1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
#include <drm/panfrost_drm.h>
#include <linux/atomic.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/io-pgtable.h>
#include <linux/iommu.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/shmem_fs.h>
#include <linux/sizes.h>
#include "panfrost_device.h"
#include "panfrost_mmu.h"
#include "panfrost_gem.h"
#include "panfrost_features.h"
#include "panfrost_regs.h"
#define mmu_write(dev, reg, data) writel(data, dev->iomem + reg)
#define mmu_read(dev, reg) readl(dev->iomem + reg)
static u64 mair_to_memattr(u64 mair, bool coherent)
{
u64 memattr = 0;
u32 i;
for (i = 0; i < 8; i++) {
u8 in_attr = mair >> (8 * i), out_attr;
u8 outer = in_attr >> 4, inner = in_attr & 0xf;
/* For caching to be enabled, inner and outer caching policy
* have to be both write-back, if one of them is write-through
* or non-cacheable, we just choose non-cacheable. Device
* memory is also translated to non-cacheable.
*/
if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
} else {
out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
/* Use SH_MIDGARD_INNER mode when device isn't coherent,
* so SH_IS, which is used when IOMMU_CACHE is set, maps
* to Mali's internal-shareable mode. As per the Mali
* Spec, inner and outer-shareable modes aren't allowed
* for WB memory when coherency is disabled.
* Use SH_CPU_INNER mode when coherency is enabled, so
* that SH_IS actually maps to the standard definition of
* inner-shareable.
*/
if (!coherent)
out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER;
else
out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER;
}
memattr |= (u64)out_attr << (8 * i);
}
return memattr;
}
static int wait_ready(struct panfrost_device *pfdev, u32 as_nr)
{
int ret;
u32 val;
/* Wait for the MMU status to indicate there is no active command, in
* case one is pending. */
ret = readl_relaxed_poll_timeout_atomic(pfdev->iomem + AS_STATUS(as_nr),
val, !(val & AS_STATUS_AS_ACTIVE), 10, 100000);
if (ret) {
/* The GPU hung, let's trigger a reset */
panfrost_device_schedule_reset(pfdev);
dev_err(pfdev->dev, "AS_ACTIVE bit stuck\n");
}
return ret;
}
static int write_cmd(struct panfrost_device *pfdev, u32 as_nr, u32 cmd)
{
int status;
/* write AS_COMMAND when MMU is ready to accept another command */
status = wait_ready(pfdev, as_nr);
if (!status)
mmu_write(pfdev, AS_COMMAND(as_nr), cmd);
return status;
}
static void lock_region(struct panfrost_device *pfdev, u32 as_nr,
u64 region_start, u64 size)
{
u8 region_width;
u64 region;
u64 region_end = region_start + size;
if (!size)
return;
/*
* The locked region is a naturally aligned power of 2 block encoded as
* log2 minus(1).
* Calculate the desired start/end and look for the highest bit which
* differs. The smallest naturally aligned block must include this bit
* change, the desired region starts with this bit (and subsequent bits)
* zeroed and ends with the bit (and subsequent bits) set to one.
*/
region_width = max(fls64(region_start ^ (region_end - 1)),
const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
/*
* Mask off the low bits of region_start (which would be ignored by
* the hardware anyway)
*/
region_start &= GENMASK_ULL(63, region_width);
region = region_width | region_start;
/* Lock the region that needs to be updated */
mmu_write(pfdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
mmu_write(pfdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
write_cmd(pfdev, as_nr, AS_COMMAND_LOCK);
}
static int mmu_hw_do_operation_locked(struct panfrost_device *pfdev, int as_nr,
u64 iova, u64 size, u32 op)
{
if (as_nr < 0)
return 0;
if (op != AS_COMMAND_UNLOCK)
lock_region(pfdev, as_nr, iova, size);
/* Run the MMU operation */
write_cmd(pfdev, as_nr, op);
/* Wait for the flush to complete */
return wait_ready(pfdev, as_nr);
}
static int mmu_hw_do_operation(struct panfrost_device *pfdev,
struct panfrost_mmu *mmu,
u64 iova, u64 size, u32 op)
{
int ret;
spin_lock(&pfdev->as_lock);
ret = mmu_hw_do_operation_locked(pfdev, mmu->as, iova, size, op);
spin_unlock(&pfdev->as_lock);
return ret;
}
static void panfrost_mmu_enable(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
{
int as_nr = mmu->as;
u64 transtab = mmu->cfg.transtab;
u64 memattr = mmu->cfg.memattr;
u64 transcfg = mmu->cfg.transcfg;
mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
/* Need to revisit mem attrs.
* NC is the default, Mali driver is inner WT.
*/
mmu_write(pfdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
mmu_write(pfdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
mmu_write(pfdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
mmu_write(pfdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE);
}
static void panfrost_mmu_disable(struct panfrost_device *pfdev, u32 as_nr)
{
mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), 0);
mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), 0);
mmu_write(pfdev, AS_MEMATTR_LO(as_nr), 0);
mmu_write(pfdev, AS_MEMATTR_HI(as_nr), 0);
mmu_write(pfdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
mmu_write(pfdev, AS_TRANSCFG_HI(as_nr), 0);
write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE);
}
static int mmu_cfg_init_mali_lpae(struct panfrost_mmu *mmu)
{
struct io_pgtable_cfg *pgtbl_cfg = &mmu->pgtbl_cfg;
/* TODO: The following fields are duplicated between the MMU and Page
* Table config structs. Ideally, should be kept in one place.
*/
mmu->cfg.transtab = pgtbl_cfg->arm_mali_lpae_cfg.transtab;
mmu->cfg.memattr = pgtbl_cfg->arm_mali_lpae_cfg.memattr;
mmu->cfg.transcfg = AS_TRANSCFG_ADRMODE_LEGACY;
return 0;
}
static int mmu_cfg_init_aarch64_4k(struct panfrost_mmu *mmu)
{
struct io_pgtable_cfg *pgtbl_cfg = &mmu->pgtbl_cfg;
struct panfrost_device *pfdev = mmu->pfdev;
if (drm_WARN_ON(pfdev->ddev, pgtbl_cfg->arm_lpae_s1_cfg.ttbr &
~AS_TRANSTAB_AARCH64_4K_ADDR_MASK))
return -EINVAL;
mmu->cfg.transtab = pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
mmu->cfg.memattr = mair_to_memattr(pgtbl_cfg->arm_lpae_s1_cfg.mair,
pgtbl_cfg->coherent_walk);
mmu->cfg.transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
AS_TRANSCFG_PTW_RA |
AS_TRANSCFG_ADRMODE_AARCH64_4K |
AS_TRANSCFG_INA_BITS(55 - pgtbl_cfg->ias);
if (pgtbl_cfg->coherent_walk)
mmu->cfg.transcfg |= AS_TRANSCFG_PTW_SH_OS;
return 0;
}
static int panfrost_mmu_cfg_init(struct panfrost_mmu *mmu,
enum io_pgtable_fmt fmt)
{
struct panfrost_device *pfdev = mmu->pfdev;
switch (fmt) {
case ARM_64_LPAE_S1:
return mmu_cfg_init_aarch64_4k(mmu);
case ARM_MALI_LPAE:
return mmu_cfg_init_mali_lpae(mmu);
default:
/* This should never happen */
drm_WARN(pfdev->ddev, 1, "Invalid pgtable format");
return -EINVAL;
}
}
u32 panfrost_mmu_as_get(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
{
int as;
spin_lock(&pfdev->as_lock);
as = mmu->as;
if (as >= 0) {
int en = atomic_inc_return(&mmu->as_count);
u32 mask = BIT(as) | BIT(16 + as);
/*
* AS can be retained by active jobs or a perfcnt context,
* hence the '+ 1' here.
*/
WARN_ON(en >= (NUM_JOB_SLOTS + 1));
list_move(&mmu->list, &pfdev->as_lru_list);
if (pfdev->as_faulty_mask & mask) {
/* Unhandled pagefault on this AS, the MMU was
* disabled. We need to re-enable the MMU after
* clearing+unmasking the AS interrupts.
*/
mmu_write(pfdev, MMU_INT_CLEAR, mask);
mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask);
pfdev->as_faulty_mask &= ~mask;
panfrost_mmu_enable(pfdev, mmu);
}
goto out;
}
/* Check for a free AS */
as = ffz(pfdev->as_alloc_mask);
if (!(BIT(as) & pfdev->features.as_present)) {
struct panfrost_mmu *lru_mmu;
list_for_each_entry_reverse(lru_mmu, &pfdev->as_lru_list, list) {
if (!atomic_read(&lru_mmu->as_count))
break;
}
WARN_ON(&lru_mmu->list == &pfdev->as_lru_list);
list_del_init(&lru_mmu->list);
as = lru_mmu->as;
WARN_ON(as < 0);
lru_mmu->as = -1;
}
/* Assign the free or reclaimed AS to the FD */
mmu->as = as;
set_bit(as, &pfdev->as_alloc_mask);
atomic_set(&mmu->as_count, 1);
list_add(&mmu->list, &pfdev->as_lru_list);
dev_dbg(pfdev->dev, "Assigned AS%d to mmu %p, alloc_mask=%lx", as, mmu, pfdev->as_alloc_mask);
panfrost_mmu_enable(pfdev, mmu);
out:
spin_unlock(&pfdev->as_lock);
return as;
}
void panfrost_mmu_as_put(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
{
atomic_dec(&mmu->as_count);
WARN_ON(atomic_read(&mmu->as_count) < 0);
}
void panfrost_mmu_reset(struct panfrost_device *pfdev)
{
struct panfrost_mmu *mmu, *mmu_tmp;
clear_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended);
spin_lock(&pfdev->as_lock);
pfdev->as_alloc_mask = 0;
pfdev->as_faulty_mask = 0;
list_for_each_entry_safe(mmu, mmu_tmp, &pfdev->as_lru_list, list) {
mmu->as = -1;
atomic_set(&mmu->as_count, 0);
list_del_init(&mmu->list);
}
spin_unlock(&pfdev->as_lock);
mmu_write(pfdev, MMU_INT_CLEAR, ~0);
mmu_write(pfdev, MMU_INT_MASK, ~0);
}
static size_t get_pgsize(u64 addr, size_t size, size_t *count)
{
/*
* io-pgtable only operates on multiple pages within a single table
* entry, so we need to split at boundaries of the table size, i.e.
* the next block size up. The distance from address A to the next
* boundary of block size B is logically B - A % B, but in unsigned
* two's complement where B is a power of two we get the equivalence
* B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
*/
size_t blk_offset = -addr % SZ_2M;
if (blk_offset || size < SZ_2M) {
*count = min_not_zero(blk_offset, size) / SZ_4K;
return SZ_4K;
}
blk_offset = -addr % SZ_1G ?: SZ_1G;
*count = min(blk_offset, size) / SZ_2M;
return SZ_2M;
}
static void panfrost_mmu_flush_range(struct panfrost_device *pfdev,
struct panfrost_mmu *mmu,
u64 iova, u64 size)
{
if (mmu->as < 0)
return;
pm_runtime_get_noresume(pfdev->dev);
/* Flush the PTs only if we're already awake */
if (pm_runtime_active(pfdev->dev))
mmu_hw_do_operation(pfdev, mmu, iova, size, AS_COMMAND_FLUSH_PT);
pm_runtime_put_autosuspend(pfdev->dev);
}
static int mmu_map_sg(struct panfrost_device *pfdev, struct panfrost_mmu *mmu,
u64 iova, int prot, struct sg_table *sgt)
{
unsigned int count;
struct scatterlist *sgl;
struct io_pgtable_ops *ops = mmu->pgtbl_ops;
u64 start_iova = iova;
for_each_sgtable_dma_sg(sgt, sgl, count) {
unsigned long paddr = sg_dma_address(sgl);
size_t len = sg_dma_len(sgl);
dev_dbg(pfdev->dev, "map: as=%d, iova=%llx, paddr=%lx, len=%zx", mmu->as, iova, paddr, len);
while (len) {
size_t pgcount, mapped = 0;
size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
GFP_KERNEL, &mapped);
/* Don't get stuck if things have gone wrong */
mapped = max(mapped, pgsize);
iova += mapped;
paddr += mapped;
len -= mapped;
}
}
panfrost_mmu_flush_range(pfdev, mmu, start_iova, iova - start_iova);
return 0;
}
int panfrost_mmu_map(struct panfrost_gem_mapping *mapping)
{
struct panfrost_gem_object *bo = mapping->obj;
struct drm_gem_shmem_object *shmem = &bo->base;
struct drm_gem_object *obj = &shmem->base;
struct panfrost_device *pfdev = to_panfrost_device(obj->dev);
struct sg_table *sgt;
int prot = IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE;
if (WARN_ON(mapping->active))
return 0;
if (bo->noexec)
prot |= IOMMU_NOEXEC;
sgt = drm_gem_shmem_get_pages_sgt(shmem);
if (WARN_ON(IS_ERR(sgt)))
return PTR_ERR(sgt);
mmu_map_sg(pfdev, mapping->mmu, mapping->mmnode.start << PAGE_SHIFT,
prot, sgt);
mapping->active = true;
return 0;
}
void panfrost_mmu_unmap(struct panfrost_gem_mapping *mapping)
{
struct panfrost_gem_object *bo = mapping->obj;
struct drm_gem_object *obj = &bo->base.base;
struct panfrost_device *pfdev = to_panfrost_device(obj->dev);
struct io_pgtable_ops *ops = mapping->mmu->pgtbl_ops;
u64 iova = mapping->mmnode.start << PAGE_SHIFT;
size_t len = mapping->mmnode.size << PAGE_SHIFT;
size_t unmapped_len = 0;
if (WARN_ON(!mapping->active))
return;
dev_dbg(pfdev->dev, "unmap: as=%d, iova=%llx, len=%zx",
mapping->mmu->as, iova, len);
while (unmapped_len < len) {
size_t unmapped_page, pgcount;
size_t pgsize = get_pgsize(iova, len - unmapped_len, &pgcount);
if (bo->is_heap)
pgcount = 1;
if (!bo->is_heap || ops->iova_to_phys(ops, iova)) {
unmapped_page = ops->unmap_pages(ops, iova, pgsize, pgcount, NULL);
WARN_ON(unmapped_page != pgsize * pgcount);
}
iova += pgsize * pgcount;
unmapped_len += pgsize * pgcount;
}
panfrost_mmu_flush_range(pfdev, mapping->mmu,
mapping->mmnode.start << PAGE_SHIFT, len);
mapping->active = false;
}
static void mmu_tlb_inv_context_s1(void *cookie)
{}
static void mmu_tlb_sync_context(void *cookie)
{
//struct panfrost_mmu *mmu = cookie;
// TODO: Wait 1000 GPU cycles for HW_ISSUE_6367/T60X
}
static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule,
void *cookie)
{
mmu_tlb_sync_context(cookie);
}
static const struct iommu_flush_ops mmu_tlb_ops = {
.tlb_flush_all = mmu_tlb_inv_context_s1,
.tlb_flush_walk = mmu_tlb_flush_walk,
};
static struct panfrost_gem_mapping *
addr_to_mapping(struct panfrost_device *pfdev, int as, u64 addr)
{
struct panfrost_gem_mapping *mapping = NULL;
struct drm_mm_node *node;
u64 offset = addr >> PAGE_SHIFT;
struct panfrost_mmu *mmu;
spin_lock(&pfdev->as_lock);
list_for_each_entry(mmu, &pfdev->as_lru_list, list) {
if (as == mmu->as)
goto found_mmu;
}
goto out;
found_mmu:
spin_lock(&mmu->mm_lock);
drm_mm_for_each_node(node, &mmu->mm) {
if (offset >= node->start &&
offset < (node->start + node->size)) {
mapping = drm_mm_node_to_panfrost_mapping(node);
kref_get(&mapping->refcount);
break;
}
}
spin_unlock(&mmu->mm_lock);
out:
spin_unlock(&pfdev->as_lock);
return mapping;
}
#define NUM_FAULT_PAGES (SZ_2M / PAGE_SIZE)
static int panfrost_mmu_map_fault_addr(struct panfrost_device *pfdev, int as,
u64 addr)
{
int ret, i;
struct panfrost_gem_mapping *bomapping;
struct panfrost_gem_object *bo;
struct address_space *mapping;
struct drm_gem_object *obj;
pgoff_t page_offset;
struct sg_table *sgt;
struct page **pages;
bomapping = addr_to_mapping(pfdev, as, addr);
if (!bomapping)
return -ENOENT;
bo = bomapping->obj;
if (!bo->is_heap) {
dev_WARN(pfdev->dev, "matching BO is not heap type (GPU VA = %llx)",
bomapping->mmnode.start << PAGE_SHIFT);
ret = -EINVAL;
goto err_bo;
}
WARN_ON(bomapping->mmu->as != as);
/* Assume 2MB alignment and size multiple */
addr &= ~((u64)SZ_2M - 1);
page_offset = addr >> PAGE_SHIFT;
page_offset -= bomapping->mmnode.start;
obj = &bo->base.base;
dma_resv_lock(obj->resv, NULL);
if (!bo->base.pages) {
bo->sgts = kvmalloc_array(bo->base.base.size / SZ_2M,
sizeof(struct sg_table), GFP_KERNEL | __GFP_ZERO);
if (!bo->sgts) {
ret = -ENOMEM;
goto err_unlock;
}
pages = kvmalloc_array(bo->base.base.size >> PAGE_SHIFT,
sizeof(struct page *), GFP_KERNEL | __GFP_ZERO);
if (!pages) {
kvfree(bo->sgts);
bo->sgts = NULL;
ret = -ENOMEM;
goto err_unlock;
}
bo->base.pages = pages;
refcount_set(&bo->base.pages_use_count, 1);
} else {
pages = bo->base.pages;
if (pages[page_offset]) {
/* Pages are already mapped, bail out. */
goto out;
}
}
mapping = bo->base.base.filp->f_mapping;
mapping_set_unevictable(mapping);
for (i = page_offset; i < page_offset + NUM_FAULT_PAGES; i++) {
/* Can happen if the last fault only partially filled this
* section of the pages array before failing. In that case
* we skip already filled pages.
*/
if (pages[i])
continue;
pages[i] = shmem_read_mapping_page(mapping, i);
if (IS_ERR(pages[i])) {
ret = PTR_ERR(pages[i]);
pages[i] = NULL;
goto err_unlock;
}
}
sgt = &bo->sgts[page_offset / (SZ_2M / PAGE_SIZE)];
ret = sg_alloc_table_from_pages(sgt, pages + page_offset,
NUM_FAULT_PAGES, 0, SZ_2M, GFP_KERNEL);
if (ret)
goto err_unlock;
ret = dma_map_sgtable(pfdev->dev, sgt, DMA_BIDIRECTIONAL, 0);
if (ret)
goto err_map;
mmu_map_sg(pfdev, bomapping->mmu, addr,
IOMMU_WRITE | IOMMU_READ | IOMMU_CACHE | IOMMU_NOEXEC, sgt);
bomapping->active = true;
bo->heap_rss_size += SZ_2M;
dev_dbg(pfdev->dev, "mapped page fault @ AS%d %llx", as, addr);
out:
dma_resv_unlock(obj->resv);
panfrost_gem_mapping_put(bomapping);
return 0;
err_map:
sg_free_table(sgt);
err_unlock:
dma_resv_unlock(obj->resv);
err_bo:
panfrost_gem_mapping_put(bomapping);
return ret;
}
static void panfrost_mmu_release_ctx(struct kref *kref)
{
struct panfrost_mmu *mmu = container_of(kref, struct panfrost_mmu,
refcount);
struct panfrost_device *pfdev = mmu->pfdev;
spin_lock(&pfdev->as_lock);
if (mmu->as >= 0) {
pm_runtime_get_noresume(pfdev->dev);
if (pm_runtime_active(pfdev->dev))
panfrost_mmu_disable(pfdev, mmu->as);
pm_runtime_put_autosuspend(pfdev->dev);
clear_bit(mmu->as, &pfdev->as_alloc_mask);
clear_bit(mmu->as, &pfdev->as_in_use_mask);
list_del(&mmu->list);
}
spin_unlock(&pfdev->as_lock);
free_io_pgtable_ops(mmu->pgtbl_ops);
drm_mm_takedown(&mmu->mm);
kfree(mmu);
}
void panfrost_mmu_ctx_put(struct panfrost_mmu *mmu)
{
kref_put(&mmu->refcount, panfrost_mmu_release_ctx);
}
struct panfrost_mmu *panfrost_mmu_ctx_get(struct panfrost_mmu *mmu)
{
kref_get(&mmu->refcount);
return mmu;
}
#define PFN_4G (SZ_4G >> PAGE_SHIFT)
#define PFN_4G_MASK (PFN_4G - 1)
#define PFN_16M (SZ_16M >> PAGE_SHIFT)
static void panfrost_drm_mm_color_adjust(const struct drm_mm_node *node,
unsigned long color,
u64 *start, u64 *end)
{
/* Executable buffers can't start or end on a 4GB boundary */
if (!(color & PANFROST_BO_NOEXEC)) {
u64 next_seg;
if ((*start & PFN_4G_MASK) == 0)
(*start)++;
if ((*end & PFN_4G_MASK) == 0)
(*end)--;
next_seg = ALIGN(*start, PFN_4G);
if (next_seg - *start <= PFN_16M)
*start = next_seg + 1;
*end = min(*end, ALIGN(*start, PFN_4G) - 1);
}
}
struct panfrost_mmu *panfrost_mmu_ctx_create(struct panfrost_device *pfdev)
{
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(pfdev->features.mmu_features);
u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(pfdev->features.mmu_features);
struct panfrost_mmu *mmu;
enum io_pgtable_fmt fmt;
int ret;
if (pfdev->comp->gpu_quirks & BIT(GPU_QUIRK_FORCE_AARCH64_PGTABLE)) {
if (!panfrost_has_hw_feature(pfdev, HW_FEATURE_AARCH64_MMU)) {
dev_err_once(pfdev->dev,
"AARCH64_4K page table not supported\n");
return ERR_PTR(-EINVAL);
}
fmt = ARM_64_LPAE_S1;
} else {
fmt = ARM_MALI_LPAE;
}
mmu = kzalloc(sizeof(*mmu), GFP_KERNEL);
if (!mmu)
return ERR_PTR(-ENOMEM);
mmu->pfdev = pfdev;
spin_lock_init(&mmu->mm_lock);
/* 4G enough for now. can be 48-bit */
drm_mm_init(&mmu->mm, SZ_32M >> PAGE_SHIFT, (SZ_4G - SZ_32M) >> PAGE_SHIFT);
mmu->mm.color_adjust = panfrost_drm_mm_color_adjust;
INIT_LIST_HEAD(&mmu->list);
mmu->as = -1;
mmu->pgtbl_cfg = (struct io_pgtable_cfg) {
.pgsize_bitmap = SZ_4K | SZ_2M,
.ias = va_bits,
.oas = pa_bits,
.coherent_walk = pfdev->coherent,
.tlb = &mmu_tlb_ops,
.iommu_dev = pfdev->dev,
};
mmu->pgtbl_ops = alloc_io_pgtable_ops(fmt, &mmu->pgtbl_cfg, mmu);
if (!mmu->pgtbl_ops) {
ret = -EINVAL;
goto err_free_mmu;
}
ret = panfrost_mmu_cfg_init(mmu, fmt);
if (ret)
goto err_free_io_pgtable;
kref_init(&mmu->refcount);
return mmu;
err_free_io_pgtable:
free_io_pgtable_ops(mmu->pgtbl_ops);
err_free_mmu:
kfree(mmu);
return ERR_PTR(ret);
}
static const char *access_type_name(struct panfrost_device *pfdev,
u32 fault_status)
{
switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
if (panfrost_has_hw_feature(pfdev, HW_FEATURE_AARCH64_MMU))
return "ATOMIC";
else
return "UNKNOWN";
case AS_FAULTSTATUS_ACCESS_TYPE_READ:
return "READ";
case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
return "WRITE";
case AS_FAULTSTATUS_ACCESS_TYPE_EX:
return "EXECUTE";
default:
WARN_ON(1);
return NULL;
}
}
static irqreturn_t panfrost_mmu_irq_handler(int irq, void *data)
{
struct panfrost_device *pfdev = data;
if (test_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended))
return IRQ_NONE;
if (!mmu_read(pfdev, MMU_INT_STAT))
return IRQ_NONE;
mmu_write(pfdev, MMU_INT_MASK, 0);
return IRQ_WAKE_THREAD;
}
static irqreturn_t panfrost_mmu_irq_handler_thread(int irq, void *data)
{
struct panfrost_device *pfdev = data;
u32 status = mmu_read(pfdev, MMU_INT_RAWSTAT);
int ret;
while (status) {
u32 as = ffs(status | (status >> 16)) - 1;
u32 mask = BIT(as) | BIT(as + 16);
u64 addr;
u32 fault_status;
u32 exception_type;
u32 access_type;
u32 source_id;
fault_status = mmu_read(pfdev, AS_FAULTSTATUS(as));
addr = mmu_read(pfdev, AS_FAULTADDRESS_LO(as));
addr |= (u64)mmu_read(pfdev, AS_FAULTADDRESS_HI(as)) << 32;
/* decode the fault status */
exception_type = fault_status & 0xFF;
access_type = (fault_status >> 8) & 0x3;
source_id = (fault_status >> 16);
mmu_write(pfdev, MMU_INT_CLEAR, mask);
/* Page fault only */
ret = -1;
if ((status & mask) == BIT(as) && (exception_type & 0xF8) == 0xC0)
ret = panfrost_mmu_map_fault_addr(pfdev, as, addr);
if (ret) {
/* terminal fault, print info about the fault */
dev_err(pfdev->dev,
"Unhandled Page fault in AS%d at VA 0x%016llX\n"
"Reason: %s\n"
"raw fault status: 0x%X\n"
"decoded fault status: %s\n"
"exception type 0x%X: %s\n"
"access type 0x%X: %s\n"
"source id 0x%X\n",
as, addr,
"TODO",
fault_status,
(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
exception_type, panfrost_exception_name(exception_type),
access_type, access_type_name(pfdev, fault_status),
source_id);
spin_lock(&pfdev->as_lock);
/* Ignore MMU interrupts on this AS until it's been
* re-enabled.
*/
pfdev->as_faulty_mask |= mask;
/* Disable the MMU to kill jobs on this AS. */
panfrost_mmu_disable(pfdev, as);
spin_unlock(&pfdev->as_lock);
}
status &= ~mask;
/* If we received new MMU interrupts, process them before returning. */
if (!status)
status = mmu_read(pfdev, MMU_INT_RAWSTAT) & ~pfdev->as_faulty_mask;
}
/* Enable interrupts only if we're not about to get suspended */
if (!test_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended)) {
spin_lock(&pfdev->as_lock);
mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask);
spin_unlock(&pfdev->as_lock);
}
return IRQ_HANDLED;
};
int panfrost_mmu_init(struct panfrost_device *pfdev)
{
int err;
pfdev->mmu_irq = platform_get_irq_byname(to_platform_device(pfdev->dev), "mmu");
if (pfdev->mmu_irq < 0)
return pfdev->mmu_irq;
err = devm_request_threaded_irq(pfdev->dev, pfdev->mmu_irq,
panfrost_mmu_irq_handler,
panfrost_mmu_irq_handler_thread,
IRQF_SHARED, KBUILD_MODNAME "-mmu",
pfdev);
if (err) {
dev_err(pfdev->dev, "failed to request mmu irq");
return err;
}
return 0;
}
void panfrost_mmu_fini(struct panfrost_device *pfdev)
{
mmu_write(pfdev, MMU_INT_MASK, 0);
}
void panfrost_mmu_suspend_irq(struct panfrost_device *pfdev)
{
set_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended);
mmu_write(pfdev, MMU_INT_MASK, 0);
synchronize_irq(pfdev->mmu_irq);
}
|