1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
// SPDX-License-Identifier: GPL-2.0 or MIT
/* Copyright 2019 Collabora ltd. */
#include <linux/clk.h>
#include <linux/devfreq.h>
#include <linux/devfreq_cooling.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <drm/drm_managed.h>
#include "panthor_devfreq.h"
#include "panthor_device.h"
/**
* struct panthor_devfreq - Device frequency management
*/
struct panthor_devfreq {
/** @devfreq: devfreq device. */
struct devfreq *devfreq;
/** @gov_data: Governor data. */
struct devfreq_simple_ondemand_data gov_data;
/** @busy_time: Busy time. */
ktime_t busy_time;
/** @idle_time: Idle time. */
ktime_t idle_time;
/** @time_last_update: Last update time. */
ktime_t time_last_update;
/** @last_busy_state: True if the GPU was busy last time we updated the state. */
bool last_busy_state;
/**
* @lock: Lock used to protect busy_time, idle_time, time_last_update and
* last_busy_state.
*
* These fields can be accessed concurrently by panthor_devfreq_get_dev_status()
* and panthor_devfreq_record_{busy,idle}().
*/
spinlock_t lock;
};
static void panthor_devfreq_update_utilization(struct panthor_devfreq *pdevfreq)
{
ktime_t now, last;
now = ktime_get();
last = pdevfreq->time_last_update;
if (pdevfreq->last_busy_state)
pdevfreq->busy_time += ktime_sub(now, last);
else
pdevfreq->idle_time += ktime_sub(now, last);
pdevfreq->time_last_update = now;
}
static int panthor_devfreq_target(struct device *dev, unsigned long *freq,
u32 flags)
{
struct panthor_device *ptdev = dev_get_drvdata(dev);
struct dev_pm_opp *opp;
int err;
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp))
return PTR_ERR(opp);
dev_pm_opp_put(opp);
err = dev_pm_opp_set_rate(dev, *freq);
if (!err)
ptdev->current_frequency = *freq;
return err;
}
static void panthor_devfreq_reset(struct panthor_devfreq *pdevfreq)
{
pdevfreq->busy_time = 0;
pdevfreq->idle_time = 0;
pdevfreq->time_last_update = ktime_get();
}
static int panthor_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *status)
{
struct panthor_device *ptdev = dev_get_drvdata(dev);
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
unsigned long irqflags;
status->current_frequency = clk_get_rate(ptdev->clks.core);
spin_lock_irqsave(&pdevfreq->lock, irqflags);
panthor_devfreq_update_utilization(pdevfreq);
status->total_time = ktime_to_ns(ktime_add(pdevfreq->busy_time,
pdevfreq->idle_time));
status->busy_time = ktime_to_ns(pdevfreq->busy_time);
panthor_devfreq_reset(pdevfreq);
spin_unlock_irqrestore(&pdevfreq->lock, irqflags);
drm_dbg(&ptdev->base, "busy %lu total %lu %lu %% freq %lu MHz\n",
status->busy_time, status->total_time,
status->busy_time / (status->total_time / 100),
status->current_frequency / 1000 / 1000);
return 0;
}
static struct devfreq_dev_profile panthor_devfreq_profile = {
.timer = DEVFREQ_TIMER_DELAYED,
.polling_ms = 50, /* ~3 frames */
.target = panthor_devfreq_target,
.get_dev_status = panthor_devfreq_get_dev_status,
};
int panthor_devfreq_init(struct panthor_device *ptdev)
{
/* There's actually 2 regulators (mali and sram), but the OPP core only
* supports one.
*
* We assume the sram regulator is coupled with the mali one and let
* the coupling logic deal with voltage updates.
*/
static const char * const reg_names[] = { "mali", NULL };
struct thermal_cooling_device *cooling;
struct device *dev = ptdev->base.dev;
struct panthor_devfreq *pdevfreq;
struct dev_pm_opp *opp;
unsigned long cur_freq;
unsigned long freq = ULONG_MAX;
int ret;
pdevfreq = drmm_kzalloc(&ptdev->base, sizeof(*ptdev->devfreq), GFP_KERNEL);
if (!pdevfreq)
return -ENOMEM;
ptdev->devfreq = pdevfreq;
ret = devm_pm_opp_set_regulators(dev, reg_names);
if (ret) {
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "Couldn't set OPP regulators\n");
return ret;
}
ret = devm_pm_opp_of_add_table(dev);
if (ret)
return ret;
spin_lock_init(&pdevfreq->lock);
panthor_devfreq_reset(pdevfreq);
cur_freq = clk_get_rate(ptdev->clks.core);
/* Regulator coupling only takes care of synchronizing/balancing voltage
* updates, but the coupled regulator needs to be enabled manually.
*
* We use devm_regulator_get_enable_optional() and keep the sram supply
* enabled until the device is removed, just like we do for the mali
* supply, which is enabled when dev_pm_opp_set_opp(dev, opp) is called,
* and disabled when the opp_table is torn down, using the devm action.
*
* If we really care about disabling regulators on suspend, we should:
* - use devm_regulator_get_optional() here
* - call dev_pm_opp_set_opp(dev, NULL) before leaving this function
* (this disables the regulator passed to the OPP layer)
* - call dev_pm_opp_set_opp(dev, NULL) and
* regulator_disable(ptdev->regulators.sram) in
* panthor_devfreq_suspend()
* - call dev_pm_opp_set_opp(dev, default_opp) and
* regulator_enable(ptdev->regulators.sram) in
* panthor_devfreq_resume()
*
* But without knowing if it's beneficial or not (in term of power
* consumption), or how much it slows down the suspend/resume steps,
* let's just keep regulators enabled for the device lifetime.
*/
ret = devm_regulator_get_enable_optional(dev, "sram");
if (ret && ret != -ENODEV) {
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "Couldn't retrieve/enable sram supply\n");
return ret;
}
opp = devfreq_recommended_opp(dev, &cur_freq, 0);
if (IS_ERR(opp))
return PTR_ERR(opp);
panthor_devfreq_profile.initial_freq = cur_freq;
ptdev->current_frequency = cur_freq;
/*
* Set the recommend OPP this will enable and configure the regulator
* if any and will avoid a switch off by regulator_late_cleanup()
*/
ret = dev_pm_opp_set_opp(dev, opp);
dev_pm_opp_put(opp);
if (ret) {
DRM_DEV_ERROR(dev, "Couldn't set recommended OPP\n");
return ret;
}
/* Find the fastest defined rate */
opp = dev_pm_opp_find_freq_floor(dev, &freq);
if (IS_ERR(opp))
return PTR_ERR(opp);
ptdev->fast_rate = freq;
dev_pm_opp_put(opp);
/*
* Setup default thresholds for the simple_ondemand governor.
* The values are chosen based on experiments.
*/
pdevfreq->gov_data.upthreshold = 45;
pdevfreq->gov_data.downdifferential = 5;
pdevfreq->devfreq = devm_devfreq_add_device(dev, &panthor_devfreq_profile,
DEVFREQ_GOV_SIMPLE_ONDEMAND,
&pdevfreq->gov_data);
if (IS_ERR(pdevfreq->devfreq)) {
DRM_DEV_ERROR(dev, "Couldn't initialize GPU devfreq\n");
ret = PTR_ERR(pdevfreq->devfreq);
pdevfreq->devfreq = NULL;
return ret;
}
cooling = devfreq_cooling_em_register(pdevfreq->devfreq, NULL);
if (IS_ERR(cooling))
DRM_DEV_INFO(dev, "Failed to register cooling device\n");
return 0;
}
void panthor_devfreq_resume(struct panthor_device *ptdev)
{
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
if (!pdevfreq->devfreq)
return;
panthor_devfreq_reset(pdevfreq);
drm_WARN_ON(&ptdev->base, devfreq_resume_device(pdevfreq->devfreq));
}
void panthor_devfreq_suspend(struct panthor_device *ptdev)
{
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
if (!pdevfreq->devfreq)
return;
drm_WARN_ON(&ptdev->base, devfreq_suspend_device(pdevfreq->devfreq));
}
void panthor_devfreq_record_busy(struct panthor_device *ptdev)
{
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
unsigned long irqflags;
if (!pdevfreq->devfreq)
return;
spin_lock_irqsave(&pdevfreq->lock, irqflags);
panthor_devfreq_update_utilization(pdevfreq);
pdevfreq->last_busy_state = true;
spin_unlock_irqrestore(&pdevfreq->lock, irqflags);
}
void panthor_devfreq_record_idle(struct panthor_device *ptdev)
{
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
unsigned long irqflags;
if (!pdevfreq->devfreq)
return;
spin_lock_irqsave(&pdevfreq->lock, irqflags);
panthor_devfreq_update_utilization(pdevfreq);
pdevfreq->last_busy_state = false;
spin_unlock_irqrestore(&pdevfreq->lock, irqflags);
}
|