = "Pentium III (Katmai)",
[8] = "Pentium III (Coppermine)",
[10] = "Pentium III (Cascades)",
[11] = "Pentium III (Tualatin)",
}
},
{ .family = 15, .model_names =
{
[0] = "Pentium 4 (Unknown)",
[1] = "Pentium 4 (Willamette)",
[2] = "Pentium 4 (Northwood)",
[4] = "Pentium 4 (Foster)",
[5] = "Pentium 4 (Foster)",
}
},
},
.legacy_cache_size = intel_size_cache,
#endif
.c_detect_tlb = intel_detect_tlb,
.c_early_init = early_init_intel,
.c_bsp_init = bsp_init_intel,
.c_init = init_intel,
.c_x86_vendor = X86_VENDOR_INTEL,
};
cpu_dev_register(intel_cpu_dev);
|