1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2016-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include "kfd_priv.h"
#include "kfd_mqd_manager.h"
#include "v9_structs.h"
#include "gc/gc_9_0_offset.h"
#include "gc/gc_9_0_sh_mask.h"
#include "sdma0/sdma0_4_0_sh_mask.h"
#include "amdgpu_amdkfd.h"
#include "kfd_device_queue_manager.h"
static void update_mqd(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
struct mqd_update_info *minfo);
static uint64_t mqd_stride_v9(struct mqd_manager *mm,
struct queue_properties *q)
{
if (mm->dev->kfd->cwsr_enabled &&
q->type == KFD_QUEUE_TYPE_COMPUTE)
return ALIGN(q->ctl_stack_size, PAGE_SIZE) +
ALIGN(sizeof(struct v9_mqd), PAGE_SIZE);
return mm->mqd_size;
}
static inline struct v9_mqd *get_mqd(void *mqd)
{
return (struct v9_mqd *)mqd;
}
static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
{
return (struct v9_sdma_mqd *)mqd;
}
static void update_cu_mask(struct mqd_manager *mm, void *mqd,
struct mqd_update_info *minfo, uint32_t inst)
{
struct v9_mqd *m;
uint32_t se_mask[KFD_MAX_NUM_SE] = {0};
if (!minfo || !minfo->cu_mask.ptr)
return;
mqd_symmetrically_map_cu_mask(mm,
minfo->cu_mask.ptr, minfo->cu_mask.count, se_mask, inst);
m = get_mqd(mqd);
m->compute_static_thread_mgmt_se0 = se_mask[0];
m->compute_static_thread_mgmt_se1 = se_mask[1];
m->compute_static_thread_mgmt_se2 = se_mask[2];
m->compute_static_thread_mgmt_se3 = se_mask[3];
if (KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 3) &&
KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 4) &&
KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 5, 0)) {
m->compute_static_thread_mgmt_se4 = se_mask[4];
m->compute_static_thread_mgmt_se5 = se_mask[5];
m->compute_static_thread_mgmt_se6 = se_mask[6];
m->compute_static_thread_mgmt_se7 = se_mask[7];
pr_debug("update cu mask to %#x %#x %#x %#x %#x %#x %#x %#x\n",
m->compute_static_thread_mgmt_se0,
m->compute_static_thread_mgmt_se1,
m->compute_static_thread_mgmt_se2,
m->compute_static_thread_mgmt_se3,
m->compute_static_thread_mgmt_se4,
m->compute_static_thread_mgmt_se5,
m->compute_static_thread_mgmt_se6,
m->compute_static_thread_mgmt_se7);
} else {
pr_debug("inst: %u, update cu mask to %#x %#x %#x %#x\n",
inst, m->compute_static_thread_mgmt_se0,
m->compute_static_thread_mgmt_se1,
m->compute_static_thread_mgmt_se2,
m->compute_static_thread_mgmt_se3);
}
}
static void set_priority(struct v9_mqd *m, struct queue_properties *q)
{
m->cp_hqd_pipe_priority = pipe_priority_map[q->priority];
m->cp_hqd_queue_priority = q->priority;
}
static struct kfd_mem_obj *allocate_mqd(struct kfd_node *node,
struct queue_properties *q)
{
int retval;
struct kfd_mem_obj *mqd_mem_obj = NULL;
/* For V9 only, due to a HW bug, the control stack of a user mode
* compute queue needs to be allocated just behind the page boundary
* of its regular MQD buffer. So we allocate an enlarged MQD buffer:
* the first page of the buffer serves as the regular MQD buffer
* purpose and the remaining is for control stack. Although the two
* parts are in the same buffer object, they need different memory
* types: MQD part needs UC (uncached) as usual, while control stack
* needs NC (non coherent), which is different from the UC type which
* is used when control stack is allocated in user space.
*
* Because of all those, we use the gtt allocation function instead
* of sub-allocation function for this enlarged MQD buffer. Moreover,
* in order to achieve two memory types in a single buffer object, we
* pass a special bo flag AMDGPU_GEM_CREATE_CP_MQD_GFX9 to instruct
* amdgpu memory functions to do so.
*/
if (node->kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) {
mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
if (!mqd_mem_obj)
return NULL;
retval = amdgpu_amdkfd_alloc_gtt_mem(node->adev,
(ALIGN(q->ctl_stack_size, PAGE_SIZE) +
ALIGN(sizeof(struct v9_mqd), PAGE_SIZE)) *
NUM_XCC(node->xcc_mask),
&(mqd_mem_obj->gtt_mem),
&(mqd_mem_obj->gpu_addr),
(void *)&(mqd_mem_obj->cpu_ptr), true);
if (retval) {
kfree(mqd_mem_obj);
return NULL;
}
} else {
retval = kfd_gtt_sa_allocate(node, sizeof(struct v9_mqd),
&mqd_mem_obj);
if (retval)
return NULL;
}
return mqd_mem_obj;
}
static void init_mqd(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
uint64_t addr;
struct v9_mqd *m;
m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
addr = mqd_mem_obj->gpu_addr;
memset(m, 0, sizeof(struct v9_mqd));
m->header = 0xC0310800;
m->compute_pipelinestat_enable = 1;
m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se4 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se5 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se6 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se7 = 0xFFFFFFFF;
m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK |
0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT;
m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT;
m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__UNORD_DISPATCH_MASK;
m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT;
m->cp_mqd_base_addr_lo = lower_32_bits(addr);
m->cp_mqd_base_addr_hi = upper_32_bits(addr);
m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT |
1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT |
1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT;
/* Set cp_hqd_hq_scheduler0 bit 14 to 1 to have the CP set up the
* DISPATCH_PTR. This is required for the kfd debugger
*/
m->cp_hqd_hq_status0 = 1 << 14;
if (q->format == KFD_QUEUE_FORMAT_AQL)
m->cp_hqd_aql_control =
1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT;
if (q->tba_addr) {
m->compute_pgm_rsrc2 |=
(1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
}
if (mm->dev->kfd->cwsr_enabled && q->ctx_save_restore_area_address) {
m->cp_hqd_persistent_state |=
(1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
m->cp_hqd_ctx_save_base_addr_lo =
lower_32_bits(q->ctx_save_restore_area_address);
m->cp_hqd_ctx_save_base_addr_hi =
upper_32_bits(q->ctx_save_restore_area_address);
m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
m->cp_hqd_wg_state_offset = q->ctl_stack_size;
}
*mqd = m;
if (gart_addr)
*gart_addr = addr;
update_mqd(mm, m, q, NULL);
}
static int load_mqd(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
struct queue_properties *p, struct mm_struct *mms)
{
/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
return mm->dev->kfd2kgd->hqd_load(mm->dev->adev, mqd, pipe_id, queue_id,
(uint32_t __user *)p->write_ptr,
wptr_shift, 0, mms, 0);
}
static void update_mqd(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
struct mqd_update_info *minfo)
{
struct v9_mqd *m;
m = get_mqd(mqd);
m->cp_hqd_pq_control &= ~CP_HQD_PQ_CONTROL__QUEUE_SIZE_MASK;
m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr);
m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr);
m->cp_hqd_pq_doorbell_control =
q->doorbell_off <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
m->cp_hqd_pq_doorbell_control);
m->cp_hqd_ib_control =
3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT |
1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT;
/*
* HW does not clamp this field correctly. Maximum EOP queue size
* is constrained by per-SE EOP done signal count, which is 8-bit.
* Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit
* more than (EOP entry count - 1) so a queue size of 0x800 dwords
* is safe, giving a maximum field value of 0xA.
*
* Also, do calculation only if EOP is used (size > 0), otherwise
* the order_base_2 calculation provides incorrect result.
*
*/
m->cp_hqd_eop_control = q->eop_ring_buffer_size ?
min(0xA, order_base_2(q->eop_ring_buffer_size / 4) - 1) : 0;
m->cp_hqd_eop_base_addr_lo =
lower_32_bits(q->eop_ring_buffer_address >> 8);
m->cp_hqd_eop_base_addr_hi =
upper_32_bits(q->eop_ring_buffer_address >> 8);
m->cp_hqd_iq_timer = 0;
m->cp_hqd_vmid = q->vmid;
if (q->format == KFD_QUEUE_FORMAT_AQL) {
m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT |
1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT |
1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT;
m->cp_hqd_pq_doorbell_control |= 1 <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT;
}
if (mm->dev->kfd->cwsr_enabled && q->ctx_save_restore_area_address)
m->cp_hqd_ctx_save_control = 0;
if (KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 3) &&
KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 4) &&
KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 5, 0))
update_cu_mask(mm, mqd, minfo, 0);
set_priority(m, q);
if (minfo && KFD_GC_VERSION(mm->dev) >= IP_VERSION(9, 4, 2)) {
if (minfo->update_flag & UPDATE_FLAG_IS_GWS)
m->compute_resource_limits |=
COMPUTE_RESOURCE_LIMITS__FORCE_SIMD_DIST_MASK;
else
m->compute_resource_limits &=
~COMPUTE_RESOURCE_LIMITS__FORCE_SIMD_DIST_MASK;
}
q->is_active = QUEUE_IS_ACTIVE(*q);
}
static bool check_preemption_failed(struct mqd_manager *mm, void *mqd)
{
struct v9_mqd *m = (struct v9_mqd *)mqd;
uint32_t doorbell_id = m->queue_doorbell_id0;
m->queue_doorbell_id0 = 0;
return kfd_check_hiq_mqd_doorbell_id(mm->dev, doorbell_id, 0);
}
static int get_wave_state(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
void __user *ctl_stack,
u32 *ctl_stack_used_size,
u32 *save_area_used_size)
{
struct v9_mqd *m;
struct kfd_context_save_area_header header;
/* Control stack is located one page after MQD. */
void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
m = get_mqd(mqd);
*ctl_stack_used_size = m->cp_hqd_cntl_stack_size -
m->cp_hqd_cntl_stack_offset;
*save_area_used_size = m->cp_hqd_wg_state_offset -
m->cp_hqd_cntl_stack_size;
header.wave_state.control_stack_size = *ctl_stack_used_size;
header.wave_state.wave_state_size = *save_area_used_size;
header.wave_state.wave_state_offset = m->cp_hqd_wg_state_offset;
header.wave_state.control_stack_offset = m->cp_hqd_cntl_stack_offset;
if (copy_to_user(ctl_stack, &header, sizeof(header.wave_state)))
return -EFAULT;
if (copy_to_user(ctl_stack + m->cp_hqd_cntl_stack_offset,
mqd_ctl_stack + m->cp_hqd_cntl_stack_offset,
*ctl_stack_used_size))
return -EFAULT;
return 0;
}
static void get_checkpoint_info(struct mqd_manager *mm, void *mqd, u32 *ctl_stack_size)
{
struct v9_mqd *m = get_mqd(mqd);
*ctl_stack_size = m->cp_hqd_cntl_stack_size;
}
static void checkpoint_mqd(struct mqd_manager *mm, void *mqd, void *mqd_dst, void *ctl_stack_dst)
{
struct v9_mqd *m;
/* Control stack is located one page after MQD. */
void *ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
m = get_mqd(mqd);
memcpy(mqd_dst, m, sizeof(struct v9_mqd));
memcpy(ctl_stack_dst, ctl_stack, m->cp_hqd_cntl_stack_size);
}
static void restore_mqd(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *qp,
const void *mqd_src,
const void *ctl_stack_src, u32 ctl_stack_size)
{
uint64_t addr;
struct v9_mqd *m;
void *ctl_stack;
m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
addr = mqd_mem_obj->gpu_addr;
memcpy(m, mqd_src, sizeof(*m));
*mqd = m;
if (gart_addr)
*gart_addr = addr;
/* Control stack is located one page after MQD. */
ctl_stack = (void *)((uintptr_t)*mqd + PAGE_SIZE);
memcpy(ctl_stack, ctl_stack_src, ctl_stack_size);
m->cp_hqd_pq_doorbell_control =
qp->doorbell_off <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
m->cp_hqd_pq_doorbell_control);
qp->is_active = 0;
}
static void init_mqd_hiq(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
struct v9_mqd *m;
init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
m = get_mqd(*mqd);
m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
}
static int destroy_hiq_mqd(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type, unsigned int timeout,
uint32_t pipe_id, uint32_t queue_id)
{
int err;
struct v9_mqd *m;
u32 doorbell_off;
m = get_mqd(mqd);
doorbell_off = m->cp_hqd_pq_doorbell_control >>
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
err = amdgpu_amdkfd_unmap_hiq(mm->dev->adev, doorbell_off, 0);
if (err)
pr_debug("Destroy HIQ MQD failed: %d\n", err);
return err;
}
static void init_mqd_sdma(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
struct v9_sdma_mqd *m;
m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
memset(m, 0, sizeof(struct v9_sdma_mqd));
*mqd = m;
if (gart_addr)
*gart_addr = mqd_mem_obj->gpu_addr;
mm->update_mqd(mm, m, q, NULL);
}
#define SDMA_RLC_DUMMY_DEFAULT 0xf
static void update_mqd_sdma(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
struct mqd_update_info *minfo)
{
struct v9_sdma_mqd *m;
m = get_sdma_mqd(mqd);
m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
m->sdmax_rlcx_doorbell_offset =
q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
m->sdma_engine_id = q->sdma_engine_id;
m->sdma_queue_id = q->sdma_queue_id;
m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT;
/* Allow context switch so we don't cross-process starve with a massive
* command buffer of long-running SDMA commands
*/
m->sdmax_rlcx_ib_cntl |= SDMA0_GFX_IB_CNTL__SWITCH_INSIDE_IB_MASK;
q->is_active = QUEUE_IS_ACTIVE(*q);
}
static void checkpoint_mqd_sdma(struct mqd_manager *mm,
void *mqd,
void *mqd_dst,
void *ctl_stack_dst)
{
struct v9_sdma_mqd *m;
m = get_sdma_mqd(mqd);
memcpy(mqd_dst, m, sizeof(struct v9_sdma_mqd));
}
static void restore_mqd_sdma(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *qp,
const void *mqd_src,
const void *ctl_stack_src, const u32 ctl_stack_size)
{
uint64_t addr;
struct v9_sdma_mqd *m;
m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
addr = mqd_mem_obj->gpu_addr;
memcpy(m, mqd_src, sizeof(*m));
m->sdmax_rlcx_doorbell_offset =
qp->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
*mqd = m;
if (gart_addr)
*gart_addr = addr;
qp->is_active = 0;
}
static void init_mqd_hiq_v9_4_3(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
struct v9_mqd *m;
int xcc = 0;
struct kfd_mem_obj xcc_mqd_mem_obj;
uint64_t xcc_gart_addr = 0;
memset(&xcc_mqd_mem_obj, 0x0, sizeof(struct kfd_mem_obj));
for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
kfd_get_hiq_xcc_mqd(mm->dev, &xcc_mqd_mem_obj, xcc);
init_mqd(mm, (void **)&m, &xcc_mqd_mem_obj, &xcc_gart_addr, q);
m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
if (amdgpu_sriov_multi_vf_mode(mm->dev->adev))
m->cp_hqd_pq_doorbell_control |= 1 <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_MODE__SHIFT;
m->cp_mqd_stride_size = kfd_hiq_mqd_stride(mm->dev);
if (xcc == 0) {
/* Set no_update_rptr = 0 in Master XCC */
m->cp_hqd_pq_control &= ~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
/* Set the MQD pointer and gart address to XCC0 MQD */
*mqd = m;
*gart_addr = xcc_gart_addr;
}
}
}
static int hiq_load_mqd_kiq_v9_4_3(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
struct queue_properties *p, struct mm_struct *mms)
{
uint32_t xcc_mask = mm->dev->xcc_mask;
int xcc_id, err, inst = 0;
void *xcc_mqd;
uint64_t hiq_mqd_size = kfd_hiq_mqd_stride(mm->dev);
for_each_inst(xcc_id, xcc_mask) {
xcc_mqd = mqd + hiq_mqd_size * inst;
err = mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->adev, xcc_mqd,
pipe_id, queue_id,
p->doorbell_off, xcc_id);
if (err) {
pr_debug("Failed to load HIQ MQD for XCC: %d\n", inst);
break;
}
++inst;
}
return err;
}
static int destroy_hiq_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type, unsigned int timeout,
uint32_t pipe_id, uint32_t queue_id)
{
uint32_t xcc_mask = mm->dev->xcc_mask;
int xcc_id, err, inst = 0;
uint64_t hiq_mqd_size = kfd_hiq_mqd_stride(mm->dev);
struct v9_mqd *m;
u32 doorbell_off;
for_each_inst(xcc_id, xcc_mask) {
m = get_mqd(mqd + hiq_mqd_size * inst);
doorbell_off = m->cp_hqd_pq_doorbell_control >>
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
err = amdgpu_amdkfd_unmap_hiq(mm->dev->adev, doorbell_off, xcc_id);
if (err) {
pr_debug("Destroy HIQ MQD failed for xcc: %d\n", inst);
break;
}
++inst;
}
return err;
}
static bool check_preemption_failed_v9_4_3(struct mqd_manager *mm, void *mqd)
{
uint64_t hiq_mqd_size = kfd_hiq_mqd_stride(mm->dev);
uint32_t xcc_mask = mm->dev->xcc_mask;
int inst = 0, xcc_id;
struct v9_mqd *m;
bool ret = false;
for_each_inst(xcc_id, xcc_mask) {
m = get_mqd(mqd + hiq_mqd_size * inst);
ret |= kfd_check_hiq_mqd_doorbell_id(mm->dev,
m->queue_doorbell_id0, inst);
m->queue_doorbell_id0 = 0;
++inst;
}
return ret;
}
static void get_xcc_mqd(struct kfd_mem_obj *mqd_mem_obj,
struct kfd_mem_obj *xcc_mqd_mem_obj,
uint64_t offset)
{
xcc_mqd_mem_obj->gtt_mem = (offset == 0) ?
mqd_mem_obj->gtt_mem : NULL;
xcc_mqd_mem_obj->gpu_addr = mqd_mem_obj->gpu_addr + offset;
xcc_mqd_mem_obj->cpu_ptr = (uint32_t *)((uintptr_t)mqd_mem_obj->cpu_ptr
+ offset);
}
static void init_mqd_v9_4_3(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
struct v9_mqd *m;
int xcc = 0;
struct kfd_mem_obj xcc_mqd_mem_obj;
uint64_t xcc_gart_addr = 0;
uint64_t xcc_ctx_save_restore_area_address;
uint64_t offset = mm->mqd_stride(mm, q);
uint32_t local_xcc_start = mm->dev->dqm->current_logical_xcc_start++;
memset(&xcc_mqd_mem_obj, 0x0, sizeof(struct kfd_mem_obj));
for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
get_xcc_mqd(mqd_mem_obj, &xcc_mqd_mem_obj, offset*xcc);
init_mqd(mm, (void **)&m, &xcc_mqd_mem_obj, &xcc_gart_addr, q);
if (amdgpu_sriov_multi_vf_mode(mm->dev->adev))
m->cp_hqd_pq_doorbell_control |= 1 <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_MODE__SHIFT;
m->cp_mqd_stride_size = offset;
/*
* Update the CWSR address for each XCC if CWSR is enabled
* and CWSR area is allocated in thunk
*/
if (mm->dev->kfd->cwsr_enabled &&
q->ctx_save_restore_area_address) {
xcc_ctx_save_restore_area_address =
q->ctx_save_restore_area_address +
(xcc * q->ctx_save_restore_area_size);
m->cp_hqd_ctx_save_base_addr_lo =
lower_32_bits(xcc_ctx_save_restore_area_address);
m->cp_hqd_ctx_save_base_addr_hi =
upper_32_bits(xcc_ctx_save_restore_area_address);
}
if (q->format == KFD_QUEUE_FORMAT_AQL) {
m->compute_tg_chunk_size = 1;
m->compute_current_logic_xcc_id =
(local_xcc_start + xcc) %
NUM_XCC(mm->dev->xcc_mask);
switch (xcc) {
case 0:
/* Master XCC */
m->cp_hqd_pq_control &=
~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
break;
default:
break;
}
} else {
/* PM4 Queue */
m->compute_current_logic_xcc_id = 0;
m->compute_tg_chunk_size = 0;
m->pm4_target_xcc_in_xcp = q->pm4_target_xcc;
}
if (xcc == 0) {
/* Set the MQD pointer and gart address to XCC0 MQD */
*mqd = m;
*gart_addr = xcc_gart_addr;
}
}
}
static void update_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
struct queue_properties *q, struct mqd_update_info *minfo)
{
struct v9_mqd *m;
int xcc = 0;
uint64_t size = mm->mqd_stride(mm, q);
for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
m = get_mqd(mqd + size * xcc);
update_mqd(mm, m, q, minfo);
if (amdgpu_sriov_multi_vf_mode(mm->dev->adev))
m->cp_hqd_pq_doorbell_control |= 1 <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_MODE__SHIFT;
update_cu_mask(mm, m, minfo, xcc);
if (q->format == KFD_QUEUE_FORMAT_AQL) {
switch (xcc) {
case 0:
/* Master XCC */
m->cp_hqd_pq_control &=
~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
break;
default:
break;
}
m->compute_tg_chunk_size = 1;
} else {
/* PM4 Queue */
m->compute_current_logic_xcc_id = 0;
m->compute_tg_chunk_size = 0;
m->pm4_target_xcc_in_xcp = q->pm4_target_xcc;
}
}
}
static void restore_mqd_v9_4_3(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *qp,
const void *mqd_src,
const void *ctl_stack_src, u32 ctl_stack_size)
{
restore_mqd(mm, mqd, mqd_mem_obj, gart_addr, qp, mqd_src, ctl_stack_src, ctl_stack_size);
if (amdgpu_sriov_multi_vf_mode(mm->dev->adev)) {
struct v9_mqd *m;
m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
m->cp_hqd_pq_doorbell_control |= 1 <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_MODE__SHIFT;
}
}
static int destroy_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type, unsigned int timeout,
uint32_t pipe_id, uint32_t queue_id)
{
uint32_t xcc_mask = mm->dev->xcc_mask;
int xcc_id, err, inst = 0;
void *xcc_mqd;
struct v9_mqd *m;
uint64_t mqd_offset;
m = get_mqd(mqd);
mqd_offset = m->cp_mqd_stride_size;
for_each_inst(xcc_id, xcc_mask) {
xcc_mqd = mqd + mqd_offset * inst;
err = mm->dev->kfd2kgd->hqd_destroy(mm->dev->adev, xcc_mqd,
type, timeout, pipe_id,
queue_id, xcc_id);
if (err) {
pr_debug("Destroy MQD failed for xcc: %d\n", inst);
break;
}
++inst;
}
return err;
}
static int load_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
struct queue_properties *p, struct mm_struct *mms)
{
/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
uint32_t xcc_mask = mm->dev->xcc_mask;
int xcc_id, err, inst = 0;
void *xcc_mqd;
uint64_t mqd_stride_size = mm->mqd_stride(mm, p);
for_each_inst(xcc_id, xcc_mask) {
xcc_mqd = mqd + mqd_stride_size * inst;
err = mm->dev->kfd2kgd->hqd_load(
mm->dev->adev, xcc_mqd, pipe_id, queue_id,
(uint32_t __user *)p->write_ptr, wptr_shift, 0, mms,
xcc_id);
if (err) {
pr_debug("Load MQD failed for xcc: %d\n", inst);
break;
}
++inst;
}
return err;
}
static int get_wave_state_v9_4_3(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
void __user *ctl_stack,
u32 *ctl_stack_used_size,
u32 *save_area_used_size)
{
int xcc, err = 0;
void *xcc_mqd;
void __user *xcc_ctl_stack;
uint64_t mqd_stride_size = mm->mqd_stride(mm, q);
u32 tmp_ctl_stack_used_size = 0, tmp_save_area_used_size = 0;
for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
xcc_mqd = mqd + mqd_stride_size * xcc;
xcc_ctl_stack = (void __user *)((uintptr_t)ctl_stack +
q->ctx_save_restore_area_size * xcc);
err = get_wave_state(mm, xcc_mqd, q, xcc_ctl_stack,
&tmp_ctl_stack_used_size,
&tmp_save_area_used_size);
if (err)
break;
/*
* Set the ctl_stack_used_size and save_area_used_size to
* ctl_stack_used_size and save_area_used_size of XCC 0 when
* passing the info the user-space.
* For multi XCC, user-space would have to look at the header
* info of each Control stack area to determine the control
* stack size and save area used.
*/
if (xcc == 0) {
*ctl_stack_used_size = tmp_ctl_stack_used_size;
*save_area_used_size = tmp_save_area_used_size;
}
}
return err;
}
#if defined(CONFIG_DEBUG_FS)
static int debugfs_show_mqd(struct seq_file *m, void *data)
{
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
data, sizeof(struct v9_mqd), false);
return 0;
}
static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
{
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
data, sizeof(struct v9_sdma_mqd), false);
return 0;
}
#endif
struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
struct kfd_node *dev)
{
struct mqd_manager *mqd;
if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
return NULL;
mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
if (!mqd)
return NULL;
mqd->dev = dev;
switch (type) {
case KFD_MQD_TYPE_CP:
mqd->allocate_mqd = allocate_mqd;
mqd->free_mqd = kfd_free_mqd_cp;
mqd->is_occupied = kfd_is_occupied_cp;
mqd->get_checkpoint_info = get_checkpoint_info;
mqd->checkpoint_mqd = checkpoint_mqd;
mqd->mqd_size = sizeof(struct v9_mqd);
mqd->mqd_stride = mqd_stride_v9;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
if (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4) ||
KFD_GC_VERSION(dev) == IP_VERSION(9, 5, 0)) {
mqd->init_mqd = init_mqd_v9_4_3;
mqd->load_mqd = load_mqd_v9_4_3;
mqd->update_mqd = update_mqd_v9_4_3;
mqd->restore_mqd = restore_mqd_v9_4_3;
mqd->destroy_mqd = destroy_mqd_v9_4_3;
mqd->get_wave_state = get_wave_state_v9_4_3;
} else {
mqd->init_mqd = init_mqd;
mqd->load_mqd = load_mqd;
mqd->update_mqd = update_mqd;
mqd->restore_mqd = restore_mqd;
mqd->destroy_mqd = kfd_destroy_mqd_cp;
mqd->get_wave_state = get_wave_state;
}
break;
case KFD_MQD_TYPE_HIQ:
mqd->allocate_mqd = allocate_hiq_mqd;
mqd->free_mqd = free_mqd_hiq_sdma;
mqd->update_mqd = update_mqd;
mqd->is_occupied = kfd_is_occupied_cp;
mqd->mqd_size = sizeof(struct v9_mqd);
mqd->mqd_stride = kfd_mqd_stride;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
mqd->check_preemption_failed = check_preemption_failed;
if (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4) ||
KFD_GC_VERSION(dev) == IP_VERSION(9, 5, 0)) {
mqd->init_mqd = init_mqd_hiq_v9_4_3;
mqd->load_mqd = hiq_load_mqd_kiq_v9_4_3;
mqd->destroy_mqd = destroy_hiq_mqd_v9_4_3;
mqd->check_preemption_failed = check_preemption_failed_v9_4_3;
} else {
mqd->init_mqd = init_mqd_hiq;
mqd->load_mqd = kfd_hiq_load_mqd_kiq;
mqd->destroy_mqd = destroy_hiq_mqd;
mqd->check_preemption_failed = check_preemption_failed;
}
break;
case KFD_MQD_TYPE_DIQ:
mqd->allocate_mqd = allocate_mqd;
mqd->init_mqd = init_mqd_hiq;
mqd->free_mqd = kfd_free_mqd_cp;
mqd->load_mqd = load_mqd;
mqd->update_mqd = update_mqd;
mqd->destroy_mqd = kfd_destroy_mqd_cp;
mqd->is_occupied = kfd_is_occupied_cp;
mqd->mqd_size = sizeof(struct v9_mqd);
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
break;
case KFD_MQD_TYPE_SDMA:
mqd->allocate_mqd = allocate_sdma_mqd;
mqd->init_mqd = init_mqd_sdma;
mqd->free_mqd = free_mqd_hiq_sdma;
mqd->load_mqd = kfd_load_mqd_sdma;
mqd->update_mqd = update_mqd_sdma;
mqd->destroy_mqd = kfd_destroy_mqd_sdma;
mqd->is_occupied = kfd_is_occupied_sdma;
mqd->checkpoint_mqd = checkpoint_mqd_sdma;
mqd->restore_mqd = restore_mqd_sdma;
mqd->mqd_size = sizeof(struct v9_sdma_mqd);
mqd->mqd_stride = kfd_mqd_stride;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
#endif
break;
default:
kfree(mqd);
return NULL;
}
return mqd;
}
|