1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2025 Synopsys, Inc., Intel Corporation
*/
#include <linux/math.h>
#include "intel_cx0_phy_regs.h"
#include "intel_display_types.h"
#include "intel_snps_phy.h"
#include "intel_snps_phy_regs.h"
#include "intel_snps_hdmi_pll.h"
#define INTEL_SNPS_PHY_HDMI_4999MHZ 4999999900ULL
#define INTEL_SNPS_PHY_HDMI_16GHZ 16000000000ULL
#define INTEL_SNPS_PHY_HDMI_9999MHZ (2 * INTEL_SNPS_PHY_HDMI_4999MHZ)
#define CURVE0_MULTIPLIER 1000000000
#define CURVE1_MULTIPLIER 100
#define CURVE2_MULTIPLIER 1000000000000ULL
struct pll_output_params {
u32 ssc_up_spread;
u32 mpll_div5_en;
u32 hdmi_div;
u32 ana_cp_int;
u32 ana_cp_prop;
u32 refclk_postscalar;
u32 tx_clk_div;
u32 fracn_quot;
u32 fracn_rem;
u32 fracn_den;
u32 fracn_en;
u32 pmix_en;
u32 multiplier;
int mpll_ana_v2i;
int ana_freq_vco;
};
static s64 interp(s64 x, s64 x1, s64 x2, s64 y1, s64 y2)
{
s64 dydx;
dydx = DIV64_U64_ROUND_UP((y2 - y1) * 100000, (x2 - x1));
return (y1 + DIV64_U64_ROUND_UP(dydx * (x - x1), 100000));
}
static void get_ana_cp_int_prop(u64 vco_clk,
u32 refclk_postscalar,
int mpll_ana_v2i,
int c, int a,
const u64 curve_freq_hz[2][8],
const u64 curve_0[2][8],
const u64 curve_1[2][8],
const u64 curve_2[2][8],
u32 *ana_cp_int,
u32 *ana_cp_prop)
{
u64 vco_div_refclk_float;
u64 curve_0_interpolated;
u64 curve_2_interpolated;
u64 curve_1_interpolated;
u64 curve_2_scaled1;
u64 curve_2_scaled2;
u64 adjusted_vco_clk1;
u64 adjusted_vco_clk2;
u64 curve_2_scaled_int;
u64 interpolated_product;
u64 scaled_interpolated_sqrt;
u64 scaled_vco_div_refclk1;
u64 scaled_vco_div_refclk2;
u64 ana_cp_int_temp;
u64 temp;
vco_div_refclk_float = vco_clk * DIV_ROUND_DOWN_ULL(1000000000000ULL, refclk_postscalar);
/* Interpolate curve values at the target vco_clk frequency */
curve_0_interpolated = interp(vco_clk, curve_freq_hz[c][a], curve_freq_hz[c][a + 1],
curve_0[c][a], curve_0[c][a + 1]);
curve_2_interpolated = interp(vco_clk, curve_freq_hz[c][a], curve_freq_hz[c][a + 1],
curve_2[c][a], curve_2[c][a + 1]);
curve_1_interpolated = interp(vco_clk, curve_freq_hz[c][a], curve_freq_hz[c][a + 1],
curve_1[c][a], curve_1[c][a + 1]);
curve_1_interpolated = DIV_ROUND_DOWN_ULL(curve_1_interpolated, CURVE1_MULTIPLIER);
/*
* Scale curve_2_interpolated based on mpll_ana_v2i, for integer part
* ana_cp_int and for the proportional part ana_cp_prop
*/
temp = curve_2_interpolated * (4 - mpll_ana_v2i);
curve_2_scaled1 = DIV_ROUND_DOWN_ULL(temp, 16000);
curve_2_scaled2 = DIV_ROUND_DOWN_ULL(temp, 160);
/* Scale vco_div_refclk for ana_cp_int */
scaled_vco_div_refclk1 = 112008301 * DIV_ROUND_DOWN_ULL(vco_div_refclk_float, 100000);
adjusted_vco_clk1 = CURVE2_MULTIPLIER *
DIV_ROUND_DOWN_ULL(scaled_vco_div_refclk1, (curve_0_interpolated *
DIV_ROUND_DOWN_ULL(curve_1_interpolated, CURVE0_MULTIPLIER)));
ana_cp_int_temp =
DIV64_U64_ROUND_CLOSEST(DIV_ROUND_DOWN_ULL(adjusted_vco_clk1, curve_2_scaled1),
CURVE2_MULTIPLIER);
*ana_cp_int = max(1, min(ana_cp_int_temp, 127));
curve_2_scaled_int = curve_2_scaled1 * (*ana_cp_int);
interpolated_product = curve_1_interpolated *
(curve_2_scaled_int * DIV_ROUND_DOWN_ULL(curve_0_interpolated,
CURVE0_MULTIPLIER));
scaled_interpolated_sqrt =
int_sqrt(DIV64_U64_ROUND_UP(interpolated_product, vco_div_refclk_float) *
DIV_ROUND_DOWN_ULL(1000000000000ULL, 55));
/* Scale vco_div_refclk for ana_cp_int */
scaled_vco_div_refclk2 = DIV_ROUND_UP_ULL(vco_div_refclk_float, 1000000);
adjusted_vco_clk2 = 1460281 * DIV64_U64_ROUND_UP(scaled_interpolated_sqrt *
scaled_vco_div_refclk2,
curve_1_interpolated);
*ana_cp_prop = DIV64_U64_ROUND_UP(adjusted_vco_clk2, curve_2_scaled2);
*ana_cp_prop = max(1, min(*ana_cp_prop, 127));
}
static void compute_hdmi_tmds_pll(u64 pixel_clock, u32 refclk,
u32 ref_range,
u32 ana_cp_int_gs,
u32 ana_cp_prop_gs,
const u64 curve_freq_hz[2][8],
const u64 curve_0[2][8],
const u64 curve_1[2][8],
const u64 curve_2[2][8],
u32 prescaler_divider,
struct pll_output_params *pll_params)
{
u64 datarate = pixel_clock * 10000;
u32 ssc_up_spread = 1;
u32 mpll_div5_en = 1;
u32 hdmi_div = 1;
u32 ana_cp_int;
u32 ana_cp_prop;
u32 refclk_postscalar = refclk >> prescaler_divider;
u32 tx_clk_div;
u64 vco_clk;
u64 vco_clk_do_div;
u32 vco_div_refclk_integer;
u32 vco_div_refclk_fracn;
u32 fracn_quot;
u32 fracn_rem;
u32 fracn_den;
u32 fracn_en;
u32 pmix_en;
u32 multiplier;
int mpll_ana_v2i;
int ana_freq_vco = 0;
int c, a = 0;
int i;
/* Select appropriate v2i point */
if (datarate <= INTEL_SNPS_PHY_HDMI_9999MHZ) {
mpll_ana_v2i = 2;
tx_clk_div = ilog2(div64_u64(INTEL_SNPS_PHY_HDMI_9999MHZ, datarate));
} else {
mpll_ana_v2i = 3;
tx_clk_div = ilog2(div64_u64(INTEL_SNPS_PHY_HDMI_16GHZ, datarate));
}
vco_clk = (datarate << tx_clk_div) >> 1;
vco_div_refclk_integer = DIV_ROUND_DOWN_ULL(vco_clk, refclk_postscalar);
vco_clk_do_div = do_div(vco_clk, refclk_postscalar);
vco_div_refclk_fracn = DIV_ROUND_DOWN_ULL(vco_clk_do_div << 32, refclk_postscalar);
fracn_quot = vco_div_refclk_fracn >> 16;
fracn_rem = vco_div_refclk_fracn & 0xffff;
fracn_rem = fracn_rem - (fracn_rem >> 15);
fracn_den = 0xffff;
fracn_en = (fracn_quot != 0 || fracn_rem != 0) ? 1 : 0;
pmix_en = fracn_en;
multiplier = (vco_div_refclk_integer - 16) * 2;
/* Curve selection for ana_cp_* calculations. One curve hardcoded per v2i range */
c = mpll_ana_v2i - 2;
/* Find the right segment of the table */
for (i = 0; i < 8; i += 2) {
if (vco_clk <= curve_freq_hz[c][i + 1]) {
a = i;
ana_freq_vco = 3 - (a >> 1);
break;
}
}
get_ana_cp_int_prop(vco_clk, refclk_postscalar, mpll_ana_v2i, c, a,
curve_freq_hz, curve_0, curve_1, curve_2,
&ana_cp_int, &ana_cp_prop);
pll_params->ssc_up_spread = ssc_up_spread;
pll_params->mpll_div5_en = mpll_div5_en;
pll_params->hdmi_div = hdmi_div;
pll_params->ana_cp_int = ana_cp_int;
pll_params->refclk_postscalar = refclk_postscalar;
pll_params->tx_clk_div = tx_clk_div;
pll_params->fracn_quot = fracn_quot;
pll_params->fracn_rem = fracn_rem;
pll_params->fracn_den = fracn_den;
pll_params->fracn_en = fracn_en;
pll_params->pmix_en = pmix_en;
pll_params->multiplier = multiplier;
pll_params->ana_cp_prop = ana_cp_prop;
pll_params->mpll_ana_v2i = mpll_ana_v2i;
pll_params->ana_freq_vco = ana_freq_vco;
}
void intel_snps_hdmi_pll_compute_mpllb(struct intel_mpllb_state *pll_state, u64 pixel_clock)
{
/* x axis frequencies. One curve in each array per v2i point */
static const u64 dg2_curve_freq_hz[2][8] = {
{ 2500000000ULL, 3000000000ULL, 3000000000ULL, 3500000000ULL, 3500000000ULL,
4000000000ULL, 4000000000ULL, 5000000000ULL },
{ 4000000000ULL, 4600000000ULL, 4601000000ULL, 5400000000ULL, 5401000000ULL,
6600000000ULL, 6601000000ULL, 8001000000ULL }
};
/* y axis heights multiplied with 1000000000 */
static const u64 dg2_curve_0[2][8] = {
{ 34149871, 39803269, 36034544, 40601014, 35646940, 40016109, 35127987, 41889522 },
{ 70000000, 78770454, 70451838, 80427119, 70991400, 84230173, 72945921, 87064218 }
};
/* Multiplied with 100 */
static const u64 dg2_curve_1[2][8] = {
{ 85177000000000ULL, 79385227160000ULL, 95672603580000ULL, 88857207160000ULL,
109379790900000ULL, 103528193900000ULL, 131941242400000ULL, 117279000000000ULL },
{ 60255000000000ULL, 55569000000000ULL, 72036000000000ULL, 69509000000000ULL,
81785000000000ULL, 731030000000000ULL, 96591000000000ULL, 69077000000000ULL }
};
/* Multiplied with 1000000000000 */
static const u64 dg2_curve_2[2][8] = {
{ 2186930000ULL, 2835287134ULL, 2395395343ULL, 2932270687ULL, 2351887545ULL,
2861031697ULL, 2294149152ULL, 3091730000ULL },
{ 4560000000ULL, 5570000000ULL, 4610000000ULL, 5770000000ULL, 4670000000ULL,
6240000000ULL, 4890000000ULL, 6600000000ULL }
};
struct pll_output_params pll_params;
u32 refclk = 100000000;
u32 prescaler_divider = 1;
u32 ref_range = 3;
u32 ana_cp_int_gs = 64;
u32 ana_cp_prop_gs = 124;
compute_hdmi_tmds_pll(pixel_clock, refclk, ref_range, ana_cp_int_gs, ana_cp_prop_gs,
dg2_curve_freq_hz, dg2_curve_0, dg2_curve_1, dg2_curve_2,
prescaler_divider, &pll_params);
pll_state->clock = pixel_clock;
pll_state->ref_control =
REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, ref_range);
pll_state->mpllb_cp =
REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, pll_params.ana_cp_int) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, pll_params.ana_cp_prop) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, ana_cp_int_gs) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, ana_cp_prop_gs);
pll_state->mpllb_div =
REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, pll_params.mpll_div5_en) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, pll_params.tx_clk_div) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, pll_params.pmix_en) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, pll_params.mpll_ana_v2i) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, pll_params.ana_freq_vco);
pll_state->mpllb_div2 =
REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, prescaler_divider) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, pll_params.multiplier) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, pll_params.hdmi_div);
pll_state->mpllb_fracn1 =
REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, pll_params.fracn_en) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, pll_params.fracn_den);
pll_state->mpllb_fracn2 =
REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, pll_params.fracn_quot) |
REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, pll_params.fracn_rem);
pll_state->mpllb_sscen =
REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, pll_params.ssc_up_spread);
}
void intel_snps_hdmi_pll_compute_c10pll(struct intel_c10pll_state *pll_state, u64 pixel_clock)
{
/* x axis frequencies. One curve in each array per v2i point */
static const u64 c10_curve_freq_hz[2][8] = {
{ 2500000000ULL, 3000000000ULL, 3000000000ULL, 3500000000ULL, 3500000000ULL,
4000000000ULL, 4000000000ULL, 5000000000ULL },
{ 4000000000ULL, 4600000000ULL, 4601000000ULL, 5400000000ULL, 5401000000ULL,
6600000000ULL, 6601000000ULL, 8001000000ULL }
};
/* y axis heights multiplied with 1000000000 */
static const u64 c10_curve_0[2][8] = {
{ 41174500, 48605500, 42973700, 49433100, 42408600, 47681900, 40297400, 49131400 },
{ 82056800, 94420700, 82323400, 96370600, 81273300, 98630100, 81728700, 99105700}
};
static const u64 c10_curve_1[2][8] = {
{ 73300000000000ULL, 66000000000000ULL, 83100000000000ULL, 75300000000000ULL,
99700000000000ULL, 92300000000000ULL, 125000000000000ULL, 110000000000000ULL },
{ 53700000000000ULL, 47700000000000ULL, 62200000000000ULL, 54400000000000ULL,
75100000000000ULL, 63400000000000ULL, 90600000000000ULL, 76300000000000ULL }
};
/* Multiplied with 1000000000000 */
static const u64 c10_curve_2[2][8] = {
{ 2415790000ULL, 3136460000ULL, 2581990000ULL, 3222670000ULL, 2529330000ULL,
3042020000ULL, 2336970000ULL, 3191460000ULL},
{ 4808390000ULL, 5994250000ULL, 4832730000ULL, 6193730000ULL, 4737700000ULL,
6428750000ULL, 4779200000ULL, 6479340000ULL }
};
struct pll_output_params pll_params;
u32 refclk = 38400000;
u32 prescaler_divider = 0;
u32 ref_range = 1;
u32 ana_cp_int_gs = 30;
u32 ana_cp_prop_gs = 28;
compute_hdmi_tmds_pll(pixel_clock, refclk, ref_range,
ana_cp_int_gs, ana_cp_prop_gs,
c10_curve_freq_hz, c10_curve_0,
c10_curve_1, c10_curve_2, prescaler_divider,
&pll_params);
pll_state->tx = 0x10;
pll_state->cmn = 0x1;
pll_state->pll[0] = REG_FIELD_PREP(C10_PLL0_DIV5CLK_EN, pll_params.mpll_div5_en) |
REG_FIELD_PREP(C10_PLL0_FRACEN, pll_params.fracn_en) |
REG_FIELD_PREP(C10_PLL0_PMIX_EN, pll_params.pmix_en) |
REG_FIELD_PREP(C10_PLL0_ANA_FREQ_VCO_MASK, pll_params.ana_freq_vco);
pll_state->pll[2] = REG_FIELD_PREP(C10_PLL2_MULTIPLIERL_MASK, pll_params.multiplier);
pll_state->pll[3] = REG_FIELD_PREP(C10_PLL3_MULTIPLIERH_MASK, pll_params.multiplier >> 8);
pll_state->pll[8] = REG_FIELD_PREP(C10_PLL8_SSC_UP_SPREAD, pll_params.ssc_up_spread);
pll_state->pll[9] = REG_FIELD_PREP(C10_PLL9_FRACN_DENL_MASK, pll_params.fracn_den);
pll_state->pll[10] = REG_FIELD_PREP(C10_PLL10_FRACN_DENH_MASK, pll_params.fracn_den >> 8);
pll_state->pll[11] = REG_FIELD_PREP(C10_PLL11_FRACN_QUOT_L_MASK, pll_params.fracn_quot);
pll_state->pll[12] = REG_FIELD_PREP(C10_PLL12_FRACN_QUOT_H_MASK,
pll_params.fracn_quot >> 8);
pll_state->pll[13] = REG_FIELD_PREP(C10_PLL13_FRACN_REM_L_MASK, pll_params.fracn_rem);
pll_state->pll[14] = REG_FIELD_PREP(C10_PLL14_FRACN_REM_H_MASK, pll_params.fracn_rem >> 8);
pll_state->pll[15] = REG_FIELD_PREP(C10_PLL15_TXCLKDIV_MASK, pll_params.tx_clk_div) |
REG_FIELD_PREP(C10_PLL15_HDMIDIV_MASK, pll_params.hdmi_div);
pll_state->pll[16] = REG_FIELD_PREP(C10_PLL16_ANA_CPINT, pll_params.ana_cp_int) |
REG_FIELD_PREP(C10_PLL16_ANA_CPINTGS_L, ana_cp_int_gs);
pll_state->pll[17] = REG_FIELD_PREP(C10_PLL17_ANA_CPINTGS_H_MASK, ana_cp_int_gs >> 1) |
REG_FIELD_PREP(C10_PLL17_ANA_CPPROP_L_MASK, pll_params.ana_cp_prop);
pll_state->pll[18] =
REG_FIELD_PREP(C10_PLL18_ANA_CPPROP_H_MASK, pll_params.ana_cp_prop >> 2) |
REG_FIELD_PREP(C10_PLL18_ANA_CPPROPGS_L_MASK, ana_cp_prop_gs);
pll_state->pll[19] = REG_FIELD_PREP(C10_PLL19_ANA_CPPROPGS_H_MASK, ana_cp_prop_gs >> 3) |
REG_FIELD_PREP(C10_PLL19_ANA_V2I_MASK, pll_params.mpll_ana_v2i);
}
|