1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>
#include <linux/types.h>
#include <linux/units.h>
#include "i915_drv.h"
#include "i915_hwmon.h"
#include "i915_reg.h"
#include "intel_mchbar_regs.h"
#include "intel_pcode.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_regs.h"
/*
* SF_* - scale factors for particular quantities according to hwmon spec.
* - voltage - millivolts
* - power - microwatts
* - curr - milliamperes
* - energy - microjoules
* - time - milliseconds
*/
#define SF_VOLTAGE 1000
#define SF_POWER 1000000
#define SF_CURR 1000
#define SF_ENERGY 1000000
#define SF_TIME 1000
struct hwm_reg {
i915_reg_t gt_perf_status;
i915_reg_t pkg_temp;
i915_reg_t pkg_power_sku_unit;
i915_reg_t pkg_power_sku;
i915_reg_t pkg_rapl_limit;
i915_reg_t energy_status_all;
i915_reg_t energy_status_tile;
i915_reg_t fan_speed;
};
struct hwm_energy_info {
u32 reg_val_prev;
long accum_energy; /* Accumulated energy for energy1_input */
};
struct hwm_fan_info {
u32 reg_val_prev;
u64 time_prev;
};
struct hwm_drvdata {
struct i915_hwmon *hwmon;
struct intel_uncore *uncore;
struct device *hwmon_dev;
struct hwm_energy_info ei; /* Energy info for energy1_input */
struct hwm_fan_info fi; /* Fan info for fan1_input */
char name[12];
int gt_n;
bool reset_in_progress;
wait_queue_head_t waitq;
};
struct i915_hwmon {
struct hwm_drvdata ddat;
struct hwm_drvdata ddat_gt[I915_MAX_GT];
struct mutex hwmon_lock; /* counter overflow logic and rmw */
struct hwm_reg rg;
int scl_shift_power;
int scl_shift_energy;
int scl_shift_time;
};
static void
hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat,
i915_reg_t reg, u32 clear, u32 set)
{
struct i915_hwmon *hwmon = ddat->hwmon;
struct intel_uncore *uncore = ddat->uncore;
intel_wakeref_t wakeref;
with_intel_runtime_pm(uncore->rpm, wakeref) {
mutex_lock(&hwmon->hwmon_lock);
intel_uncore_rmw(uncore, reg, clear, set);
mutex_unlock(&hwmon->hwmon_lock);
}
}
/*
* This function's return type of u64 allows for the case where the scaling
* of the field taken from the 32-bit register value might cause a result to
* exceed 32 bits.
*/
static u64
hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr,
u32 field_msk, int nshift, u32 scale_factor)
{
struct intel_uncore *uncore = ddat->uncore;
intel_wakeref_t wakeref;
u32 reg_value;
with_intel_runtime_pm(uncore->rpm, wakeref)
reg_value = intel_uncore_read(uncore, rgadr);
reg_value = REG_FIELD_GET(field_msk, reg_value);
return mul_u64_u32_shr(reg_value, scale_factor, nshift);
}
/*
* hwm_energy - Obtain energy value
*
* The underlying energy hardware register is 32-bits and is subject to
* overflow. How long before overflow? For example, with an example
* scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
* a power draw of 1000 watts, the 32-bit counter will overflow in
* approximately 4.36 minutes.
*
* Examples:
* 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
* 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
*
* The function significantly increases overflow duration (from 4.36
* minutes) by accumulating the energy register into a 'long' as allowed by
* the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
* a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
* hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
* energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
*/
static void
hwm_energy(struct hwm_drvdata *ddat, long *energy)
{
struct intel_uncore *uncore = ddat->uncore;
struct i915_hwmon *hwmon = ddat->hwmon;
struct hwm_energy_info *ei = &ddat->ei;
intel_wakeref_t wakeref;
i915_reg_t rgaddr;
u32 reg_val;
if (ddat->gt_n >= 0)
rgaddr = hwmon->rg.energy_status_tile;
else
rgaddr = hwmon->rg.energy_status_all;
with_intel_runtime_pm(uncore->rpm, wakeref) {
mutex_lock(&hwmon->hwmon_lock);
reg_val = intel_uncore_read(uncore, rgaddr);
if (reg_val >= ei->reg_val_prev)
ei->accum_energy += reg_val - ei->reg_val_prev;
else
ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
ei->reg_val_prev = reg_val;
*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
hwmon->scl_shift_energy);
mutex_unlock(&hwmon->hwmon_lock);
}
}
static ssize_t
hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
u32 r, x, y, x_w = 2; /* 2 bits */
u64 tau4, out;
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
/*
* tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
* = (4 | x) << (y - 2)
* where (y - 2) ensures a 1.x fixed point representation of 1.x
* However because y can be < 2, we compute
* tau4 = (4 | x) << y
* but add 2 when doing the final right shift to account for units
*/
tau4 = (u64)((1 << x_w) | x) << y;
/* val in hwmon interface units (millisec) */
out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
return sysfs_emit(buf, "%llu\n", out);
}
static ssize_t
hwm_power1_max_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
struct i915_hwmon *hwmon = ddat->hwmon;
u32 x, y, rxy, x_w = 2; /* 2 bits */
u64 tau4, r, max_win;
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
/*
* Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12
* The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds
*/
#define PKG_MAX_WIN_DEFAULT 0x12ull
/*
* val must be < max in hwmon interface units. The steps below are
* explained in i915_power1_max_interval_show()
*/
r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
tau4 = (u64)((1 << x_w) | x) << y;
max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
if (val > max_win)
return -EINVAL;
/* val in hw units */
val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
/* Convert to 1.x * power(2,y) */
if (!val) {
/* Avoid ilog2(0) */
y = 0;
x = 0;
} else {
y = ilog2(val);
/* x = (val - (1 << y)) >> (y - 2); */
x = (val - (1ul << y)) << x_w >> y;
}
rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_TIME, rxy);
return count;
}
static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
hwm_power1_max_interval_show,
hwm_power1_max_interval_store, 0);
static struct attribute *hwm_attributes[] = {
&sensor_dev_attr_power1_max_interval.dev_attr.attr,
NULL
};
static umode_t hwm_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
struct i915_hwmon *hwmon = ddat->hwmon;
if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr)
return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0;
return 0;
}
static const struct attribute_group hwm_attrgroup = {
.attrs = hwm_attributes,
.is_visible = hwm_attributes_visible,
};
static const struct attribute_group *hwm_groups[] = {
&hwm_attrgroup,
NULL
};
static const struct hwmon_channel_info * const hwm_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT),
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT),
HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT),
NULL
};
static const struct hwmon_channel_info * const hwm_gt_info[] = {
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
NULL
};
/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval)
{
/* Avoid ILLEGAL_SUBCOMMAND "mailbox access failed" warning in snb_pcode_read */
if (IS_DG1(i915) || IS_DG2(i915))
return -ENXIO;
return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval);
}
static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval)
{
return snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval);
}
static umode_t
hwm_temp_is_visible(const struct hwm_drvdata *ddat, u32 attr)
{
struct i915_hwmon *hwmon = ddat->hwmon;
if (attr == hwmon_temp_input && i915_mmio_reg_valid(hwmon->rg.pkg_temp))
return 0444;
return 0;
}
static int
hwm_temp_read(struct hwm_drvdata *ddat, u32 attr, long *val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
u32 reg_val;
switch (attr) {
case hwmon_temp_input:
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
reg_val = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_temp);
/* HW register value is in degrees Celsius, convert to millidegrees. */
*val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr)
{
struct drm_i915_private *i915 = ddat->uncore->i915;
switch (attr) {
case hwmon_in_input:
return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0;
default:
return 0;
}
}
static int
hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
u32 reg_value;
switch (attr) {
case hwmon_in_input:
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status);
/* HW register value in units of 2.5 millivolt */
*val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan)
{
struct drm_i915_private *i915 = ddat->uncore->i915;
struct i915_hwmon *hwmon = ddat->hwmon;
u32 uval;
switch (attr) {
case hwmon_power_max:
return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0;
case hwmon_power_rated_max:
return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0;
case hwmon_power_crit:
return (hwm_pcode_read_i1(i915, &uval) ||
!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
default:
return 0;
}
}
#define PL1_DISABLE 0
/*
* HW allows arbitrary PL1 limits to be set but silently clamps these values to
* "typical but not guaranteed" min/max values in rg.pkg_power_sku. Follow the
* same pattern for sysfs, allow arbitrary PL1 limits to be set but display
* clamped values when read. Write/read I1 also follows the same pattern.
*/
static int
hwm_power_max_read(struct hwm_drvdata *ddat, long *val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
u64 r, min, max;
/* Check if PL1 limit is disabled */
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
if (!(r & PKG_PWR_LIM_1_EN)) {
*val = PL1_DISABLE;
return 0;
}
*val = hwm_field_read_and_scale(ddat,
hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1,
hwmon->scl_shift_power,
SF_POWER);
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
r = intel_uncore_read64(ddat->uncore, hwmon->rg.pkg_power_sku);
min = REG_FIELD_GET(PKG_MIN_PWR, r);
min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
max = REG_FIELD_GET(PKG_MAX_PWR, r);
max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
if (min && max)
*val = clamp_t(u64, *val, min, max);
return 0;
}
static int
hwm_power_max_write(struct hwm_drvdata *ddat, long val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
DEFINE_WAIT(wait);
int ret = 0;
u32 nval;
/* Block waiting for GuC reset to complete when needed */
for (;;) {
wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
mutex_lock(&hwmon->hwmon_lock);
prepare_to_wait(&ddat->waitq, &wait, TASK_INTERRUPTIBLE);
if (!hwmon->ddat.reset_in_progress)
break;
if (signal_pending(current)) {
ret = -EINTR;
break;
}
mutex_unlock(&hwmon->hwmon_lock);
intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
schedule();
}
finish_wait(&ddat->waitq, &wait);
if (ret)
goto exit;
/* Disable PL1 limit and verify, because the limit cannot be disabled on all platforms */
if (val == PL1_DISABLE) {
intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_EN, 0);
nval = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
if (nval & PKG_PWR_LIM_1_EN)
ret = -ENODEV;
goto exit;
}
/* Computation in 64-bits to avoid overflow. Round to nearest. */
nval = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_power, SF_POWER);
nval = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, nval);
intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, nval);
exit:
mutex_unlock(&hwmon->hwmon_lock);
intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
return ret;
}
static int
hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
int ret;
u32 uval;
switch (attr) {
case hwmon_power_max:
return hwm_power_max_read(ddat, val);
case hwmon_power_rated_max:
*val = hwm_field_read_and_scale(ddat,
hwmon->rg.pkg_power_sku,
PKG_PKG_TDP,
hwmon->scl_shift_power,
SF_POWER);
return 0;
case hwmon_power_crit:
ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
if (ret)
return ret;
if (!(uval & POWER_SETUP_I1_WATTS))
return -ENODEV;
*val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
SF_POWER, POWER_SETUP_I1_SHIFT);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int
hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val)
{
u32 uval;
switch (attr) {
case hwmon_power_max:
return hwm_power_max_write(ddat, val);
case hwmon_power_crit:
uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER);
return hwm_pcode_write_i1(ddat->uncore->i915, uval);
default:
return -EOPNOTSUPP;
}
}
void i915_hwmon_power_max_disable(struct drm_i915_private *i915, bool *old)
{
struct i915_hwmon *hwmon = i915->hwmon;
u32 r;
if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
return;
mutex_lock(&hwmon->hwmon_lock);
hwmon->ddat.reset_in_progress = true;
r = intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_EN, 0);
*old = !!(r & PKG_PWR_LIM_1_EN);
mutex_unlock(&hwmon->hwmon_lock);
}
void i915_hwmon_power_max_restore(struct drm_i915_private *i915, bool old)
{
struct i915_hwmon *hwmon = i915->hwmon;
if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
return;
mutex_lock(&hwmon->hwmon_lock);
intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_EN, old ? PKG_PWR_LIM_1_EN : 0);
hwmon->ddat.reset_in_progress = false;
wake_up_all(&hwmon->ddat.waitq);
mutex_unlock(&hwmon->hwmon_lock);
}
static umode_t
hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr)
{
struct i915_hwmon *hwmon = ddat->hwmon;
i915_reg_t rgaddr;
switch (attr) {
case hwmon_energy_input:
if (ddat->gt_n >= 0)
rgaddr = hwmon->rg.energy_status_tile;
else
rgaddr = hwmon->rg.energy_status_all;
return i915_mmio_reg_valid(rgaddr) ? 0444 : 0;
default:
return 0;
}
}
static int
hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val)
{
switch (attr) {
case hwmon_energy_input:
hwm_energy(ddat, val);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr)
{
struct drm_i915_private *i915 = ddat->uncore->i915;
u32 uval;
switch (attr) {
case hwmon_curr_crit:
return (hwm_pcode_read_i1(i915, &uval) ||
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
default:
return 0;
}
}
static int
hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val)
{
int ret;
u32 uval;
switch (attr) {
case hwmon_curr_crit:
ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
if (ret)
return ret;
if (uval & POWER_SETUP_I1_WATTS)
return -ENODEV;
*val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
SF_CURR, POWER_SETUP_I1_SHIFT);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int
hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val)
{
u32 uval;
switch (attr) {
case hwmon_curr_crit:
uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR);
return hwm_pcode_write_i1(ddat->uncore->i915, uval);
default:
return -EOPNOTSUPP;
}
}
static umode_t
hwm_fan_is_visible(const struct hwm_drvdata *ddat, u32 attr)
{
struct i915_hwmon *hwmon = ddat->hwmon;
if (attr == hwmon_fan_input && i915_mmio_reg_valid(hwmon->rg.fan_speed))
return 0444;
return 0;
}
static int
hwm_fan_input_read(struct hwm_drvdata *ddat, long *val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
struct hwm_fan_info *fi = &ddat->fi;
u64 rotations, time_now, time;
intel_wakeref_t wakeref;
u32 reg_val;
int ret = 0;
wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
mutex_lock(&hwmon->hwmon_lock);
reg_val = intel_uncore_read(ddat->uncore, hwmon->rg.fan_speed);
time_now = get_jiffies_64();
/*
* HW register value is accumulated count of pulses from
* PWM fan with the scale of 2 pulses per rotation.
*/
rotations = (reg_val - fi->reg_val_prev) / 2;
time = jiffies_delta_to_msecs(time_now - fi->time_prev);
if (unlikely(!time)) {
ret = -EAGAIN;
goto exit;
}
/*
* Calculate fan speed in RPM by time averaging two subsequent
* readings in minutes.
* RPM = number of rotations * msecs per minute / time in msecs
*/
*val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
fi->reg_val_prev = reg_val;
fi->time_prev = time_now;
exit:
mutex_unlock(&hwmon->hwmon_lock);
intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
return ret;
}
static int
hwm_fan_read(struct hwm_drvdata *ddat, u32 attr, long *val)
{
if (attr == hwmon_fan_input)
return hwm_fan_input_read(ddat, val);
return -EOPNOTSUPP;
}
static umode_t
hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
switch (type) {
case hwmon_temp:
return hwm_temp_is_visible(ddat, attr);
case hwmon_in:
return hwm_in_is_visible(ddat, attr);
case hwmon_power:
return hwm_power_is_visible(ddat, attr, channel);
case hwmon_energy:
return hwm_energy_is_visible(ddat, attr);
case hwmon_curr:
return hwm_curr_is_visible(ddat, attr);
case hwmon_fan:
return hwm_fan_is_visible(ddat, attr);
default:
return 0;
}
}
static int
hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
switch (type) {
case hwmon_temp:
return hwm_temp_read(ddat, attr, val);
case hwmon_in:
return hwm_in_read(ddat, attr, val);
case hwmon_power:
return hwm_power_read(ddat, attr, channel, val);
case hwmon_energy:
return hwm_energy_read(ddat, attr, val);
case hwmon_curr:
return hwm_curr_read(ddat, attr, val);
case hwmon_fan:
return hwm_fan_read(ddat, attr, val);
default:
return -EOPNOTSUPP;
}
}
static int
hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long val)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
switch (type) {
case hwmon_power:
return hwm_power_write(ddat, attr, channel, val);
case hwmon_curr:
return hwm_curr_write(ddat, attr, val);
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops hwm_ops = {
.is_visible = hwm_is_visible,
.read = hwm_read,
.write = hwm_write,
};
static const struct hwmon_chip_info hwm_chip_info = {
.ops = &hwm_ops,
.info = hwm_info,
};
static umode_t
hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
switch (type) {
case hwmon_energy:
return hwm_energy_is_visible(ddat, attr);
default:
return 0;
}
}
static int
hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
switch (type) {
case hwmon_energy:
return hwm_energy_read(ddat, attr, val);
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops hwm_gt_ops = {
.is_visible = hwm_gt_is_visible,
.read = hwm_gt_read,
};
static const struct hwmon_chip_info hwm_gt_chip_info = {
.ops = &hwm_gt_ops,
.info = hwm_gt_info,
};
static void
hwm_get_preregistration_info(struct drm_i915_private *i915)
{
struct i915_hwmon *hwmon = i915->hwmon;
struct intel_uncore *uncore = &i915->uncore;
struct hwm_drvdata *ddat = &hwmon->ddat;
intel_wakeref_t wakeref;
u32 val_sku_unit = 0;
struct intel_gt *gt;
long energy;
int i;
/* Available for all Gen12+/dGfx */
hwmon->rg.gt_perf_status = GEN12_RPSTAT1;
if (IS_DG1(i915) || IS_DG2(i915)) {
hwmon->rg.pkg_temp = PCU_PACKAGE_TEMPERATURE;
hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT;
hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU;
hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT;
hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS;
hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
hwmon->rg.fan_speed = PCU_PWM_FAN_SPEED;
} else {
hwmon->rg.pkg_temp = INVALID_MMIO_REG;
hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG;
hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG;
hwmon->rg.energy_status_all = INVALID_MMIO_REG;
hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
hwmon->rg.fan_speed = INVALID_MMIO_REG;
}
with_intel_runtime_pm(uncore->rpm, wakeref) {
/*
* The contents of register hwmon->rg.pkg_power_sku_unit do not change,
* so read it once and store the shift values.
*/
if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit))
val_sku_unit = intel_uncore_read(uncore,
hwmon->rg.pkg_power_sku_unit);
/*
* Store the initial fan register value, so that we can use it for
* initial fan speed calculation.
*/
if (i915_mmio_reg_valid(hwmon->rg.fan_speed)) {
ddat->fi.reg_val_prev = intel_uncore_read(uncore,
hwmon->rg.fan_speed);
ddat->fi.time_prev = get_jiffies_64();
}
}
hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
/*
* Initialize 'struct hwm_energy_info', i.e. set fields to the
* first value of the energy register read
*/
if (i915_mmio_reg_valid(hwmon->rg.energy_status_all))
hwm_energy(ddat, &energy);
if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) {
for_each_gt(gt, i915, i)
hwm_energy(&hwmon->ddat_gt[i], &energy);
}
}
void i915_hwmon_register(struct drm_i915_private *i915)
{
struct device *dev = i915->drm.dev;
struct i915_hwmon *hwmon;
struct device *hwmon_dev;
struct hwm_drvdata *ddat;
struct hwm_drvdata *ddat_gt;
struct intel_gt *gt;
int i;
/* hwmon is available only for dGfx */
if (!IS_DGFX(i915))
return;
hwmon = kzalloc(sizeof(*hwmon), GFP_KERNEL);
if (!hwmon)
return;
i915->hwmon = hwmon;
mutex_init(&hwmon->hwmon_lock);
ddat = &hwmon->ddat;
ddat->hwmon = hwmon;
ddat->uncore = &i915->uncore;
snprintf(ddat->name, sizeof(ddat->name), "i915");
ddat->gt_n = -1;
init_waitqueue_head(&ddat->waitq);
for_each_gt(gt, i915, i) {
ddat_gt = hwmon->ddat_gt + i;
ddat_gt->hwmon = hwmon;
ddat_gt->uncore = gt->uncore;
snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i);
ddat_gt->gt_n = i;
}
hwm_get_preregistration_info(i915);
/* hwmon_dev points to device hwmon<i> */
hwmon_dev = hwmon_device_register_with_info(dev, ddat->name,
ddat,
&hwm_chip_info,
hwm_groups);
if (IS_ERR(hwmon_dev))
goto err;
ddat->hwmon_dev = hwmon_dev;
for_each_gt(gt, i915, i) {
ddat_gt = hwmon->ddat_gt + i;
/*
* Create per-gt directories only if a per-gt attribute is
* visible. Currently this is only energy
*/
if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0))
continue;
hwmon_dev = hwmon_device_register_with_info(dev, ddat_gt->name,
ddat_gt,
&hwm_gt_chip_info,
NULL);
if (!IS_ERR(hwmon_dev))
ddat_gt->hwmon_dev = hwmon_dev;
}
return;
err:
i915_hwmon_unregister(i915);
}
void i915_hwmon_unregister(struct drm_i915_private *i915)
{
struct i915_hwmon *hwmon = i915->hwmon;
struct intel_gt *gt;
int i;
if (!hwmon)
return;
for_each_gt(gt, i915, i)
if (hwmon->ddat_gt[i].hwmon_dev)
hwmon_device_unregister(hwmon->ddat_gt[i].hwmon_dev);
if (hwmon->ddat.hwmon_dev)
hwmon_device_unregister(hwmon->ddat.hwmon_dev);
mutex_destroy(&hwmon->hwmon_lock);
kfree(i915->hwmon);
i915->hwmon = NULL;
}
|