1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*
*/
#include <drm/drm_print.h>
#include "i915_reg.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_vrr.h"
#include "intel_vrr_regs.h"
#define FIXED_POINT_PRECISION 100
#define CMRR_PRECISION_TOLERANCE 10
bool intel_vrr_is_capable(struct intel_connector *connector)
{
struct intel_display *display = to_intel_display(connector);
const struct drm_display_info *info = &connector->base.display_info;
struct intel_dp *intel_dp;
/*
* DP Sink is capable of VRR video timings if
* Ignore MSA bit is set in DPCD.
* EDID monitor range also should be atleast 10 for reasonable
* Adaptive Sync or Variable Refresh Rate end user experience.
*/
switch (connector->base.connector_type) {
case DRM_MODE_CONNECTOR_eDP:
if (!connector->panel.vbt.vrr)
return false;
fallthrough;
case DRM_MODE_CONNECTOR_DisplayPort:
if (connector->mst.dp)
return false;
intel_dp = intel_attached_dp(connector);
if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
return false;
break;
default:
return false;
}
return HAS_VRR(display) &&
info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
}
bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh)
{
const struct drm_display_info *info = &connector->base.display_info;
return intel_vrr_is_capable(connector) &&
vrefresh >= info->monitor_range.min_vfreq &&
vrefresh <= info->monitor_range.max_vfreq;
}
bool intel_vrr_possible(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.flipline;
}
void
intel_vrr_check_modeset(struct intel_atomic_state *state)
{
int i;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (new_crtc_state->uapi.vrr_enabled !=
old_crtc_state->uapi.vrr_enabled)
new_crtc_state->uapi.mode_changed = true;
}
}
static int intel_vrr_real_vblank_delay(const struct intel_crtc_state *crtc_state)
{
return crtc_state->hw.adjusted_mode.crtc_vblank_start -
crtc_state->hw.adjusted_mode.crtc_vdisplay;
}
static int intel_vrr_extra_vblank_delay(struct intel_display *display)
{
/*
* On ICL/TGL VRR hardware inserts one extra scanline
* just after vactive, which pushes the vmin decision
* boundary ahead accordingly. We'll include the extra
* scanline in our vblank delay estimates to make sure
* that we never underestimate how long we have until
* the delayed vblank has passed.
*/
return DISPLAY_VER(display) < 13 ? 1 : 0;
}
int intel_vrr_vblank_delay(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return intel_vrr_real_vblank_delay(crtc_state) +
intel_vrr_extra_vblank_delay(display);
}
static int intel_vrr_flipline_offset(struct intel_display *display)
{
/* ICL/TGL hardware imposes flipline>=vmin+1 */
return DISPLAY_VER(display) < 13 ? 1 : 0;
}
static int intel_vrr_vmin_flipline(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return crtc_state->vrr.vmin + intel_vrr_flipline_offset(display);
}
/*
* Without VRR registers get latched at:
* vblank_start
*
* With VRR the earliest registers can get latched is:
* intel_vrr_vmin_vblank_start(), which if we want to maintain
* the correct min vtotal is >=vblank_start+1
*
* The latest point registers can get latched is the vmax decision boundary:
* intel_vrr_vmax_vblank_start()
*
* Between those two points the vblank exit starts (and hence registers get
* latched) ASAP after a push is sent.
*
* framestart_delay is programmable 1-4.
*/
static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 13)
return crtc_state->vrr.guardband;
else
/* hardware imposes one extra scanline somewhere */
return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1;
}
int intel_vrr_vmin_vtotal(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
/* Min vblank actually determined by flipline */
if (DISPLAY_VER(display) >= 13)
return intel_vrr_vmin_flipline(crtc_state);
else
return intel_vrr_vmin_flipline(crtc_state) +
intel_vrr_real_vblank_delay(crtc_state);
}
int intel_vrr_vmax_vtotal(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 13)
return crtc_state->vrr.vmax;
else
return crtc_state->vrr.vmax +
intel_vrr_real_vblank_delay(crtc_state);
}
int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_vmin_vtotal(crtc_state) - intel_vrr_vblank_exit_length(crtc_state);
}
int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_vmax_vtotal(crtc_state) - intel_vrr_vblank_exit_length(crtc_state);
}
static bool
is_cmrr_frac_required(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
int calculated_refresh_k, actual_refresh_k, pixel_clock_per_line;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
/* Avoid CMRR for now till we have VRR with fixed timings working */
if (!HAS_CMRR(display) || true)
return false;
actual_refresh_k =
drm_mode_vrefresh(adjusted_mode) * FIXED_POINT_PRECISION;
pixel_clock_per_line =
adjusted_mode->crtc_clock * 1000 / adjusted_mode->crtc_htotal;
calculated_refresh_k =
pixel_clock_per_line * FIXED_POINT_PRECISION / adjusted_mode->crtc_vtotal;
if ((actual_refresh_k - calculated_refresh_k) < CMRR_PRECISION_TOLERANCE)
return false;
return true;
}
static unsigned int
cmrr_get_vtotal(struct intel_crtc_state *crtc_state, bool video_mode_required)
{
int multiplier_m = 1, multiplier_n = 1, vtotal, desired_refresh_rate;
u64 adjusted_pixel_rate;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
desired_refresh_rate = drm_mode_vrefresh(adjusted_mode);
if (video_mode_required) {
multiplier_m = 1001;
multiplier_n = 1000;
}
crtc_state->cmrr.cmrr_n = mul_u32_u32(desired_refresh_rate * adjusted_mode->crtc_htotal,
multiplier_n);
vtotal = DIV_ROUND_UP_ULL(mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_n),
crtc_state->cmrr.cmrr_n);
adjusted_pixel_rate = mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_m);
crtc_state->cmrr.cmrr_m = do_div(adjusted_pixel_rate, crtc_state->cmrr.cmrr_n);
return vtotal;
}
static
void intel_vrr_compute_cmrr_timings(struct intel_crtc_state *crtc_state)
{
crtc_state->cmrr.enable = true;
/*
* TODO: Compute precise target refresh rate to determine
* if video_mode_required should be true. Currently set to
* false due to uncertainty about the precise target
* refresh Rate.
*/
crtc_state->vrr.vmax = cmrr_get_vtotal(crtc_state, false);
crtc_state->vrr.vmin = crtc_state->vrr.vmax;
crtc_state->vrr.flipline = crtc_state->vrr.vmin;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
static
void intel_vrr_compute_vrr_timings(struct intel_crtc_state *crtc_state)
{
crtc_state->vrr.enable = true;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
/*
* For fixed refresh rate mode Vmin, Vmax and Flipline all are set to
* Vtotal value.
*/
static
int intel_vrr_fixed_rr_vtotal(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
int crtc_vtotal = crtc_state->hw.adjusted_mode.crtc_vtotal;
if (DISPLAY_VER(display) >= 13)
return crtc_vtotal;
else
return crtc_vtotal -
intel_vrr_real_vblank_delay(crtc_state);
}
static
int intel_vrr_fixed_rr_vmax(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_fixed_rr_vtotal(crtc_state);
}
static
int intel_vrr_fixed_rr_vmin(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return intel_vrr_fixed_rr_vtotal(crtc_state) -
intel_vrr_flipline_offset(display);
}
static
int intel_vrr_fixed_rr_flipline(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_fixed_rr_vtotal(crtc_state);
}
void intel_vrr_set_fixed_rr_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!intel_vrr_possible(crtc_state))
return;
intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder),
intel_vrr_fixed_rr_vmin(crtc_state) - 1);
intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder),
intel_vrr_fixed_rr_vmax(crtc_state) - 1);
intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder),
intel_vrr_fixed_rr_flipline(crtc_state) - 1);
}
static
void intel_vrr_compute_fixed_rr_timings(struct intel_crtc_state *crtc_state)
{
/*
* For fixed rr, vmin = vmax = flipline.
* vmin is already set to crtc_vtotal set vmax and flipline the same.
*/
crtc_state->vrr.vmax = crtc_state->hw.adjusted_mode.crtc_vtotal;
crtc_state->vrr.flipline = crtc_state->hw.adjusted_mode.crtc_vtotal;
}
static
int intel_vrr_compute_vmin(struct intel_crtc_state *crtc_state)
{
/*
* To make fixed rr and vrr work seamless the guardband/pipeline full
* should be set such that it satisfies both the fixed and variable
* timings.
* For this set the vmin as crtc_vtotal. With this we never need to
* change anything to do with the guardband.
*/
return crtc_state->hw.adjusted_mode.crtc_vtotal;
}
static
int intel_vrr_compute_vmax(struct intel_connector *connector,
const struct drm_display_mode *adjusted_mode)
{
const struct drm_display_info *info = &connector->base.display_info;
int vmax;
vmax = adjusted_mode->crtc_clock * 1000 /
(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
return vmax;
}
void
intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
struct intel_dp *intel_dp = intel_attached_dp(connector);
bool is_edp = intel_dp_is_edp(intel_dp);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
int vmin, vmax;
if (!HAS_VRR(display))
return;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return;
crtc_state->vrr.in_range =
intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode));
/*
* Allow fixed refresh rate with VRR Timing Generator.
* For now set the vrr.in_range to 0, to allow fixed_rr but skip actual
* VRR and LRR.
* #TODO For actual VRR with joiner, we need to figure out how to
* correctly sequence transcoder level stuff vs. pipe level stuff
* in the commit.
*/
if (crtc_state->joiner_pipes)
crtc_state->vrr.in_range = false;
vmin = intel_vrr_compute_vmin(crtc_state);
if (crtc_state->vrr.in_range) {
if (HAS_LRR(display))
crtc_state->update_lrr = true;
vmax = intel_vrr_compute_vmax(connector, adjusted_mode);
} else {
vmax = vmin;
}
crtc_state->vrr.vmin = vmin;
crtc_state->vrr.vmax = vmax;
crtc_state->vrr.flipline = crtc_state->vrr.vmin;
if (crtc_state->uapi.vrr_enabled && vmin < vmax)
intel_vrr_compute_vrr_timings(crtc_state);
else if (is_cmrr_frac_required(crtc_state) && is_edp)
intel_vrr_compute_cmrr_timings(crtc_state);
else
intel_vrr_compute_fixed_rr_timings(crtc_state);
/*
* flipline determines the min vblank length the hardware will
* generate, and on ICL/TGL flipline>=vmin+1, hence we reduce
* vmin by one to make sure we can get the actual min vblank length.
*/
crtc_state->vrr.vmin -= intel_vrr_flipline_offset(display);
if (HAS_AS_SDP(display)) {
crtc_state->vrr.vsync_start =
(crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->hw.adjusted_mode.vsync_start);
crtc_state->vrr.vsync_end =
(crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->hw.adjusted_mode.vsync_end);
}
}
void intel_vrr_compute_config_late(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
if (!intel_vrr_possible(crtc_state))
return;
if (DISPLAY_VER(display) >= 13) {
crtc_state->vrr.guardband =
crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start;
} else {
/* hardware imposes one extra scanline somewhere */
crtc_state->vrr.pipeline_full =
min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start -
crtc_state->framestart_delay - 1);
/*
* vmin/vmax/flipline also need to be adjusted by
* the vblank delay to maintain correct vtotals.
*/
crtc_state->vrr.vmin -= intel_vrr_real_vblank_delay(crtc_state);
crtc_state->vrr.vmax -= intel_vrr_real_vblank_delay(crtc_state);
crtc_state->vrr.flipline -= intel_vrr_real_vblank_delay(crtc_state);
}
}
static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 14)
return VRR_CTL_FLIP_LINE_EN |
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
else if (DISPLAY_VER(display) >= 13)
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
else
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
VRR_CTL_PIPELINE_FULL_OVERRIDE;
}
void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
/*
* This bit seems to have two meanings depending on the platform:
* TGL: generate VRR "safe window" for DSB vblank waits
* ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR
*/
if (IS_DISPLAY_VER(display, 12, 13))
intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder),
0, PIPE_VBLANK_WITH_DELAY);
if (!intel_vrr_possible(crtc_state)) {
intel_de_write(display,
TRANS_VRR_CTL(display, cpu_transcoder), 0);
return;
}
if (crtc_state->cmrr.enable) {
intel_de_write(display, TRANS_CMRR_M_HI(display, cpu_transcoder),
upper_32_bits(crtc_state->cmrr.cmrr_m));
intel_de_write(display, TRANS_CMRR_M_LO(display, cpu_transcoder),
lower_32_bits(crtc_state->cmrr.cmrr_m));
intel_de_write(display, TRANS_CMRR_N_HI(display, cpu_transcoder),
upper_32_bits(crtc_state->cmrr.cmrr_n));
intel_de_write(display, TRANS_CMRR_N_LO(display, cpu_transcoder),
lower_32_bits(crtc_state->cmrr.cmrr_n));
}
intel_vrr_set_fixed_rr_timings(crtc_state);
if (!intel_vrr_always_use_vrr_tg(display) && !crtc_state->vrr.enable)
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
trans_vrr_ctl(crtc_state));
if (HAS_AS_SDP(display))
intel_de_write(display,
TRANS_VRR_VSYNC(display, cpu_transcoder),
VRR_VSYNC_END(crtc_state->vrr.vsync_end) |
VRR_VSYNC_START(crtc_state->vrr.vsync_start));
}
void intel_vrr_send_push(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
if (dsb)
intel_dsb_nonpost_start(dsb);
intel_de_write_dsb(display, dsb,
TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_EN | TRANS_PUSH_SEND);
if (dsb)
intel_dsb_nonpost_end(dsb);
}
void intel_vrr_check_push_sent(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
/*
* Make sure the push send bit has cleared. This should
* already be the case as long as the caller makes sure
* this is called after the delayed vblank has occurred.
*/
if (dsb) {
int wait_us, count;
wait_us = 2;
count = 1;
/*
* If the bit hasn't cleared the DSB will
* raise the poll error interrupt.
*/
intel_dsb_poll(dsb, TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_SEND, 0, wait_us, count);
} else {
if (intel_vrr_is_push_sent(crtc_state))
drm_err(display->drm, "[CRTC:%d:%s] VRR push send still pending\n",
crtc->base.base.id, crtc->base.name);
}
}
bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return false;
return intel_de_read(display, TRANS_PUSH(display, cpu_transcoder)) & TRANS_PUSH_SEND;
}
bool intel_vrr_always_use_vrr_tg(struct intel_display *display)
{
if (!HAS_VRR(display))
return false;
if (DISPLAY_VER(display) >= 30)
return true;
return false;
}
void intel_vrr_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder),
crtc_state->vrr.vmin - 1);
intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder),
crtc_state->vrr.vmax - 1);
intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder),
crtc_state->vrr.flipline - 1);
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_EN);
if (!intel_vrr_always_use_vrr_tg(display)) {
if (crtc_state->cmrr.enable) {
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
VRR_CTL_VRR_ENABLE | VRR_CTL_CMRR_ENABLE |
trans_vrr_ctl(crtc_state));
} else {
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state));
}
}
}
void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
if (!old_crtc_state->vrr.enable)
return;
if (!intel_vrr_always_use_vrr_tg(display)) {
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
trans_vrr_ctl(old_crtc_state));
intel_de_wait_for_clear(display,
TRANS_VRR_STATUS(display, cpu_transcoder),
VRR_STATUS_VRR_EN_LIVE, 1000);
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0);
}
intel_vrr_set_fixed_rr_timings(old_crtc_state);
}
void intel_vrr_transcoder_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!HAS_VRR(display))
return;
if (!intel_vrr_possible(crtc_state))
return;
if (!intel_vrr_always_use_vrr_tg(display)) {
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
trans_vrr_ctl(crtc_state));
return;
}
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_EN);
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state));
}
void intel_vrr_transcoder_disable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!HAS_VRR(display))
return;
if (!intel_vrr_possible(crtc_state))
return;
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), 0);
intel_de_wait_for_clear(display, TRANS_VRR_STATUS(display, cpu_transcoder),
VRR_STATUS_VRR_EN_LIVE, 1000);
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0);
}
bool intel_vrr_is_fixed_rr(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.flipline &&
crtc_state->vrr.flipline == crtc_state->vrr.vmax &&
crtc_state->vrr.flipline == intel_vrr_vmin_flipline(crtc_state);
}
void intel_vrr_get_config(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 trans_vrr_ctl, trans_vrr_vsync;
bool vrr_enable;
trans_vrr_ctl = intel_de_read(display,
TRANS_VRR_CTL(display, cpu_transcoder));
if (HAS_CMRR(display))
crtc_state->cmrr.enable = (trans_vrr_ctl & VRR_CTL_CMRR_ENABLE);
if (crtc_state->cmrr.enable) {
crtc_state->cmrr.cmrr_n =
intel_de_read64_2x32(display, TRANS_CMRR_N_LO(display, cpu_transcoder),
TRANS_CMRR_N_HI(display, cpu_transcoder));
crtc_state->cmrr.cmrr_m =
intel_de_read64_2x32(display, TRANS_CMRR_M_LO(display, cpu_transcoder),
TRANS_CMRR_M_HI(display, cpu_transcoder));
}
if (DISPLAY_VER(display) >= 13)
crtc_state->vrr.guardband =
REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
else
if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
crtc_state->vrr.pipeline_full =
REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) {
crtc_state->vrr.flipline = intel_de_read(display,
TRANS_VRR_FLIPLINE(display, cpu_transcoder)) + 1;
crtc_state->vrr.vmax = intel_de_read(display,
TRANS_VRR_VMAX(display, cpu_transcoder)) + 1;
crtc_state->vrr.vmin = intel_de_read(display,
TRANS_VRR_VMIN(display, cpu_transcoder)) + 1;
/*
* For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal
* bits are not filled. Since for these platforms TRAN_VMIN is always
* filled with crtc_vtotal, use TRAN_VRR_VMIN to get the vtotal for
* adjusted_mode.
*/
if (intel_vrr_always_use_vrr_tg(display))
crtc_state->hw.adjusted_mode.crtc_vtotal =
intel_vrr_vmin_vtotal(crtc_state);
if (HAS_AS_SDP(display)) {
trans_vrr_vsync =
intel_de_read(display,
TRANS_VRR_VSYNC(display, cpu_transcoder));
crtc_state->vrr.vsync_start =
REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync);
crtc_state->vrr.vsync_end =
REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync);
}
}
vrr_enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
if (intel_vrr_always_use_vrr_tg(display))
crtc_state->vrr.enable = vrr_enable && !intel_vrr_is_fixed_rr(crtc_state);
else
crtc_state->vrr.enable = vrr_enable;
/*
* #TODO: For Both VRR and CMRR the flag I915_MODE_FLAG_VRR is set for mode_flags.
* Since CMRR is currently disabled, set this flag for VRR for now.
* Need to keep this in mind while re-enabling CMRR.
*/
if (crtc_state->vrr.enable)
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
|