1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
|
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Christian König
*/
/* Pooling of allocated pages is necessary because changing the caching
* attributes on x86 of the linear mapping requires a costly cross CPU TLB
* invalidate for those addresses.
*
* Additional to that allocations from the DMA coherent API are pooled as well
* cause they are rather slow compared to alloc_pages+map.
*/
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/highmem.h>
#include <linux/sched/mm.h>
#ifdef CONFIG_X86
#include <asm/set_memory.h>
#endif
#include <drm/ttm/ttm_backup.h>
#include <drm/ttm/ttm_pool.h>
#include <drm/ttm/ttm_tt.h>
#include <drm/ttm/ttm_bo.h>
#include "ttm_module.h"
#ifdef CONFIG_FAULT_INJECTION
#include <linux/fault-inject.h>
static DECLARE_FAULT_ATTR(backup_fault_inject);
#else
#define should_fail(...) false
#endif
/**
* struct ttm_pool_dma - Helper object for coherent DMA mappings
*
* @addr: original DMA address returned for the mapping
* @vaddr: original vaddr return for the mapping and order in the lower bits
*/
struct ttm_pool_dma {
dma_addr_t addr;
unsigned long vaddr;
};
/**
* struct ttm_pool_alloc_state - Current state of the tt page allocation process
* @pages: Pointer to the next tt page pointer to populate.
* @caching_divide: Pointer to the first page pointer whose page has a staged but
* not committed caching transition from write-back to @tt_caching.
* @dma_addr: Pointer to the next tt dma_address entry to populate if any.
* @remaining_pages: Remaining pages to populate.
* @tt_caching: The requested cpu-caching for the pages allocated.
*/
struct ttm_pool_alloc_state {
struct page **pages;
struct page **caching_divide;
dma_addr_t *dma_addr;
pgoff_t remaining_pages;
enum ttm_caching tt_caching;
};
/**
* struct ttm_pool_tt_restore - State representing restore from backup
* @pool: The pool used for page allocation while restoring.
* @snapshot_alloc: A snapshot of the most recent struct ttm_pool_alloc_state.
* @alloced_page: Pointer to the page most recently allocated from a pool or system.
* @first_dma: The dma address corresponding to @alloced_page if dma_mapping
* is requested.
* @alloced_pages: The number of allocated pages present in the struct ttm_tt
* page vector from this restore session.
* @restored_pages: The number of 4K pages restored for @alloced_page (which
* is typically a multi-order page).
* @page_caching: The struct ttm_tt requested caching
* @order: The order of @alloced_page.
*
* Recovery from backup might fail when we've recovered less than the
* full ttm_tt. In order not to loose any data (yet), keep information
* around that allows us to restart a failed ttm backup recovery.
*/
struct ttm_pool_tt_restore {
struct ttm_pool *pool;
struct ttm_pool_alloc_state snapshot_alloc;
struct page *alloced_page;
dma_addr_t first_dma;
pgoff_t alloced_pages;
pgoff_t restored_pages;
enum ttm_caching page_caching;
unsigned int order;
};
static unsigned long page_pool_size;
MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool");
module_param(page_pool_size, ulong, 0644);
static atomic_long_t allocated_pages;
static struct ttm_pool_type global_write_combined[NR_PAGE_ORDERS];
static struct ttm_pool_type global_uncached[NR_PAGE_ORDERS];
static struct ttm_pool_type global_dma32_write_combined[NR_PAGE_ORDERS];
static struct ttm_pool_type global_dma32_uncached[NR_PAGE_ORDERS];
static spinlock_t shrinker_lock;
static struct list_head shrinker_list;
static struct shrinker *mm_shrinker;
static DECLARE_RWSEM(pool_shrink_rwsem);
/* Allocate pages of size 1 << order with the given gfp_flags */
static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags,
unsigned int order)
{
unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
struct ttm_pool_dma *dma;
struct page *p;
void *vaddr;
/* Don't set the __GFP_COMP flag for higher order allocations.
* Mapping pages directly into an userspace process and calling
* put_page() on a TTM allocated page is illegal.
*/
if (order)
gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN |
__GFP_THISNODE;
if (!pool->use_dma_alloc) {
p = alloc_pages_node(pool->nid, gfp_flags, order);
if (p)
p->private = order;
return p;
}
dma = kmalloc(sizeof(*dma), GFP_KERNEL);
if (!dma)
return NULL;
if (order)
attr |= DMA_ATTR_NO_WARN;
vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE,
&dma->addr, gfp_flags, attr);
if (!vaddr)
goto error_free;
/* TODO: This is an illegal abuse of the DMA API, but we need to rework
* TTM page fault handling and extend the DMA API to clean this up.
*/
if (is_vmalloc_addr(vaddr))
p = vmalloc_to_page(vaddr);
else
p = virt_to_page(vaddr);
dma->vaddr = (unsigned long)vaddr | order;
p->private = (unsigned long)dma;
return p;
error_free:
kfree(dma);
return NULL;
}
/* Reset the caching and pages of size 1 << order */
static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching,
unsigned int order, struct page *p)
{
unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
struct ttm_pool_dma *dma;
void *vaddr;
#ifdef CONFIG_X86
/* We don't care that set_pages_wb is inefficient here. This is only
* used when we have to shrink and CPU overhead is irrelevant then.
*/
if (caching != ttm_cached && !PageHighMem(p))
set_pages_wb(p, 1 << order);
#endif
if (!pool || !pool->use_dma_alloc) {
__free_pages(p, order);
return;
}
if (order)
attr |= DMA_ATTR_NO_WARN;
dma = (void *)p->private;
vaddr = (void *)(dma->vaddr & PAGE_MASK);
dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr,
attr);
kfree(dma);
}
/* Apply any cpu-caching deferred during page allocation */
static int ttm_pool_apply_caching(struct ttm_pool_alloc_state *alloc)
{
#ifdef CONFIG_X86
unsigned int num_pages = alloc->pages - alloc->caching_divide;
if (!num_pages)
return 0;
switch (alloc->tt_caching) {
case ttm_cached:
break;
case ttm_write_combined:
return set_pages_array_wc(alloc->caching_divide, num_pages);
case ttm_uncached:
return set_pages_array_uc(alloc->caching_divide, num_pages);
}
#endif
alloc->caching_divide = alloc->pages;
return 0;
}
/* DMA Map pages of 1 << order size and return the resulting dma_address. */
static int ttm_pool_map(struct ttm_pool *pool, unsigned int order,
struct page *p, dma_addr_t *dma_addr)
{
dma_addr_t addr;
if (pool->use_dma_alloc) {
struct ttm_pool_dma *dma = (void *)p->private;
addr = dma->addr;
} else {
size_t size = (1ULL << order) * PAGE_SIZE;
addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL);
if (dma_mapping_error(pool->dev, addr))
return -EFAULT;
}
*dma_addr = addr;
return 0;
}
/* Unmap pages of 1 << order size */
static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr,
unsigned int num_pages)
{
/* Unmapped while freeing the page */
if (pool->use_dma_alloc)
return;
dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT,
DMA_BIDIRECTIONAL);
}
/* Give pages into a specific pool_type */
static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p)
{
unsigned int i, num_pages = 1 << pt->order;
for (i = 0; i < num_pages; ++i) {
if (PageHighMem(p))
clear_highpage(p + i);
else
clear_page(page_address(p + i));
}
spin_lock(&pt->lock);
list_add(&p->lru, &pt->pages);
spin_unlock(&pt->lock);
atomic_long_add(1 << pt->order, &allocated_pages);
}
/* Take pages from a specific pool_type, return NULL when nothing available */
static struct page *ttm_pool_type_take(struct ttm_pool_type *pt)
{
struct page *p;
spin_lock(&pt->lock);
p = list_first_entry_or_null(&pt->pages, typeof(*p), lru);
if (p) {
atomic_long_sub(1 << pt->order, &allocated_pages);
list_del(&p->lru);
}
spin_unlock(&pt->lock);
return p;
}
/* Initialize and add a pool type to the global shrinker list */
static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool,
enum ttm_caching caching, unsigned int order)
{
pt->pool = pool;
pt->caching = caching;
pt->order = order;
spin_lock_init(&pt->lock);
INIT_LIST_HEAD(&pt->pages);
spin_lock(&shrinker_lock);
list_add_tail(&pt->shrinker_list, &shrinker_list);
spin_unlock(&shrinker_lock);
}
/* Remove a pool_type from the global shrinker list and free all pages */
static void ttm_pool_type_fini(struct ttm_pool_type *pt)
{
struct page *p;
spin_lock(&shrinker_lock);
list_del(&pt->shrinker_list);
spin_unlock(&shrinker_lock);
while ((p = ttm_pool_type_take(pt)))
ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
}
/* Return the pool_type to use for the given caching and order */
static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool,
enum ttm_caching caching,
unsigned int order)
{
if (pool->use_dma_alloc)
return &pool->caching[caching].orders[order];
#ifdef CONFIG_X86
switch (caching) {
case ttm_write_combined:
if (pool->nid != NUMA_NO_NODE)
return &pool->caching[caching].orders[order];
if (pool->use_dma32)
return &global_dma32_write_combined[order];
return &global_write_combined[order];
case ttm_uncached:
if (pool->nid != NUMA_NO_NODE)
return &pool->caching[caching].orders[order];
if (pool->use_dma32)
return &global_dma32_uncached[order];
return &global_uncached[order];
default:
break;
}
#endif
return NULL;
}
/* Free pages using the global shrinker list */
static unsigned int ttm_pool_shrink(void)
{
struct ttm_pool_type *pt;
unsigned int num_pages;
struct page *p;
down_read(&pool_shrink_rwsem);
spin_lock(&shrinker_lock);
pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list);
list_move_tail(&pt->shrinker_list, &shrinker_list);
spin_unlock(&shrinker_lock);
p = ttm_pool_type_take(pt);
if (p) {
ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
num_pages = 1 << pt->order;
} else {
num_pages = 0;
}
up_read(&pool_shrink_rwsem);
return num_pages;
}
/* Return the allocation order based for a page */
static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p)
{
if (pool->use_dma_alloc) {
struct ttm_pool_dma *dma = (void *)p->private;
return dma->vaddr & ~PAGE_MASK;
}
return p->private;
}
/*
* Split larger pages so that we can free each PAGE_SIZE page as soon
* as it has been backed up, in order to avoid memory pressure during
* reclaim.
*/
static void ttm_pool_split_for_swap(struct ttm_pool *pool, struct page *p)
{
unsigned int order = ttm_pool_page_order(pool, p);
pgoff_t nr;
if (!order)
return;
split_page(p, order);
nr = 1UL << order;
while (nr--)
(p++)->private = 0;
}
/**
* DOC: Partial backup and restoration of a struct ttm_tt.
*
* Swapout using ttm_backup_backup_page() and swapin using
* ttm_backup_copy_page() may fail.
* The former most likely due to lack of swap-space or memory, the latter due
* to lack of memory or because of signal interruption during waits.
*
* Backup failure is easily handled by using a ttm_tt pages vector that holds
* both backup handles and page pointers. This has to be taken into account when
* restoring such a ttm_tt from backup, and when freeing it while backed up.
* When restoring, for simplicity, new pages are actually allocated from the
* pool and the contents of any old pages are copied in and then the old pages
* are released.
*
* For restoration failures, the struct ttm_pool_tt_restore holds sufficient state
* to be able to resume an interrupted restore, and that structure is freed once
* the restoration is complete. If the struct ttm_tt is destroyed while there
* is a valid struct ttm_pool_tt_restore attached, that is also properly taken
* care of.
*/
/* Is restore ongoing for the currently allocated page? */
static bool ttm_pool_restore_valid(const struct ttm_pool_tt_restore *restore)
{
return restore && restore->restored_pages < (1 << restore->order);
}
/* DMA unmap and free a multi-order page, either to the relevant pool or to system. */
static pgoff_t ttm_pool_unmap_and_free(struct ttm_pool *pool, struct page *page,
const dma_addr_t *dma_addr, enum ttm_caching caching)
{
struct ttm_pool_type *pt = NULL;
unsigned int order;
pgoff_t nr;
if (pool) {
order = ttm_pool_page_order(pool, page);
nr = (1UL << order);
if (dma_addr)
ttm_pool_unmap(pool, *dma_addr, nr);
pt = ttm_pool_select_type(pool, caching, order);
} else {
order = page->private;
nr = (1UL << order);
}
if (pt)
ttm_pool_type_give(pt, page);
else
ttm_pool_free_page(pool, caching, order, page);
return nr;
}
/* Populate the page-array using the most recent allocated multi-order page. */
static void ttm_pool_allocated_page_commit(struct page *allocated,
dma_addr_t first_dma,
struct ttm_pool_alloc_state *alloc,
pgoff_t nr)
{
pgoff_t i;
for (i = 0; i < nr; ++i)
*alloc->pages++ = allocated++;
alloc->remaining_pages -= nr;
if (!alloc->dma_addr)
return;
for (i = 0; i < nr; ++i) {
*alloc->dma_addr++ = first_dma;
first_dma += PAGE_SIZE;
}
}
/*
* When restoring, restore backed-up content to the newly allocated page and
* if successful, populate the page-table and dma-address arrays.
*/
static int ttm_pool_restore_commit(struct ttm_pool_tt_restore *restore,
struct file *backup,
const struct ttm_operation_ctx *ctx,
struct ttm_pool_alloc_state *alloc)
{
pgoff_t i, nr = 1UL << restore->order;
struct page **first_page = alloc->pages;
struct page *p;
int ret = 0;
for (i = restore->restored_pages; i < nr; ++i) {
p = first_page[i];
if (ttm_backup_page_ptr_is_handle(p)) {
unsigned long handle = ttm_backup_page_ptr_to_handle(p);
if (IS_ENABLED(CONFIG_FAULT_INJECTION) && ctx->interruptible &&
should_fail(&backup_fault_inject, 1)) {
ret = -EINTR;
break;
}
if (handle == 0) {
restore->restored_pages++;
continue;
}
ret = ttm_backup_copy_page(backup, restore->alloced_page + i,
handle, ctx->interruptible);
if (ret)
break;
ttm_backup_drop(backup, handle);
} else if (p) {
/*
* We could probably avoid splitting the old page
* using clever logic, but ATM we don't care, as
* we prioritize releasing memory ASAP. Note that
* here, the old retained page is always write-back
* cached.
*/
ttm_pool_split_for_swap(restore->pool, p);
copy_highpage(restore->alloced_page + i, p);
__free_pages(p, 0);
}
restore->restored_pages++;
first_page[i] = ttm_backup_handle_to_page_ptr(0);
}
if (ret) {
if (!restore->restored_pages) {
dma_addr_t *dma_addr = alloc->dma_addr ? &restore->first_dma : NULL;
ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
dma_addr, restore->page_caching);
restore->restored_pages = nr;
}
return ret;
}
ttm_pool_allocated_page_commit(restore->alloced_page, restore->first_dma,
alloc, nr);
if (restore->page_caching == alloc->tt_caching || PageHighMem(restore->alloced_page))
alloc->caching_divide = alloc->pages;
restore->snapshot_alloc = *alloc;
restore->alloced_pages += nr;
return 0;
}
/* If restoring, save information needed for ttm_pool_restore_commit(). */
static void
ttm_pool_page_allocated_restore(struct ttm_pool *pool, unsigned int order,
struct page *p,
enum ttm_caching page_caching,
dma_addr_t first_dma,
struct ttm_pool_tt_restore *restore,
const struct ttm_pool_alloc_state *alloc)
{
restore->pool = pool;
restore->order = order;
restore->restored_pages = 0;
restore->page_caching = page_caching;
restore->first_dma = first_dma;
restore->alloced_page = p;
restore->snapshot_alloc = *alloc;
}
/*
* Called when we got a page, either from a pool or newly allocated.
* if needed, dma map the page and populate the dma address array.
* Populate the page address array.
* If the caching is consistent, update any deferred caching. Otherwise
* stage this page for an upcoming deferred caching update.
*/
static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order,
struct page *p, enum ttm_caching page_caching,
struct ttm_pool_alloc_state *alloc,
struct ttm_pool_tt_restore *restore)
{
bool caching_consistent;
dma_addr_t first_dma;
int r = 0;
caching_consistent = (page_caching == alloc->tt_caching) || PageHighMem(p);
if (caching_consistent) {
r = ttm_pool_apply_caching(alloc);
if (r)
return r;
}
if (alloc->dma_addr) {
r = ttm_pool_map(pool, order, p, &first_dma);
if (r)
return r;
}
if (restore) {
ttm_pool_page_allocated_restore(pool, order, p, page_caching,
first_dma, restore, alloc);
} else {
ttm_pool_allocated_page_commit(p, first_dma, alloc, 1UL << order);
if (caching_consistent)
alloc->caching_divide = alloc->pages;
}
return 0;
}
/**
* ttm_pool_free_range() - Free a range of TTM pages
* @pool: The pool used for allocating.
* @tt: The struct ttm_tt holding the page pointers.
* @caching: The page caching mode used by the range.
* @start_page: index for first page to free.
* @end_page: index for last page to free + 1.
*
* During allocation the ttm_tt page-vector may be populated with ranges of
* pages with different attributes if allocation hit an error without being
* able to completely fulfill the allocation. This function can be used
* to free these individual ranges.
*/
static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt,
enum ttm_caching caching,
pgoff_t start_page, pgoff_t end_page)
{
struct page **pages = &tt->pages[start_page];
struct file *backup = tt->backup;
pgoff_t i, nr;
for (i = start_page; i < end_page; i += nr, pages += nr) {
struct page *p = *pages;
nr = 1;
if (ttm_backup_page_ptr_is_handle(p)) {
unsigned long handle = ttm_backup_page_ptr_to_handle(p);
if (handle != 0)
ttm_backup_drop(backup, handle);
} else if (p) {
dma_addr_t *dma_addr = tt->dma_address ?
tt->dma_address + i : NULL;
nr = ttm_pool_unmap_and_free(pool, p, dma_addr, caching);
}
}
}
static void ttm_pool_alloc_state_init(const struct ttm_tt *tt,
struct ttm_pool_alloc_state *alloc)
{
alloc->pages = tt->pages;
alloc->caching_divide = tt->pages;
alloc->dma_addr = tt->dma_address;
alloc->remaining_pages = tt->num_pages;
alloc->tt_caching = tt->caching;
}
/*
* Find a suitable allocation order based on highest desired order
* and number of remaining pages
*/
static unsigned int ttm_pool_alloc_find_order(unsigned int highest,
const struct ttm_pool_alloc_state *alloc)
{
return min_t(unsigned int, highest, __fls(alloc->remaining_pages));
}
static int __ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
const struct ttm_operation_ctx *ctx,
struct ttm_pool_alloc_state *alloc,
struct ttm_pool_tt_restore *restore)
{
enum ttm_caching page_caching;
gfp_t gfp_flags = GFP_USER;
pgoff_t caching_divide;
unsigned int order;
bool allow_pools;
struct page *p;
int r;
WARN_ON(!alloc->remaining_pages || ttm_tt_is_populated(tt));
WARN_ON(alloc->dma_addr && !pool->dev);
if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC)
gfp_flags |= __GFP_ZERO;
if (ctx->gfp_retry_mayfail)
gfp_flags |= __GFP_RETRY_MAYFAIL;
if (pool->use_dma32)
gfp_flags |= GFP_DMA32;
else
gfp_flags |= GFP_HIGHUSER;
page_caching = tt->caching;
allow_pools = true;
for (order = ttm_pool_alloc_find_order(MAX_PAGE_ORDER, alloc);
alloc->remaining_pages;
order = ttm_pool_alloc_find_order(order, alloc)) {
struct ttm_pool_type *pt;
/* First, try to allocate a page from a pool if one exists. */
p = NULL;
pt = ttm_pool_select_type(pool, page_caching, order);
if (pt && allow_pools)
p = ttm_pool_type_take(pt);
/*
* If that fails or previously failed, allocate from system.
* Note that this also disallows additional pool allocations using
* write-back cached pools of the same order. Consider removing
* that behaviour.
*/
if (!p) {
page_caching = ttm_cached;
allow_pools = false;
p = ttm_pool_alloc_page(pool, gfp_flags, order);
}
/* If that fails, lower the order if possible and retry. */
if (!p) {
if (order) {
--order;
page_caching = tt->caching;
allow_pools = true;
continue;
}
r = -ENOMEM;
goto error_free_all;
}
r = ttm_pool_page_allocated(pool, order, p, page_caching, alloc,
restore);
if (r)
goto error_free_page;
if (ttm_pool_restore_valid(restore)) {
r = ttm_pool_restore_commit(restore, tt->backup, ctx, alloc);
if (r)
goto error_free_all;
}
}
r = ttm_pool_apply_caching(alloc);
if (r)
goto error_free_all;
kfree(tt->restore);
tt->restore = NULL;
return 0;
error_free_page:
ttm_pool_free_page(pool, page_caching, order, p);
error_free_all:
if (tt->restore)
return r;
caching_divide = alloc->caching_divide - tt->pages;
ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide);
ttm_pool_free_range(pool, tt, ttm_cached, caching_divide,
tt->num_pages - alloc->remaining_pages);
return r;
}
/**
* ttm_pool_alloc - Fill a ttm_tt object
*
* @pool: ttm_pool to use
* @tt: ttm_tt object to fill
* @ctx: operation context
*
* Fill the ttm_tt object with pages and also make sure to DMA map them when
* necessary.
*
* Returns: 0 on successe, negative error code otherwise.
*/
int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
struct ttm_operation_ctx *ctx)
{
struct ttm_pool_alloc_state alloc;
if (WARN_ON(ttm_tt_is_backed_up(tt)))
return -EINVAL;
ttm_pool_alloc_state_init(tt, &alloc);
return __ttm_pool_alloc(pool, tt, ctx, &alloc, NULL);
}
EXPORT_SYMBOL(ttm_pool_alloc);
/**
* ttm_pool_restore_and_alloc - Fill a ttm_tt, restoring previously backed-up
* content.
*
* @pool: ttm_pool to use
* @tt: ttm_tt object to fill
* @ctx: operation context
*
* Fill the ttm_tt object with pages and also make sure to DMA map them when
* necessary. Read in backed-up content.
*
* Returns: 0 on successe, negative error code otherwise.
*/
int ttm_pool_restore_and_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
const struct ttm_operation_ctx *ctx)
{
struct ttm_pool_alloc_state alloc;
if (WARN_ON(!ttm_tt_is_backed_up(tt)))
return -EINVAL;
if (!tt->restore) {
gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
ttm_pool_alloc_state_init(tt, &alloc);
if (ctx->gfp_retry_mayfail)
gfp |= __GFP_RETRY_MAYFAIL;
tt->restore = kzalloc(sizeof(*tt->restore), gfp);
if (!tt->restore)
return -ENOMEM;
tt->restore->snapshot_alloc = alloc;
tt->restore->pool = pool;
tt->restore->restored_pages = 1;
} else {
struct ttm_pool_tt_restore *restore = tt->restore;
int ret;
alloc = restore->snapshot_alloc;
if (ttm_pool_restore_valid(tt->restore)) {
ret = ttm_pool_restore_commit(restore, tt->backup, ctx, &alloc);
if (ret)
return ret;
}
if (!alloc.remaining_pages)
return 0;
}
return __ttm_pool_alloc(pool, tt, ctx, &alloc, tt->restore);
}
/**
* ttm_pool_free - Free the backing pages from a ttm_tt object
*
* @pool: Pool to give pages back to.
* @tt: ttm_tt object to unpopulate
*
* Give the packing pages back to a pool or free them
*/
void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt)
{
ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages);
while (atomic_long_read(&allocated_pages) > page_pool_size)
ttm_pool_shrink();
}
EXPORT_SYMBOL(ttm_pool_free);
/**
* ttm_pool_drop_backed_up() - Release content of a swapped-out struct ttm_tt
* @tt: The struct ttm_tt.
*
* Release handles with associated content or any remaining pages of
* a backed-up struct ttm_tt.
*/
void ttm_pool_drop_backed_up(struct ttm_tt *tt)
{
struct ttm_pool_tt_restore *restore;
pgoff_t start_page = 0;
WARN_ON(!ttm_tt_is_backed_up(tt));
restore = tt->restore;
/*
* Unmap and free any uncommitted restore page.
* any tt page-array backup entries already read back has
* been cleared already
*/
if (ttm_pool_restore_valid(restore)) {
dma_addr_t *dma_addr = tt->dma_address ? &restore->first_dma : NULL;
ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
dma_addr, restore->page_caching);
restore->restored_pages = 1UL << restore->order;
}
/*
* If a restore is ongoing, part of the tt pages may have a
* caching different than writeback.
*/
if (restore) {
pgoff_t mid = restore->snapshot_alloc.caching_divide - tt->pages;
start_page = restore->alloced_pages;
WARN_ON(mid > start_page);
/* Pages that might be dma-mapped and non-cached */
ttm_pool_free_range(restore->pool, tt, tt->caching,
0, mid);
/* Pages that might be dma-mapped but cached */
ttm_pool_free_range(restore->pool, tt, ttm_cached,
mid, restore->alloced_pages);
kfree(restore);
tt->restore = NULL;
}
ttm_pool_free_range(NULL, tt, ttm_cached, start_page, tt->num_pages);
}
/**
* ttm_pool_backup() - Back up or purge a struct ttm_tt
* @pool: The pool used when allocating the struct ttm_tt.
* @tt: The struct ttm_tt.
* @flags: Flags to govern the backup behaviour.
*
* Back up or purge a struct ttm_tt. If @purge is true, then
* all pages will be freed directly to the system rather than to the pool
* they were allocated from, making the function behave similarly to
* ttm_pool_free(). If @purge is false the pages will be backed up instead,
* exchanged for handles.
* A subsequent call to ttm_pool_restore_and_alloc() will then read back the content and
* a subsequent call to ttm_pool_drop_backed_up() will drop it.
* If backup of a page fails for whatever reason, @ttm will still be
* partially backed up, retaining those pages for which backup fails.
* In that case, this function can be retried, possibly after freeing up
* memory resources.
*
* Return: Number of pages actually backed up or freed, or negative
* error code on error.
*/
long ttm_pool_backup(struct ttm_pool *pool, struct ttm_tt *tt,
const struct ttm_backup_flags *flags)
{
struct file *backup = tt->backup;
struct page *page;
unsigned long handle;
gfp_t alloc_gfp;
gfp_t gfp;
int ret = 0;
pgoff_t shrunken = 0;
pgoff_t i, num_pages;
if (WARN_ON(ttm_tt_is_backed_up(tt)))
return -EINVAL;
if ((!ttm_backup_bytes_avail() && !flags->purge) ||
pool->use_dma_alloc || ttm_tt_is_backed_up(tt))
return -EBUSY;
#ifdef CONFIG_X86
/* Anything returned to the system needs to be cached. */
if (tt->caching != ttm_cached)
set_pages_array_wb(tt->pages, tt->num_pages);
#endif
if (tt->dma_address || flags->purge) {
for (i = 0; i < tt->num_pages; i += num_pages) {
unsigned int order;
page = tt->pages[i];
if (unlikely(!page)) {
num_pages = 1;
continue;
}
order = ttm_pool_page_order(pool, page);
num_pages = 1UL << order;
if (tt->dma_address)
ttm_pool_unmap(pool, tt->dma_address[i],
num_pages);
if (flags->purge) {
shrunken += num_pages;
page->private = 0;
__free_pages(page, order);
memset(tt->pages + i, 0,
num_pages * sizeof(*tt->pages));
}
}
}
if (flags->purge)
return shrunken;
if (pool->use_dma32)
gfp = GFP_DMA32;
else
gfp = GFP_HIGHUSER;
alloc_gfp = GFP_KERNEL | __GFP_HIGH | __GFP_NOWARN | __GFP_RETRY_MAYFAIL;
num_pages = tt->num_pages;
/* Pretend doing fault injection by shrinking only half of the pages. */
if (IS_ENABLED(CONFIG_FAULT_INJECTION) && should_fail(&backup_fault_inject, 1))
num_pages = DIV_ROUND_UP(num_pages, 2);
for (i = 0; i < num_pages; ++i) {
s64 shandle;
page = tt->pages[i];
if (unlikely(!page))
continue;
ttm_pool_split_for_swap(pool, page);
shandle = ttm_backup_backup_page(backup, page, flags->writeback, i,
gfp, alloc_gfp);
if (shandle < 0) {
/* We allow partially shrunken tts */
ret = shandle;
break;
}
handle = shandle;
tt->pages[i] = ttm_backup_handle_to_page_ptr(handle);
put_page(page);
shrunken++;
}
return shrunken ? shrunken : ret;
}
/**
* ttm_pool_init - Initialize a pool
*
* @pool: the pool to initialize
* @dev: device for DMA allocations and mappings
* @nid: NUMA node to use for allocations
* @use_dma_alloc: true if coherent DMA alloc should be used
* @use_dma32: true if GFP_DMA32 should be used
*
* Initialize the pool and its pool types.
*/
void ttm_pool_init(struct ttm_pool *pool, struct device *dev,
int nid, bool use_dma_alloc, bool use_dma32)
{
unsigned int i, j;
WARN_ON(!dev && use_dma_alloc);
pool->dev = dev;
pool->nid = nid;
pool->use_dma_alloc = use_dma_alloc;
pool->use_dma32 = use_dma32;
for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
for (j = 0; j < NR_PAGE_ORDERS; ++j) {
struct ttm_pool_type *pt;
/* Initialize only pool types which are actually used */
pt = ttm_pool_select_type(pool, i, j);
if (pt != &pool->caching[i].orders[j])
continue;
ttm_pool_type_init(pt, pool, i, j);
}
}
}
EXPORT_SYMBOL(ttm_pool_init);
/**
* ttm_pool_synchronize_shrinkers - Wait for all running shrinkers to complete.
*
* This is useful to guarantee that all shrinker invocations have seen an
* update, before freeing memory, similar to rcu.
*/
static void ttm_pool_synchronize_shrinkers(void)
{
down_write(&pool_shrink_rwsem);
up_write(&pool_shrink_rwsem);
}
/**
* ttm_pool_fini - Cleanup a pool
*
* @pool: the pool to clean up
*
* Free all pages in the pool and unregister the types from the global
* shrinker.
*/
void ttm_pool_fini(struct ttm_pool *pool)
{
unsigned int i, j;
for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
for (j = 0; j < NR_PAGE_ORDERS; ++j) {
struct ttm_pool_type *pt;
pt = ttm_pool_select_type(pool, i, j);
if (pt != &pool->caching[i].orders[j])
continue;
ttm_pool_type_fini(pt);
}
}
/* We removed the pool types from the LRU, but we need to also make sure
* that no shrinker is concurrently freeing pages from the pool.
*/
ttm_pool_synchronize_shrinkers();
}
EXPORT_SYMBOL(ttm_pool_fini);
static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
unsigned long num_freed = 0;
do
num_freed += ttm_pool_shrink();
while (num_freed < sc->nr_to_scan &&
atomic_long_read(&allocated_pages));
sc->nr_scanned = num_freed;
return num_freed ?: SHRINK_STOP;
}
/* Return the number of pages available or SHRINK_EMPTY if we have none */
static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink,
struct shrink_control *sc)
{
unsigned long num_pages = atomic_long_read(&allocated_pages);
return num_pages ? num_pages : SHRINK_EMPTY;
}
#ifdef CONFIG_DEBUG_FS
/* Count the number of pages available in a pool_type */
static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt)
{
unsigned int count = 0;
struct page *p;
spin_lock(&pt->lock);
/* Only used for debugfs, the overhead doesn't matter */
list_for_each_entry(p, &pt->pages, lru)
++count;
spin_unlock(&pt->lock);
return count;
}
/* Print a nice header for the order */
static void ttm_pool_debugfs_header(struct seq_file *m)
{
unsigned int i;
seq_puts(m, "\t ");
for (i = 0; i < NR_PAGE_ORDERS; ++i)
seq_printf(m, " ---%2u---", i);
seq_puts(m, "\n");
}
/* Dump information about the different pool types */
static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt,
struct seq_file *m)
{
unsigned int i;
for (i = 0; i < NR_PAGE_ORDERS; ++i)
seq_printf(m, " %8u", ttm_pool_type_count(&pt[i]));
seq_puts(m, "\n");
}
/* Dump the total amount of allocated pages */
static void ttm_pool_debugfs_footer(struct seq_file *m)
{
seq_printf(m, "\ntotal\t: %8lu of %8lu\n",
atomic_long_read(&allocated_pages), page_pool_size);
}
/* Dump the information for the global pools */
static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data)
{
ttm_pool_debugfs_header(m);
spin_lock(&shrinker_lock);
seq_puts(m, "wc\t:");
ttm_pool_debugfs_orders(global_write_combined, m);
seq_puts(m, "uc\t:");
ttm_pool_debugfs_orders(global_uncached, m);
seq_puts(m, "wc 32\t:");
ttm_pool_debugfs_orders(global_dma32_write_combined, m);
seq_puts(m, "uc 32\t:");
ttm_pool_debugfs_orders(global_dma32_uncached, m);
spin_unlock(&shrinker_lock);
ttm_pool_debugfs_footer(m);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals);
/**
* ttm_pool_debugfs - Debugfs dump function for a pool
*
* @pool: the pool to dump the information for
* @m: seq_file to dump to
*
* Make a debugfs dump with the per pool and global information.
*/
int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m)
{
unsigned int i;
if (!pool->use_dma_alloc) {
seq_puts(m, "unused\n");
return 0;
}
ttm_pool_debugfs_header(m);
spin_lock(&shrinker_lock);
for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
seq_puts(m, "DMA ");
switch (i) {
case ttm_cached:
seq_puts(m, "\t:");
break;
case ttm_write_combined:
seq_puts(m, "wc\t:");
break;
case ttm_uncached:
seq_puts(m, "uc\t:");
break;
}
ttm_pool_debugfs_orders(pool->caching[i].orders, m);
}
spin_unlock(&shrinker_lock);
ttm_pool_debugfs_footer(m);
return 0;
}
EXPORT_SYMBOL(ttm_pool_debugfs);
/* Test the shrinker functions and dump the result */
static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data)
{
struct shrink_control sc = { .gfp_mask = GFP_NOFS };
fs_reclaim_acquire(GFP_KERNEL);
seq_printf(m, "%lu/%lu\n", ttm_pool_shrinker_count(mm_shrinker, &sc),
ttm_pool_shrinker_scan(mm_shrinker, &sc));
fs_reclaim_release(GFP_KERNEL);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink);
#endif
/**
* ttm_pool_mgr_init - Initialize globals
*
* @num_pages: default number of pages
*
* Initialize the global locks and lists for the MM shrinker.
*/
int ttm_pool_mgr_init(unsigned long num_pages)
{
unsigned int i;
if (!page_pool_size)
page_pool_size = num_pages;
spin_lock_init(&shrinker_lock);
INIT_LIST_HEAD(&shrinker_list);
for (i = 0; i < NR_PAGE_ORDERS; ++i) {
ttm_pool_type_init(&global_write_combined[i], NULL,
ttm_write_combined, i);
ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i);
ttm_pool_type_init(&global_dma32_write_combined[i], NULL,
ttm_write_combined, i);
ttm_pool_type_init(&global_dma32_uncached[i], NULL,
ttm_uncached, i);
}
#ifdef CONFIG_DEBUG_FS
debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL,
&ttm_pool_debugfs_globals_fops);
debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL,
&ttm_pool_debugfs_shrink_fops);
#ifdef CONFIG_FAULT_INJECTION
fault_create_debugfs_attr("backup_fault_inject", ttm_debugfs_root,
&backup_fault_inject);
#endif
#endif
mm_shrinker = shrinker_alloc(0, "drm-ttm_pool");
if (!mm_shrinker)
return -ENOMEM;
mm_shrinker->count_objects = ttm_pool_shrinker_count;
mm_shrinker->scan_objects = ttm_pool_shrinker_scan;
mm_shrinker->seeks = 1;
shrinker_register(mm_shrinker);
return 0;
}
/**
* ttm_pool_mgr_fini - Finalize globals
*
* Cleanup the global pools and unregister the MM shrinker.
*/
void ttm_pool_mgr_fini(void)
{
unsigned int i;
for (i = 0; i < NR_PAGE_ORDERS; ++i) {
ttm_pool_type_fini(&global_write_combined[i]);
ttm_pool_type_fini(&global_uncached[i]);
ttm_pool_type_fini(&global_dma32_write_combined[i]);
ttm_pool_type_fini(&global_dma32_uncached[i]);
}
shrinker_free(mm_shrinker);
WARN_ON(!list_empty(&shrinker_list));
}
|