1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
|
// SPDX-License-Identifier: MIT
//! This is a simple QR encoder for DRM panic.
//!
//! It is called from a panic handler, so it should't allocate memory and
//! does all the work on the stack or on the provided buffers. For
//! simplification, it only supports low error correction, and applies the
//! first mask (checkerboard). It will draw the smallest QR code that can
//! contain the string passed as parameter. To get the most compact
//! QR code, the start of the URL is encoded as binary, and the
//! compressed kmsg is encoded as numeric.
//!
//! The binary data must be a valid URL parameter, so the easiest way is
//! to use base64 encoding. But this wastes 25% of data space, so the
//! whole stack trace won't fit in the QR code. So instead it encodes
//! every 7 bytes of input into 17 decimal digits, and then uses the
//! efficient numeric encoding, that encode 3 decimal digits into
//! 10bits. This makes 168bits of compressed data into 51 decimal digits,
//! into 170bits in the QR code, so wasting only 1.17%. And the numbers are
//! valid URL parameter, so the website can do the reverse, to get the
//! binary data. This is the same algorithm used by Fido v2.2 QR-initiated
//! authentication specification.
//!
//! Inspired by these 3 projects, all under MIT license:
//!
//! * <https://github.com/kennytm/qrcode-rust>
//! * <https://github.com/erwanvivien/fast_qr>
//! * <https://github.com/bjguillot/qr>
use kernel::prelude::*;
#[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd)]
struct Version(usize);
// Generator polynomials for ECC, only those that are needed for low quality.
const P7: [u8; 7] = [87, 229, 146, 149, 238, 102, 21];
const P10: [u8; 10] = [251, 67, 46, 61, 118, 70, 64, 94, 32, 45];
const P15: [u8; 15] = [
8, 183, 61, 91, 202, 37, 51, 58, 58, 237, 140, 124, 5, 99, 105,
];
const P18: [u8; 18] = [
215, 234, 158, 94, 184, 97, 118, 170, 79, 187, 152, 148, 252, 179, 5, 98, 96, 153,
];
const P20: [u8; 20] = [
17, 60, 79, 50, 61, 163, 26, 187, 202, 180, 221, 225, 83, 239, 156, 164, 212, 212, 188, 190,
];
const P22: [u8; 22] = [
210, 171, 247, 242, 93, 230, 14, 109, 221, 53, 200, 74, 8, 172, 98, 80, 219, 134, 160, 105,
165, 231,
];
const P24: [u8; 24] = [
229, 121, 135, 48, 211, 117, 251, 126, 159, 180, 169, 152, 192, 226, 228, 218, 111, 0, 117,
232, 87, 96, 227, 21,
];
const P26: [u8; 26] = [
173, 125, 158, 2, 103, 182, 118, 17, 145, 201, 111, 28, 165, 53, 161, 21, 245, 142, 13, 102,
48, 227, 153, 145, 218, 70,
];
const P28: [u8; 28] = [
168, 223, 200, 104, 224, 234, 108, 180, 110, 190, 195, 147, 205, 27, 232, 201, 21, 43, 245, 87,
42, 195, 212, 119, 242, 37, 9, 123,
];
const P30: [u8; 30] = [
41, 173, 145, 152, 216, 31, 179, 182, 50, 48, 110, 86, 239, 96, 222, 125, 42, 173, 226, 193,
224, 130, 156, 37, 251, 216, 238, 40, 192, 180,
];
/// QR Code parameters for Low quality ECC:
/// - Error Correction polynomial.
/// - Number of blocks in group 1.
/// - Number of blocks in group 2.
/// - Block size in group 1.
///
/// (Block size in group 2 is one more than group 1).
struct VersionParameter(&'static [u8], u8, u8, u8);
const VPARAM: [VersionParameter; 40] = [
VersionParameter(&P7, 1, 0, 19), // V1
VersionParameter(&P10, 1, 0, 34), // V2
VersionParameter(&P15, 1, 0, 55), // V3
VersionParameter(&P20, 1, 0, 80), // V4
VersionParameter(&P26, 1, 0, 108), // V5
VersionParameter(&P18, 2, 0, 68), // V6
VersionParameter(&P20, 2, 0, 78), // V7
VersionParameter(&P24, 2, 0, 97), // V8
VersionParameter(&P30, 2, 0, 116), // V9
VersionParameter(&P18, 2, 2, 68), // V10
VersionParameter(&P20, 4, 0, 81), // V11
VersionParameter(&P24, 2, 2, 92), // V12
VersionParameter(&P26, 4, 0, 107), // V13
VersionParameter(&P30, 3, 1, 115), // V14
VersionParameter(&P22, 5, 1, 87), // V15
VersionParameter(&P24, 5, 1, 98), // V16
VersionParameter(&P28, 1, 5, 107), // V17
VersionParameter(&P30, 5, 1, 120), // V18
VersionParameter(&P28, 3, 4, 113), // V19
VersionParameter(&P28, 3, 5, 107), // V20
VersionParameter(&P28, 4, 4, 116), // V21
VersionParameter(&P28, 2, 7, 111), // V22
VersionParameter(&P30, 4, 5, 121), // V23
VersionParameter(&P30, 6, 4, 117), // V24
VersionParameter(&P26, 8, 4, 106), // V25
VersionParameter(&P28, 10, 2, 114), // V26
VersionParameter(&P30, 8, 4, 122), // V27
VersionParameter(&P30, 3, 10, 117), // V28
VersionParameter(&P30, 7, 7, 116), // V29
VersionParameter(&P30, 5, 10, 115), // V30
VersionParameter(&P30, 13, 3, 115), // V31
VersionParameter(&P30, 17, 0, 115), // V32
VersionParameter(&P30, 17, 1, 115), // V33
VersionParameter(&P30, 13, 6, 115), // V34
VersionParameter(&P30, 12, 7, 121), // V35
VersionParameter(&P30, 6, 14, 121), // V36
VersionParameter(&P30, 17, 4, 122), // V37
VersionParameter(&P30, 4, 18, 122), // V38
VersionParameter(&P30, 20, 4, 117), // V39
VersionParameter(&P30, 19, 6, 118), // V40
];
const MAX_EC_SIZE: usize = 30;
const MAX_BLK_SIZE: usize = 123;
/// Position of the alignment pattern grid.
const ALIGNMENT_PATTERNS: [&[u8]; 40] = [
&[],
&[6, 18],
&[6, 22],
&[6, 26],
&[6, 30],
&[6, 34],
&[6, 22, 38],
&[6, 24, 42],
&[6, 26, 46],
&[6, 28, 50],
&[6, 30, 54],
&[6, 32, 58],
&[6, 34, 62],
&[6, 26, 46, 66],
&[6, 26, 48, 70],
&[6, 26, 50, 74],
&[6, 30, 54, 78],
&[6, 30, 56, 82],
&[6, 30, 58, 86],
&[6, 34, 62, 90],
&[6, 28, 50, 72, 94],
&[6, 26, 50, 74, 98],
&[6, 30, 54, 78, 102],
&[6, 28, 54, 80, 106],
&[6, 32, 58, 84, 110],
&[6, 30, 58, 86, 114],
&[6, 34, 62, 90, 118],
&[6, 26, 50, 74, 98, 122],
&[6, 30, 54, 78, 102, 126],
&[6, 26, 52, 78, 104, 130],
&[6, 30, 56, 82, 108, 134],
&[6, 34, 60, 86, 112, 138],
&[6, 30, 58, 86, 114, 142],
&[6, 34, 62, 90, 118, 146],
&[6, 30, 54, 78, 102, 126, 150],
&[6, 24, 50, 76, 102, 128, 154],
&[6, 28, 54, 80, 106, 132, 158],
&[6, 32, 58, 84, 110, 136, 162],
&[6, 26, 54, 82, 110, 138, 166],
&[6, 30, 58, 86, 114, 142, 170],
];
/// Version information for format V7-V40.
const VERSION_INFORMATION: [u32; 34] = [
0b00_0111_1100_1001_0100,
0b00_1000_0101_1011_1100,
0b00_1001_1010_1001_1001,
0b00_1010_0100_1101_0011,
0b00_1011_1011_1111_0110,
0b00_1100_0111_0110_0010,
0b00_1101_1000_0100_0111,
0b00_1110_0110_0000_1101,
0b00_1111_1001_0010_1000,
0b01_0000_1011_0111_1000,
0b01_0001_0100_0101_1101,
0b01_0010_1010_0001_0111,
0b01_0011_0101_0011_0010,
0b01_0100_1001_1010_0110,
0b01_0101_0110_1000_0011,
0b01_0110_1000_1100_1001,
0b01_0111_0111_1110_1100,
0b01_1000_1110_1100_0100,
0b01_1001_0001_1110_0001,
0b01_1010_1111_1010_1011,
0b01_1011_0000_1000_1110,
0b01_1100_1100_0001_1010,
0b01_1101_0011_0011_1111,
0b01_1110_1101_0111_0101,
0b01_1111_0010_0101_0000,
0b10_0000_1001_1101_0101,
0b10_0001_0110_1111_0000,
0b10_0010_1000_1011_1010,
0b10_0011_0111_1001_1111,
0b10_0100_1011_0000_1011,
0b10_0101_0100_0010_1110,
0b10_0110_1010_0110_0100,
0b10_0111_0101_0100_0001,
0b10_1000_1100_0110_1001,
];
/// Format info for low quality ECC.
const FORMAT_INFOS_QR_L: [u16; 8] = [
0x77c4, 0x72f3, 0x7daa, 0x789d, 0x662f, 0x6318, 0x6c41, 0x6976,
];
impl Version {
/// Returns the smallest QR version than can hold these segments.
fn from_segments(segments: &[&Segment<'_>]) -> Option<Version> {
(1..=40)
.map(Version)
.find(|&v| v.max_data() * 8 >= segments.iter().map(|s| s.total_size_bits(v)).sum())
}
fn width(&self) -> u8 {
(self.0 as u8) * 4 + 17
}
fn max_data(&self) -> usize {
self.g1_blk_size() * self.g1_blocks() + (self.g1_blk_size() + 1) * self.g2_blocks()
}
fn ec_size(&self) -> usize {
VPARAM[self.0 - 1].0.len()
}
fn g1_blocks(&self) -> usize {
VPARAM[self.0 - 1].1 as usize
}
fn g2_blocks(&self) -> usize {
VPARAM[self.0 - 1].2 as usize
}
fn g1_blk_size(&self) -> usize {
VPARAM[self.0 - 1].3 as usize
}
fn alignment_pattern(&self) -> &'static [u8] {
ALIGNMENT_PATTERNS[self.0 - 1]
}
fn poly(&self) -> &'static [u8] {
VPARAM[self.0 - 1].0
}
fn version_info(&self) -> u32 {
if *self >= Version(7) {
VERSION_INFORMATION[self.0 - 7]
} else {
0
}
}
}
/// Exponential table for Galois Field GF(256).
const EXP_TABLE: [u8; 256] = [
1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117,
234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181,
119, 238, 193, 159, 35, 70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161,
95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187,
107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, 17, 34, 68, 136,
13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197,
151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168,
77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198,
145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149,
55, 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167,
83, 166, 81, 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72,
144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207,
131, 27, 54, 108, 216, 173, 71, 142, 1,
];
/// Reverse exponential table for Galois Field GF(256).
const LOG_TABLE: [u8; 256] = [
175, 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, 52, 141,
239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, 53, 147, 142,
218, 240, 18, 130, 69, 29, 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114,
166, 6, 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54, 208, 148,
206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30, 66, 182, 163, 195, 72, 126,
110, 107, 58, 40, 84, 250, 133, 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172,
115, 243, 167, 87, 7, 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24,
227, 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55, 63, 209, 91, 149,
188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, 20, 42, 93, 158, 132,
60, 57, 83, 71, 109, 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12,
111, 246, 108, 161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203, 89, 95,
176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79, 174, 213, 233, 230, 231, 173,
232, 116, 214, 244, 234, 168, 80, 88, 175,
];
// 4 bits segment header.
const MODE_STOP: u16 = 0;
const MODE_NUMERIC: u16 = 1;
const MODE_BINARY: u16 = 4;
/// Padding bytes.
const PADDING: [u8; 2] = [236, 17];
/// Number of bits to encode characters in numeric mode.
const NUM_CHARS_BITS: [usize; 4] = [0, 4, 7, 10];
/// Number of decimal digits required to encode n bytes of binary data.
/// eg: you need 15 decimal digits to fit 6 bytes of binary data.
const BYTES_TO_DIGITS: [usize; 8] = [0, 3, 5, 8, 10, 13, 15, 17];
enum Segment<'a> {
Numeric(&'a [u8]),
Binary(&'a [u8]),
}
impl Segment<'_> {
fn get_header(&self) -> (u16, usize) {
match self {
Segment::Binary(_) => (MODE_BINARY, 4),
Segment::Numeric(_) => (MODE_NUMERIC, 4),
}
}
/// Returns the size of the length field in bits, depending on QR Version.
fn length_bits_count(&self, version: Version) -> usize {
let Version(v) = version;
match self {
Segment::Binary(_) => match v {
1..=9 => 8,
_ => 16,
},
Segment::Numeric(_) => match v {
1..=9 => 10,
10..=26 => 12,
_ => 14,
},
}
}
/// Number of characters in the segment.
fn character_count(&self) -> usize {
match self {
Segment::Binary(data) => data.len(),
Segment::Numeric(data) => {
let last_chars = BYTES_TO_DIGITS[data.len() % 7];
// 17 decimal numbers per 7bytes + remainder.
17 * (data.len() / 7) + last_chars
}
}
}
fn get_length_field(&self, version: Version) -> (u16, usize) {
(
self.character_count() as u16,
self.length_bits_count(version),
)
}
fn total_size_bits(&self, version: Version) -> usize {
let data_size = match self {
Segment::Binary(data) => data.len() * 8,
Segment::Numeric(_) => {
let digits = self.character_count();
10 * (digits / 3) + NUM_CHARS_BITS[digits % 3]
}
};
// header + length + data.
4 + self.length_bits_count(version) + data_size
}
fn iter(&self) -> SegmentIterator<'_> {
SegmentIterator {
segment: self,
offset: 0,
decfifo: Default::default(),
}
}
}
/// Max fifo size is 17 (max push) + 2 (max remaining)
const MAX_FIFO_SIZE: usize = 19;
/// A simple Decimal digit FIFO
#[derive(Default)]
struct DecFifo {
decimals: [u8; MAX_FIFO_SIZE],
len: usize,
}
impl DecFifo {
fn push(&mut self, data: u64, len: usize) {
let mut chunk = data;
for i in (0..self.len).rev() {
self.decimals[i + len] = self.decimals[i];
}
for i in 0..len {
self.decimals[i] = (chunk % 10) as u8;
chunk /= 10;
}
self.len += len;
}
/// Pop 3 decimal digits from the FIFO
fn pop3(&mut self) -> Option<(u16, usize)> {
if self.len == 0 {
None
} else {
let poplen = 3.min(self.len);
self.len -= poplen;
let mut out = 0;
let mut exp = 1;
for i in 0..poplen {
out += self.decimals[self.len + i] as u16 * exp;
exp *= 10;
}
Some((out, NUM_CHARS_BITS[poplen]))
}
}
}
struct SegmentIterator<'a> {
segment: &'a Segment<'a>,
offset: usize,
decfifo: DecFifo,
}
impl Iterator for SegmentIterator<'_> {
type Item = (u16, usize);
fn next(&mut self) -> Option<Self::Item> {
match self.segment {
Segment::Binary(data) => {
if self.offset < data.len() {
let byte = data[self.offset] as u16;
self.offset += 1;
Some((byte, 8))
} else {
None
}
}
Segment::Numeric(data) => {
if self.decfifo.len < 3 && self.offset < data.len() {
// If there are less than 3 decimal digits in the fifo,
// take the next 7 bytes of input, and push them to the fifo.
let mut buf = [0u8; 8];
let len = 7.min(data.len() - self.offset);
buf[..len].copy_from_slice(&data[self.offset..self.offset + len]);
let chunk = u64::from_le_bytes(buf);
self.decfifo.push(chunk, BYTES_TO_DIGITS[len]);
self.offset += len;
}
self.decfifo.pop3()
}
}
}
}
struct EncodedMsg<'a> {
data: &'a mut [u8],
ec_size: usize,
g1_blocks: usize,
g2_blocks: usize,
g1_blk_size: usize,
g2_blk_size: usize,
poly: &'static [u8],
version: Version,
}
/// Data to be put in the QR code, with correct segment encoding, padding, and
/// Error Code Correction.
impl EncodedMsg<'_> {
fn new<'a>(segments: &[&Segment<'_>], data: &'a mut [u8]) -> Option<EncodedMsg<'a>> {
let version = Version::from_segments(segments)?;
let ec_size = version.ec_size();
let g1_blocks = version.g1_blocks();
let g2_blocks = version.g2_blocks();
let g1_blk_size = version.g1_blk_size();
let g2_blk_size = g1_blk_size + 1;
let poly = version.poly();
// clear the output.
data.fill(0);
let mut em = EncodedMsg {
data,
ec_size,
g1_blocks,
g2_blocks,
g1_blk_size,
g2_blk_size,
poly,
version,
};
em.encode(segments);
Some(em)
}
/// Push bits of data at an offset (in bits).
fn push(&mut self, offset: &mut usize, bits: (u16, usize)) {
let (number, len_bits) = bits;
let byte_off = *offset / 8;
let bit_off = *offset % 8;
let b = bit_off + len_bits;
match (bit_off, b) {
(0, 0..=8) => {
self.data[byte_off] = (number << (8 - b)) as u8;
}
(0, _) => {
self.data[byte_off] = (number >> (b - 8)) as u8;
self.data[byte_off + 1] = (number << (16 - b)) as u8;
}
(_, 0..=8) => {
self.data[byte_off] |= (number << (8 - b)) as u8;
}
(_, 9..=16) => {
self.data[byte_off] |= (number >> (b - 8)) as u8;
self.data[byte_off + 1] = (number << (16 - b)) as u8;
}
_ => {
self.data[byte_off] |= (number >> (b - 8)) as u8;
self.data[byte_off + 1] = (number >> (b - 16)) as u8;
self.data[byte_off + 2] = (number << (24 - b)) as u8;
}
}
*offset += len_bits;
}
fn add_segments(&mut self, segments: &[&Segment<'_>]) {
let mut offset: usize = 0;
for s in segments.iter() {
self.push(&mut offset, s.get_header());
self.push(&mut offset, s.get_length_field(self.version));
for bits in s.iter() {
self.push(&mut offset, bits);
}
}
self.push(&mut offset, (MODE_STOP, 4));
let pad_offset = offset.div_ceil(8);
for i in pad_offset..self.version.max_data() {
self.data[i] = PADDING[(i & 1) ^ (pad_offset & 1)];
}
}
fn error_code_for_blocks(&mut self, offset: usize, size: usize, ec_offset: usize) {
let mut tmp: [u8; MAX_BLK_SIZE + MAX_EC_SIZE] = [0; MAX_BLK_SIZE + MAX_EC_SIZE];
tmp[0..size].copy_from_slice(&self.data[offset..offset + size]);
for i in 0..size {
let lead_coeff = tmp[i] as usize;
if lead_coeff == 0 {
continue;
}
let log_lead_coeff = usize::from(LOG_TABLE[lead_coeff]);
for (u, &v) in tmp[i + 1..].iter_mut().zip(self.poly.iter()) {
*u ^= EXP_TABLE[(usize::from(v) + log_lead_coeff) % 255];
}
}
self.data[ec_offset..ec_offset + self.ec_size]
.copy_from_slice(&tmp[size..size + self.ec_size]);
}
fn compute_error_code(&mut self) {
let mut offset = 0;
let mut ec_offset = self.g1_blocks * self.g1_blk_size + self.g2_blocks * self.g2_blk_size;
for _ in 0..self.g1_blocks {
self.error_code_for_blocks(offset, self.g1_blk_size, ec_offset);
offset += self.g1_blk_size;
ec_offset += self.ec_size;
}
for _ in 0..self.g2_blocks {
self.error_code_for_blocks(offset, self.g2_blk_size, ec_offset);
offset += self.g2_blk_size;
ec_offset += self.ec_size;
}
}
fn encode(&mut self, segments: &[&Segment<'_>]) {
self.add_segments(segments);
self.compute_error_code();
}
fn iter(&self) -> EncodedMsgIterator<'_> {
EncodedMsgIterator {
em: self,
offset: 0,
}
}
}
/// Iterator, to retrieve the data in the interleaved order needed by QR code.
struct EncodedMsgIterator<'a> {
em: &'a EncodedMsg<'a>,
offset: usize,
}
impl Iterator for EncodedMsgIterator<'_> {
type Item = u8;
/// Send the bytes in interleaved mode, first byte of first block of group1,
/// then first byte of second block of group1, ...
fn next(&mut self) -> Option<Self::Item> {
let em = self.em;
let blocks = em.g1_blocks + em.g2_blocks;
let g1_end = em.g1_blocks * em.g1_blk_size;
let g2_end = g1_end + em.g2_blocks * em.g2_blk_size;
let ec_end = g2_end + em.ec_size * blocks;
if self.offset >= ec_end {
return None;
}
let offset = if self.offset < em.g1_blk_size * blocks {
// group1 and group2 interleaved
let blk = self.offset % blocks;
let blk_off = self.offset / blocks;
if blk < em.g1_blocks {
blk * em.g1_blk_size + blk_off
} else {
g1_end + em.g2_blk_size * (blk - em.g1_blocks) + blk_off
}
} else if self.offset < g2_end {
// last byte of group2 blocks
let blk2 = self.offset - blocks * em.g1_blk_size;
em.g1_blk_size * em.g1_blocks + blk2 * em.g2_blk_size + em.g2_blk_size - 1
} else {
// EC blocks
let ec_offset = self.offset - g2_end;
let blk = ec_offset % blocks;
let blk_off = ec_offset / blocks;
g2_end + blk * em.ec_size + blk_off
};
self.offset += 1;
Some(em.data[offset])
}
}
/// A QR code image, encoded as a linear binary framebuffer.
/// 1 bit per module (pixel), each new line start at next byte boundary.
/// Max width is 177 for V40 QR code, so `u8` is enough for coordinate.
struct QrImage<'a> {
data: &'a mut [u8],
width: u8,
stride: u8,
version: Version,
}
impl QrImage<'_> {
fn new<'a, 'b>(em: &'b EncodedMsg<'b>, qrdata: &'a mut [u8]) -> QrImage<'a> {
let width = em.version.width();
let stride = width.div_ceil(8);
let data = qrdata;
let mut qr_image = QrImage {
data,
width,
stride,
version: em.version,
};
qr_image.draw_all(em.iter());
qr_image
}
fn clear(&mut self) {
self.data.fill(0);
}
/// Set pixel to light color.
fn set(&mut self, x: u8, y: u8) {
let off = y as usize * self.stride as usize + x as usize / 8;
let mut v = self.data[off];
v |= 0x80 >> (x % 8);
self.data[off] = v;
}
/// Invert a module color.
fn xor(&mut self, x: u8, y: u8) {
let off = y as usize * self.stride as usize + x as usize / 8;
self.data[off] ^= 0x80 >> (x % 8);
}
/// Draw a light square at (x, y) top left corner.
fn draw_square(&mut self, x: u8, y: u8, size: u8) {
for k in 0..size {
self.set(x + k, y);
self.set(x, y + k + 1);
self.set(x + size, y + k);
self.set(x + k + 1, y + size);
}
}
// Finder pattern: 3 8x8 square at the corners.
fn draw_finders(&mut self) {
self.draw_square(1, 1, 4);
self.draw_square(self.width - 6, 1, 4);
self.draw_square(1, self.width - 6, 4);
for k in 0..8 {
self.set(k, 7);
self.set(self.width - k - 1, 7);
self.set(k, self.width - 8);
}
for k in 0..7 {
self.set(7, k);
self.set(self.width - 8, k);
self.set(7, self.width - 1 - k);
}
}
fn is_finder(&self, x: u8, y: u8) -> bool {
let end = self.width - 8;
#[expect(clippy::nonminimal_bool)]
{
(x < 8 && y < 8) || (x < 8 && y >= end) || (x >= end && y < 8)
}
}
// Alignment pattern: 5x5 squares in a grid.
fn draw_alignments(&mut self) {
let positions = self.version.alignment_pattern();
for &x in positions.iter() {
for &y in positions.iter() {
if !self.is_finder(x, y) {
self.draw_square(x - 1, y - 1, 2);
}
}
}
}
fn is_alignment(&self, x: u8, y: u8) -> bool {
let positions = self.version.alignment_pattern();
for &ax in positions.iter() {
for &ay in positions.iter() {
if self.is_finder(ax, ay) {
continue;
}
if x >= ax - 2 && x <= ax + 2 && y >= ay - 2 && y <= ay + 2 {
return true;
}
}
}
false
}
// Timing pattern: 2 dotted line between the finder patterns.
fn draw_timing_patterns(&mut self) {
let end = self.width - 8;
for x in (9..end).step_by(2) {
self.set(x, 6);
self.set(6, x);
}
}
fn is_timing(&self, x: u8, y: u8) -> bool {
x == 6 || y == 6
}
// Mask info: 15 bits around the finders, written twice for redundancy.
fn draw_maskinfo(&mut self) {
let info: u16 = FORMAT_INFOS_QR_L[0];
let mut skip = 0;
for k in 0..7 {
if k == 6 {
skip = 1;
}
if info & (1 << (14 - k)) == 0 {
self.set(k + skip, 8);
self.set(8, self.width - 1 - k);
}
}
skip = 0;
for k in 0..8 {
if k == 2 {
skip = 1;
}
if info & (1 << (7 - k)) == 0 {
self.set(8, 8 - skip - k);
self.set(self.width - 8 + k, 8);
}
}
}
fn is_maskinfo(&self, x: u8, y: u8) -> bool {
let end = self.width - 8;
// Count the dark module as mask info.
(x <= 8 && y == 8) || (y <= 8 && x == 8) || (x == 8 && y >= end) || (x >= end && y == 8)
}
// Version info: 18bits written twice, close to the finders.
fn draw_version_info(&mut self) {
let vinfo = self.version.version_info();
let pos = self.width - 11;
if vinfo != 0 {
for x in 0..3 {
for y in 0..6 {
if vinfo & (1 << (x + y * 3)) == 0 {
self.set(x + pos, y);
self.set(y, x + pos);
}
}
}
}
}
fn is_version_info(&self, x: u8, y: u8) -> bool {
let vinfo = self.version.version_info();
let pos = self.width - 11;
vinfo != 0 && ((x >= pos && x < pos + 3 && y < 6) || (y >= pos && y < pos + 3 && x < 6))
}
/// Returns true if the module is reserved (Not usable for data and EC).
fn is_reserved(&self, x: u8, y: u8) -> bool {
self.is_alignment(x, y)
|| self.is_finder(x, y)
|| self.is_timing(x, y)
|| self.is_maskinfo(x, y)
|| self.is_version_info(x, y)
}
/// Last module to draw, at bottom left corner.
fn is_last(&self, x: u8, y: u8) -> bool {
x == 0 && y == self.width - 1
}
/// Move to the next module according to QR code order.
///
/// From bottom right corner, to bottom left corner.
fn next(&self, x: u8, y: u8) -> (u8, u8) {
let x_adj = if x <= 6 { x + 1 } else { x };
let column_type = (self.width - x_adj) % 4;
match column_type {
2 if y > 0 => (x + 1, y - 1),
0 if y < self.width - 1 => (x + 1, y + 1),
0 | 2 if x == 7 => (x - 2, y),
_ => (x - 1, y),
}
}
/// Find next module that can hold data.
fn next_available(&self, x: u8, y: u8) -> (u8, u8) {
let (mut x, mut y) = self.next(x, y);
while self.is_reserved(x, y) && !self.is_last(x, y) {
(x, y) = self.next(x, y);
}
(x, y)
}
fn draw_data(&mut self, data: impl Iterator<Item = u8>) {
let (mut x, mut y) = (self.width - 1, self.width - 1);
for byte in data {
for s in 0..8 {
if byte & (0x80 >> s) == 0 {
self.set(x, y);
}
(x, y) = self.next_available(x, y);
}
}
// Set the remaining modules (0, 3 or 7 depending on version).
// because 0 correspond to a light module.
while !self.is_last(x, y) {
if !self.is_reserved(x, y) {
self.set(x, y);
}
(x, y) = self.next(x, y);
}
}
/// Apply checkerboard mask to all non-reserved modules.
fn apply_mask(&mut self) {
for x in 0..self.width {
for y in 0..self.width {
if (x ^ y) % 2 == 0 && !self.is_reserved(x, y) {
self.xor(x, y);
}
}
}
}
/// Draw the QR code with the provided data iterator.
fn draw_all(&mut self, data: impl Iterator<Item = u8>) {
// First clear the table, as it may have already some data.
self.clear();
self.draw_finders();
self.draw_alignments();
self.draw_timing_patterns();
self.draw_version_info();
self.draw_data(data);
self.draw_maskinfo();
self.apply_mask();
}
}
/// C entry point for the rust QR Code generator.
///
/// Write the QR code image in the data buffer, and return the QR code width,
/// or 0, if the data doesn't fit in a QR code.
///
/// * `url`: The base URL of the QR code. It will be encoded as Binary segment.
/// * `data`: A pointer to the binary data, to be encoded. if URL is NULL, it
/// will be encoded as binary segment, otherwise it will be encoded
/// efficiently as a numeric segment, and appended to the URL.
/// * `data_len`: Length of the data, that needs to be encoded, must be less
/// than `data_size`.
/// * `data_size`: Size of data buffer, it should be at least 4071 bytes to hold
/// a V40 QR code. It will then be overwritten with the QR code image.
/// * `tmp`: A temporary buffer that the QR code encoder will use, to write the
/// segments and ECC.
/// * `tmp_size`: Size of the temporary buffer, it must be at least 3706 bytes
/// long for V40.
///
/// # Safety
///
/// * `url` must be null or point at a nul-terminated string.
/// * `data` must be valid for reading and writing for `data_size` bytes.
/// * `tmp` must be valid for reading and writing for `tmp_size` bytes.
///
/// They must remain valid for the duration of the function call.
#[export]
pub unsafe extern "C" fn drm_panic_qr_generate(
url: *const kernel::ffi::c_char,
data: *mut u8,
data_len: usize,
data_size: usize,
tmp: *mut u8,
tmp_size: usize,
) -> u8 {
if data_size < 4071 || tmp_size < 3706 || data_len > data_size {
return 0;
}
// SAFETY: The caller ensures that `data` is a valid pointer for reading and
// writing `data_size` bytes.
let data_slice: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(data, data_size) };
// SAFETY: The caller ensures that `tmp` is a valid pointer for reading and
// writing `tmp_size` bytes.
let tmp_slice: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(tmp, tmp_size) };
if url.is_null() {
match EncodedMsg::new(&[&Segment::Binary(&data_slice[0..data_len])], tmp_slice) {
None => 0,
Some(em) => {
let qr_image = QrImage::new(&em, data_slice);
qr_image.width
}
}
} else {
// SAFETY: The caller ensures that `url` is a valid pointer to a
// nul-terminated string.
let url_cstr: &CStr = unsafe { CStr::from_char_ptr(url) };
let segments = &[
&Segment::Binary(url_cstr.as_bytes()),
&Segment::Numeric(&data_slice[0..data_len]),
];
match EncodedMsg::new(segments, tmp_slice) {
None => 0,
Some(em) => {
let qr_image = QrImage::new(&em, data_slice);
qr_image.width
}
}
}
}
/// Returns the maximum data size that can fit in a QR code of this version.
/// * `version`: QR code version, between 1-40.
/// * `url_len`: Length of the URL.
///
/// * If `url_len` > 0, remove the 2 segments header/length and also count the
/// conversion to numeric segments.
/// * If `url_len` = 0, only removes 3 bytes for 1 binary segment.
///
/// # Safety
///
/// Always safe to call.
// Required to be unsafe due to the `#[export]` annotation.
#[export]
pub unsafe extern "C" fn drm_panic_qr_max_data_size(version: u8, url_len: usize) -> usize {
#[expect(clippy::manual_range_contains)]
if version < 1 || version > 40 {
return 0;
}
let max_data = Version(version as usize).max_data();
if url_len > 0 {
// Binary segment (URL) 4 + 16 bits, numeric segment (kmsg) 4 + 12 bits => 5 bytes.
if url_len + 5 >= max_data {
0
} else {
let max = max_data - url_len - 5;
(max * 39) / 40
}
} else {
// Remove 3 bytes for the binary segment (header 4 bits, length 16 bits, stop 4bits).
max_data - 3
}
}
|