1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 HVS module.
*
* The Hardware Video Scaler (HVS) is the piece of hardware that does
* translation, scaling, colorspace conversion, and compositing of
* pixels stored in framebuffers into a FIFO of pixels going out to
* the Pixel Valve (CRTC). It operates at the system clock rate (the
* system audio clock gate, specifically), which is much higher than
* the pixel clock rate.
*
* There is a single global HVS, with multiple output FIFOs that can
* be consumed by the PVs. This file just manages the resources for
* the HVS, while the vc4_crtc.c code actually drives HVS setup for
* each CRTC.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_vblank.h>
#include <soc/bcm2835/raspberrypi-firmware.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
static const struct debugfs_reg32 vc4_hvs_regs[] = {
VC4_REG32(SCALER_DISPCTRL),
VC4_REG32(SCALER_DISPSTAT),
VC4_REG32(SCALER_DISPID),
VC4_REG32(SCALER_DISPECTRL),
VC4_REG32(SCALER_DISPPROF),
VC4_REG32(SCALER_DISPDITHER),
VC4_REG32(SCALER_DISPEOLN),
VC4_REG32(SCALER_DISPLIST0),
VC4_REG32(SCALER_DISPLIST1),
VC4_REG32(SCALER_DISPLIST2),
VC4_REG32(SCALER_DISPLSTAT),
VC4_REG32(SCALER_DISPLACT0),
VC4_REG32(SCALER_DISPLACT1),
VC4_REG32(SCALER_DISPLACT2),
VC4_REG32(SCALER_DISPCTRL0),
VC4_REG32(SCALER_DISPBKGND0),
VC4_REG32(SCALER_DISPSTAT0),
VC4_REG32(SCALER_DISPBASE0),
VC4_REG32(SCALER_DISPCTRL1),
VC4_REG32(SCALER_DISPBKGND1),
VC4_REG32(SCALER_DISPSTAT1),
VC4_REG32(SCALER_DISPBASE1),
VC4_REG32(SCALER_DISPCTRL2),
VC4_REG32(SCALER_DISPBKGND2),
VC4_REG32(SCALER_DISPSTAT2),
VC4_REG32(SCALER_DISPBASE2),
VC4_REG32(SCALER_DISPALPHA2),
VC4_REG32(SCALER_OLEDOFFS),
VC4_REG32(SCALER_OLEDCOEF0),
VC4_REG32(SCALER_OLEDCOEF1),
VC4_REG32(SCALER_OLEDCOEF2),
};
static const struct debugfs_reg32 vc6_hvs_regs[] = {
VC4_REG32(SCALER6_VERSION),
VC4_REG32(SCALER6_CXM_SIZE),
VC4_REG32(SCALER6_LBM_SIZE),
VC4_REG32(SCALER6_UBM_SIZE),
VC4_REG32(SCALER6_COBA_SIZE),
VC4_REG32(SCALER6_COB_SIZE),
VC4_REG32(SCALER6_CONTROL),
VC4_REG32(SCALER6_FETCHER_STATUS),
VC4_REG32(SCALER6_FETCH_STATUS),
VC4_REG32(SCALER6_HANDLE_ERROR),
VC4_REG32(SCALER6_DISP0_CTRL0),
VC4_REG32(SCALER6_DISP0_CTRL1),
VC4_REG32(SCALER6_DISP0_BGND),
VC4_REG32(SCALER6_DISP0_LPTRS),
VC4_REG32(SCALER6_DISP0_COB),
VC4_REG32(SCALER6_DISP0_STATUS),
VC4_REG32(SCALER6_DISP0_DL),
VC4_REG32(SCALER6_DISP0_RUN),
VC4_REG32(SCALER6_DISP1_CTRL0),
VC4_REG32(SCALER6_DISP1_CTRL1),
VC4_REG32(SCALER6_DISP1_BGND),
VC4_REG32(SCALER6_DISP1_LPTRS),
VC4_REG32(SCALER6_DISP1_COB),
VC4_REG32(SCALER6_DISP1_STATUS),
VC4_REG32(SCALER6_DISP1_DL),
VC4_REG32(SCALER6_DISP1_RUN),
VC4_REG32(SCALER6_DISP2_CTRL0),
VC4_REG32(SCALER6_DISP2_CTRL1),
VC4_REG32(SCALER6_DISP2_BGND),
VC4_REG32(SCALER6_DISP2_LPTRS),
VC4_REG32(SCALER6_DISP2_COB),
VC4_REG32(SCALER6_DISP2_STATUS),
VC4_REG32(SCALER6_DISP2_DL),
VC4_REG32(SCALER6_DISP2_RUN),
VC4_REG32(SCALER6_EOLN),
VC4_REG32(SCALER6_DL_STATUS),
VC4_REG32(SCALER6_BFG_MISC),
VC4_REG32(SCALER6_QOS0),
VC4_REG32(SCALER6_PROF0),
VC4_REG32(SCALER6_QOS1),
VC4_REG32(SCALER6_PROF1),
VC4_REG32(SCALER6_QOS2),
VC4_REG32(SCALER6_PROF2),
VC4_REG32(SCALER6_PRI_MAP0),
VC4_REG32(SCALER6_PRI_MAP1),
VC4_REG32(SCALER6_HISTCTRL),
VC4_REG32(SCALER6_HISTBIN0),
VC4_REG32(SCALER6_HISTBIN1),
VC4_REG32(SCALER6_HISTBIN2),
VC4_REG32(SCALER6_HISTBIN3),
VC4_REG32(SCALER6_HISTBIN4),
VC4_REG32(SCALER6_HISTBIN5),
VC4_REG32(SCALER6_HISTBIN6),
VC4_REG32(SCALER6_HISTBIN7),
VC4_REG32(SCALER6_HDR_CFG_REMAP),
VC4_REG32(SCALER6_COL_SPACE),
VC4_REG32(SCALER6_HVS_ID),
VC4_REG32(SCALER6_CFC1),
VC4_REG32(SCALER6_DISP_UPM_ISO0),
VC4_REG32(SCALER6_DISP_UPM_ISO1),
VC4_REG32(SCALER6_DISP_UPM_ISO2),
VC4_REG32(SCALER6_DISP_LBM_ISO0),
VC4_REG32(SCALER6_DISP_LBM_ISO1),
VC4_REG32(SCALER6_DISP_LBM_ISO2),
VC4_REG32(SCALER6_DISP_COB_ISO0),
VC4_REG32(SCALER6_DISP_COB_ISO1),
VC4_REG32(SCALER6_DISP_COB_ISO2),
VC4_REG32(SCALER6_BAD_COB),
VC4_REG32(SCALER6_BAD_LBM),
VC4_REG32(SCALER6_BAD_UPM),
VC4_REG32(SCALER6_BAD_AXI),
};
static const struct debugfs_reg32 vc6_d_hvs_regs[] = {
VC4_REG32(SCALER6D_VERSION),
VC4_REG32(SCALER6D_CXM_SIZE),
VC4_REG32(SCALER6D_LBM_SIZE),
VC4_REG32(SCALER6D_UBM_SIZE),
VC4_REG32(SCALER6D_COBA_SIZE),
VC4_REG32(SCALER6D_COB_SIZE),
VC4_REG32(SCALER6D_CONTROL),
VC4_REG32(SCALER6D_FETCHER_STATUS),
VC4_REG32(SCALER6D_FETCH_STATUS),
VC4_REG32(SCALER6D_HANDLE_ERROR),
VC4_REG32(SCALER6D_DISP0_CTRL0),
VC4_REG32(SCALER6D_DISP0_CTRL1),
VC4_REG32(SCALER6D_DISP0_BGND0),
VC4_REG32(SCALER6D_DISP0_BGND1),
VC4_REG32(SCALER6D_DISP0_LPTRS),
VC4_REG32(SCALER6D_DISP0_COB),
VC4_REG32(SCALER6D_DISP0_STATUS),
VC4_REG32(SCALER6D_DISP0_DL),
VC4_REG32(SCALER6D_DISP0_RUN),
VC4_REG32(SCALER6D_DISP1_CTRL0),
VC4_REG32(SCALER6D_DISP1_CTRL1),
VC4_REG32(SCALER6D_DISP1_BGND0),
VC4_REG32(SCALER6D_DISP1_BGND1),
VC4_REG32(SCALER6D_DISP1_LPTRS),
VC4_REG32(SCALER6D_DISP1_COB),
VC4_REG32(SCALER6D_DISP1_STATUS),
VC4_REG32(SCALER6D_DISP1_DL),
VC4_REG32(SCALER6D_DISP1_RUN),
VC4_REG32(SCALER6D_DISP2_CTRL0),
VC4_REG32(SCALER6D_DISP2_CTRL1),
VC4_REG32(SCALER6D_DISP2_BGND0),
VC4_REG32(SCALER6D_DISP2_BGND1),
VC4_REG32(SCALER6D_DISP2_LPTRS),
VC4_REG32(SCALER6D_DISP2_COB),
VC4_REG32(SCALER6D_DISP2_STATUS),
VC4_REG32(SCALER6D_DISP2_DL),
VC4_REG32(SCALER6D_DISP2_RUN),
VC4_REG32(SCALER6D_EOLN),
VC4_REG32(SCALER6D_DL_STATUS),
VC4_REG32(SCALER6D_QOS0),
VC4_REG32(SCALER6D_PROF0),
VC4_REG32(SCALER6D_QOS1),
VC4_REG32(SCALER6D_PROF1),
VC4_REG32(SCALER6D_QOS2),
VC4_REG32(SCALER6D_PROF2),
VC4_REG32(SCALER6D_PRI_MAP0),
VC4_REG32(SCALER6D_PRI_MAP1),
VC4_REG32(SCALER6D_HISTCTRL),
VC4_REG32(SCALER6D_HISTBIN0),
VC4_REG32(SCALER6D_HISTBIN1),
VC4_REG32(SCALER6D_HISTBIN2),
VC4_REG32(SCALER6D_HISTBIN3),
VC4_REG32(SCALER6D_HISTBIN4),
VC4_REG32(SCALER6D_HISTBIN5),
VC4_REG32(SCALER6D_HISTBIN6),
VC4_REG32(SCALER6D_HISTBIN7),
VC4_REG32(SCALER6D_HVS_ID),
};
void vc4_hvs_dump_state(struct vc4_hvs *hvs)
{
struct drm_device *drm = &hvs->vc4->base;
struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
int idx, i;
if (!drm_dev_enter(drm, &idx))
return;
drm_print_regset32(&p, &hvs->regset);
DRM_INFO("HVS ctx:\n");
for (i = 0; i < 64; i += 4) {
DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
readl((u32 __iomem *)hvs->dlist + i + 0),
readl((u32 __iomem *)hvs->dlist + i + 1),
readl((u32 __iomem *)hvs->dlist + i + 2),
readl((u32 __iomem *)hvs->dlist + i + 3));
}
drm_dev_exit(idx);
}
static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
{
struct drm_debugfs_entry *entry = m->private;
struct drm_device *dev = entry->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_printer p = drm_seq_file_printer(m);
drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
return 0;
}
static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
{
struct drm_debugfs_entry *entry = m->private;
struct drm_device *dev = entry->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct drm_printer p = drm_seq_file_printer(m);
unsigned int dlist_mem_size = hvs->dlist_mem_size;
unsigned int next_entry_start;
unsigned int i, j;
u32 dlist_word, dispstat;
for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
SCALER_DISPSTATX_MODE);
if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
dispstat == SCALER_DISPSTATX_MODE_EOF) {
drm_printf(&p, "HVS chan %u disabled\n", i);
continue;
}
drm_printf(&p, "HVS chan %u:\n", i);
next_entry_start = 0;
for (j = HVS_READ(SCALER_DISPLISTX(i)); j < dlist_mem_size; j++) {
dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
dlist_word);
if (!next_entry_start ||
next_entry_start == j) {
if (dlist_word & SCALER_CTL0_END)
break;
next_entry_start = j +
VC4_GET_FIELD(dlist_word,
SCALER_CTL0_SIZE);
}
}
}
return 0;
}
static int vc6_hvs_debugfs_dlist(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct drm_printer p = drm_seq_file_printer(m);
unsigned int dlist_mem_size = hvs->dlist_mem_size;
unsigned int next_entry_start;
unsigned int i;
for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
unsigned int active_dlist, dispstat;
unsigned int j;
dispstat = VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_STATUS(i)),
SCALER6_DISPX_STATUS_MODE);
if (dispstat == SCALER6_DISPX_STATUS_MODE_DISABLED ||
dispstat == SCALER6_DISPX_STATUS_MODE_EOF) {
drm_printf(&p, "HVS chan %u disabled\n", i);
continue;
}
drm_printf(&p, "HVS chan %u:\n", i);
active_dlist = VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_DL(i)),
SCALER6_DISPX_DL_LACT);
next_entry_start = 0;
for (j = active_dlist; j < dlist_mem_size; j++) {
u32 dlist_word;
dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
dlist_word);
if (!next_entry_start ||
next_entry_start == j) {
if (dlist_word & SCALER_CTL0_END)
break;
next_entry_start = j +
VC4_GET_FIELD(dlist_word,
SCALER_CTL0_SIZE);
}
}
}
return 0;
}
static int vc6_hvs_debugfs_upm_allocs(struct seq_file *m, void *data)
{
struct drm_debugfs_entry *entry = m->private;
struct drm_device *dev = entry->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct drm_printer p = drm_seq_file_printer(m);
struct vc4_upm_refcounts *refcount;
unsigned int i;
drm_printf(&p, "UPM Handles:\n");
for (i = 1; i <= VC4_NUM_UPM_HANDLES; i++) {
refcount = &hvs->upm_refcounts[i];
drm_printf(&p, "handle %u: refcount %u, size %zu [%08llx + %08llx]\n",
i, refcount_read(&refcount->refcount), refcount->size,
refcount->upm.start, refcount->upm.size);
}
return 0;
}
/* The filter kernel is composed of dwords each containing 3 9-bit
* signed integers packed next to each other.
*/
#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
#define VC4_PPF_FILTER_WORD(c0, c1, c2) \
((((c0) & 0x1ff) << 0) | \
(((c1) & 0x1ff) << 9) | \
(((c2) & 0x1ff) << 18))
/* The whole filter kernel is arranged as the coefficients 0-16 going
* up, then a pad, then 17-31 going down and reversed within the
* dwords. This means that a linear phase kernel (where it's
* symmetrical at the boundary between 15 and 16) has the last 5
* dwords matching the first 5, but reversed.
*/
#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
c9, c10, c11, c12, c13, c14, c15) \
{VC4_PPF_FILTER_WORD(c0, c1, c2), \
VC4_PPF_FILTER_WORD(c3, c4, c5), \
VC4_PPF_FILTER_WORD(c6, c7, c8), \
VC4_PPF_FILTER_WORD(c9, c10, c11), \
VC4_PPF_FILTER_WORD(c12, c13, c14), \
VC4_PPF_FILTER_WORD(c15, c15, 0)}
#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
* http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*/
static const u32 mitchell_netravali_1_3_1_3_kernel[] =
VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
50, 82, 119, 155, 187, 213, 227);
static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
struct drm_mm_node *space,
const u32 *kernel)
{
int ret, i;
u32 __iomem *dst_kernel;
/*
* NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
* here since that function is only called from vc4_hvs_bind().
*/
ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
if (ret) {
drm_err(&hvs->vc4->base, "Failed to allocate space for filter kernel: %d\n",
ret);
return ret;
}
dst_kernel = hvs->dlist + space->start;
for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
writel(kernel[i], &dst_kernel[i]);
else {
writel(kernel[VC4_KERNEL_DWORDS - i - 1],
&dst_kernel[i]);
}
}
return 0;
}
static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
struct vc4_crtc *vc4_crtc)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
struct drm_crtc *crtc = &vc4_crtc->base;
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
int idx;
u32 i;
WARN_ON_ONCE(vc4->gen > VC4_GEN_5);
if (!drm_dev_enter(drm, &idx))
return;
if (hvs->vc4->gen != VC4_GEN_4)
goto exit;
/* The LUT memory is laid out with each HVS channel in order,
* each of which takes 256 writes for R, 256 for G, then 256
* for B.
*/
HVS_WRITE(SCALER_GAMADDR,
SCALER_GAMADDR_AUTOINC |
(vc4_state->assigned_channel * 3 * crtc->gamma_size));
for (i = 0; i < crtc->gamma_size; i++)
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
for (i = 0; i < crtc->gamma_size; i++)
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
for (i = 0; i < crtc->gamma_size; i++)
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
exit:
drm_dev_exit(idx);
}
static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
struct vc4_crtc *vc4_crtc)
{
struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
struct drm_color_lut *lut = crtc_state->gamma_lut->data;
u32 length = drm_color_lut_size(crtc_state->gamma_lut);
u32 i;
for (i = 0; i < length; i++) {
vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
}
vc4_hvs_lut_load(hvs, vc4_crtc);
}
u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
u8 field = 0;
int idx;
WARN_ON_ONCE(vc4->gen > VC4_GEN_6_D);
if (!drm_dev_enter(drm, &idx))
return 0;
switch (vc4->gen) {
case VC4_GEN_6_C:
case VC4_GEN_6_D:
field = VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_STATUS(fifo)),
SCALER6_DISPX_STATUS_FRCNT);
break;
case VC4_GEN_5:
switch (fifo) {
case 0:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
SCALER5_DISPSTAT1_FRCNT0);
break;
case 1:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
SCALER5_DISPSTAT1_FRCNT1);
break;
case 2:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
SCALER5_DISPSTAT2_FRCNT2);
break;
}
break;
case VC4_GEN_4:
switch (fifo) {
case 0:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
SCALER_DISPSTAT1_FRCNT0);
break;
case 1:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
SCALER_DISPSTAT1_FRCNT1);
break;
case 2:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
SCALER_DISPSTAT2_FRCNT2);
break;
}
break;
default:
drm_err(drm, "Unknown VC4 generation: %d", vc4->gen);
break;
}
drm_dev_exit(idx);
return field;
}
int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
{
struct vc4_dev *vc4 = hvs->vc4;
u32 reg;
int ret;
WARN_ON_ONCE(vc4->gen > VC4_GEN_6_D);
switch (vc4->gen) {
case VC4_GEN_4:
return output;
case VC4_GEN_5:
/*
* NOTE: We should probably use
* drm_dev_enter()/drm_dev_exit() here, but this
* function is only used during the DRM device
* initialization, so we should be fine.
*/
switch (output) {
case 0:
return 0;
case 1:
return 1;
case 2:
reg = HVS_READ(SCALER_DISPECTRL);
ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
if (ret == 0)
return 2;
return 0;
case 3:
reg = HVS_READ(SCALER_DISPCTRL);
ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
if (ret == 3)
return -EPIPE;
return ret;
case 4:
reg = HVS_READ(SCALER_DISPEOLN);
ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
if (ret == 3)
return -EPIPE;
return ret;
case 5:
reg = HVS_READ(SCALER_DISPDITHER);
ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
if (ret == 3)
return -EPIPE;
return ret;
default:
return -EPIPE;
}
case VC4_GEN_6_C:
case VC4_GEN_6_D:
switch (output) {
case 0:
return 0;
case 2:
return 2;
case 1:
case 3:
case 4:
return 1;
default:
return -EPIPE;
}
default:
return -EPIPE;
}
}
static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
struct drm_display_mode *mode, bool oneshot)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
unsigned int chan = vc4_crtc_state->assigned_channel;
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 dispbkgndx;
u32 dispctrl;
int idx;
WARN_ON_ONCE(vc4->gen > VC4_GEN_5);
if (!drm_dev_enter(drm, &idx))
return -ENODEV;
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
/* Turn on the scaler, which will wait for vstart to start
* compositing.
* When feeding the transposer, we should operate in oneshot
* mode.
*/
dispctrl = SCALER_DISPCTRLX_ENABLE;
dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
if (vc4->gen == VC4_GEN_4) {
dispctrl |= VC4_SET_FIELD(mode->hdisplay,
SCALER_DISPCTRLX_WIDTH) |
VC4_SET_FIELD(mode->vdisplay,
SCALER_DISPCTRLX_HEIGHT) |
(oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
} else {
dispctrl |= VC4_SET_FIELD(mode->hdisplay,
SCALER5_DISPCTRLX_WIDTH) |
VC4_SET_FIELD(mode->vdisplay,
SCALER5_DISPCTRLX_HEIGHT) |
(oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
}
HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
((vc4->gen == VC4_GEN_4) ? SCALER_DISPBKGND_GAMMA : 0) |
(interlace ? SCALER_DISPBKGND_INTERLACE : 0));
/* Reload the LUT, since the SRAMs would have been disabled if
* all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
*/
vc4_hvs_lut_load(hvs, vc4_crtc);
drm_dev_exit(idx);
return 0;
}
static int vc6_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
struct drm_display_mode *mode, bool oneshot)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
unsigned int chan = vc4_crtc_state->assigned_channel;
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 disp_ctrl1;
int idx;
WARN_ON_ONCE(vc4->gen < VC4_GEN_6_C);
if (!drm_dev_enter(drm, &idx))
return -ENODEV;
HVS_WRITE(SCALER6_DISPX_CTRL0(chan), SCALER6_DISPX_CTRL0_RESET);
disp_ctrl1 = HVS_READ(SCALER6_DISPX_CTRL1(chan));
disp_ctrl1 &= ~SCALER6_DISPX_CTRL1_INTLACE;
HVS_WRITE(SCALER6_DISPX_CTRL1(chan),
disp_ctrl1 | (interlace ? SCALER6_DISPX_CTRL1_INTLACE : 0));
HVS_WRITE(SCALER6_DISPX_CTRL0(chan),
SCALER6_DISPX_CTRL0_ENB |
VC4_SET_FIELD(mode->hdisplay - 1,
SCALER6_DISPX_CTRL0_FWIDTH) |
(oneshot ? SCALER6_DISPX_CTRL0_ONESHOT : 0) |
VC4_SET_FIELD(mode->vdisplay - 1,
SCALER6_DISPX_CTRL0_LINES));
drm_dev_exit(idx);
return 0;
}
static void __vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
int idx;
WARN_ON_ONCE(vc4->gen > VC4_GEN_5);
if (!drm_dev_enter(drm, &idx))
return;
if (!(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE))
goto out;
HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
/* Once we leave, the scaler should be disabled and its fifo empty. */
WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
SCALER_DISPSTATX_MODE) !=
SCALER_DISPSTATX_MODE_DISABLED);
WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
(SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
SCALER_DISPSTATX_EMPTY);
out:
drm_dev_exit(idx);
}
static void __vc6_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
int idx;
WARN_ON_ONCE(vc4->gen < VC4_GEN_6_C);
if (!drm_dev_enter(drm, &idx))
return;
if (!(HVS_READ(SCALER6_DISPX_CTRL0(chan)) & SCALER6_DISPX_CTRL0_ENB))
goto out;
HVS_WRITE(SCALER6_DISPX_CTRL0(chan),
HVS_READ(SCALER6_DISPX_CTRL0(chan)) | SCALER6_DISPX_CTRL0_RESET);
HVS_WRITE(SCALER6_DISPX_CTRL0(chan),
HVS_READ(SCALER6_DISPX_CTRL0(chan)) & ~SCALER6_DISPX_CTRL0_ENB);
WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_STATUS(chan)),
SCALER6_DISPX_STATUS_MODE) !=
SCALER6_DISPX_STATUS_MODE_DISABLED);
out:
drm_dev_exit(idx);
}
void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
{
struct vc4_dev *vc4 = hvs->vc4;
if (vc4->gen >= VC4_GEN_6_C)
__vc6_hvs_stop_channel(hvs, chan);
else
__vc4_hvs_stop_channel(hvs, chan);
}
int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane;
unsigned long flags;
const struct drm_plane_state *plane_state;
u32 dlist_count = 0;
int ret;
/* The pixelvalve can only feed one encoder (and encoders are
* 1:1 with connectors.)
*/
if (hweight32(crtc_state->connector_mask) > 1)
return -EINVAL;
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
u32 plane_dlist_count = vc4_plane_dlist_size(plane_state);
drm_dbg_driver(dev, "[CRTC:%d:%s] Found [PLANE:%d:%s] with DLIST size: %u\n",
crtc->base.id, crtc->name,
plane->base.id, plane->name,
plane_dlist_count);
dlist_count += plane_dlist_count;
}
dlist_count++; /* Account for SCALER_CTL0_END. */
drm_dbg_driver(dev, "[CRTC:%d:%s] Allocating DLIST block with size: %u\n",
crtc->base.id, crtc->name, dlist_count);
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
dlist_count);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
if (ret) {
drm_err(dev, "Failed to allocate DLIST entry: %d\n", ret);
return ret;
}
return 0;
}
static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
int idx;
if (!drm_dev_enter(dev, &idx))
return;
if (vc4->gen >= VC4_GEN_6_C)
HVS_WRITE(SCALER6_DISPX_LPTRS(vc4_state->assigned_channel),
VC4_SET_FIELD(vc4_state->mm.start,
SCALER6_DISPX_LPTRS_HEADE));
else
HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
vc4_state->mm.start);
drm_dev_exit(idx);
}
static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
unsigned long flags;
if (crtc->state->event) {
crtc->state->event->pipe = drm_crtc_index(crtc);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
spin_lock_irqsave(&dev->event_lock, flags);
if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
vc4_crtc->event = crtc->state->event;
crtc->state->event = NULL;
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
vc4_crtc->current_dlist = vc4_state->mm.start;
spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
}
void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
unsigned long flags;
spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
}
void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
bool oneshot = vc4_crtc->feeds_txp;
vc4_hvs_install_dlist(crtc);
vc4_hvs_update_dlist(crtc);
if (vc4->gen >= VC4_GEN_6_C)
vc6_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
else
vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
}
void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
unsigned int chan = vc4_state->assigned_channel;
vc4_hvs_stop_channel(vc4->hvs, chan);
}
void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
unsigned int channel = vc4_state->assigned_channel;
struct drm_plane *plane;
struct vc4_plane_state *vc4_plane_state;
bool debug_dump_regs = false;
bool enable_bg_fill = true;
u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
u32 __iomem *dlist_next = dlist_start;
unsigned int zpos = 0;
bool found = false;
int idx;
WARN_ON_ONCE(vc4->gen > VC4_GEN_6_D);
if (!drm_dev_enter(dev, &idx)) {
vc4_crtc_send_vblank(crtc);
return;
}
if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
goto exit;
if (debug_dump_regs) {
DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
vc4_hvs_dump_state(hvs);
}
/* Copy all the active planes' dlist contents to the hardware dlist. */
do {
found = false;
drm_atomic_crtc_for_each_plane(plane, crtc) {
if (plane->state->normalized_zpos != zpos)
continue;
/* Is this the first active plane? */
if (dlist_next == dlist_start) {
/* We need to enable background fill when a plane
* could be alpha blending from the background, i.e.
* where no other plane is underneath. It suffices to
* consider the first active plane here since we set
* needs_bg_fill such that either the first plane
* already needs it or all planes on top blend from
* the first or a lower plane.
*/
vc4_plane_state = to_vc4_plane_state(plane->state);
enable_bg_fill = vc4_plane_state->needs_bg_fill;
}
dlist_next += vc4_plane_write_dlist(plane, dlist_next);
found = true;
}
zpos++;
} while (found);
writel(SCALER_CTL0_END, dlist_next);
dlist_next++;
WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
if (vc4->gen >= VC4_GEN_6_C) {
/* This sets a black background color fill, as is the case
* with other DRM drivers.
*/
if (enable_bg_fill)
HVS_WRITE(SCALER6_DISPX_CTRL1(channel),
HVS_READ(SCALER6_DISPX_CTRL1(channel)) |
SCALER6_DISPX_CTRL1_BGENB);
else
HVS_WRITE(SCALER6_DISPX_CTRL1(channel),
HVS_READ(SCALER6_DISPX_CTRL1(channel)) &
~SCALER6_DISPX_CTRL1_BGENB);
} else {
/* we can actually run with a lower core clock when background
* fill is enabled on VC4_GEN_5 so leave it enabled always.
*/
HVS_WRITE(SCALER_DISPBKGNDX(channel),
HVS_READ(SCALER_DISPBKGNDX(channel)) |
SCALER_DISPBKGND_FILL);
}
/* Only update DISPLIST if the CRTC was already running and is not
* being disabled.
* vc4_crtc_enable() takes care of updating the dlist just after
* re-enabling VBLANK interrupts and before enabling the engine.
* If the CRTC is being disabled, there's no point in updating this
* information.
*/
if (crtc->state->active && old_state->active) {
vc4_hvs_install_dlist(crtc);
vc4_hvs_update_dlist(crtc);
}
if (crtc->state->color_mgmt_changed) {
u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
WARN_ON_ONCE(vc4->gen > VC4_GEN_5);
if (crtc->state->gamma_lut) {
vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
dispbkgndx |= SCALER_DISPBKGND_GAMMA;
} else {
/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
* in hardware, which is the same as a linear lut that
* DRM expects us to use in absence of a user lut.
*/
dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
}
HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
}
if (debug_dump_regs) {
DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
vc4_hvs_dump_state(hvs);
}
exit:
drm_dev_exit(idx);
}
void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
u32 dispctrl;
int idx;
WARN_ON(vc4->gen > VC4_GEN_5);
if (!drm_dev_enter(drm, &idx))
return;
dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl &= ~((vc4->gen == VC4_GEN_5) ?
SCALER5_DISPCTRL_DSPEISLUR(channel) :
SCALER_DISPCTRL_DSPEISLUR(channel));
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
drm_dev_exit(idx);
}
void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
u32 dispctrl;
int idx;
WARN_ON(vc4->gen > VC4_GEN_5);
if (!drm_dev_enter(drm, &idx))
return;
dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl |= ((vc4->gen == VC4_GEN_5) ?
SCALER5_DISPCTRL_DSPEISLUR(channel) :
SCALER_DISPCTRL_DSPEISLUR(channel));
HVS_WRITE(SCALER_DISPSTAT,
SCALER_DISPSTAT_EUFLOW(channel));
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
drm_dev_exit(idx);
}
static void vc4_hvs_report_underrun(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
atomic_inc(&vc4->underrun);
DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
}
static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
{
struct drm_device *dev = data;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
irqreturn_t irqret = IRQ_NONE;
int channel;
u32 control;
u32 status;
u32 dspeislur;
WARN_ON(vc4->gen > VC4_GEN_5);
/*
* NOTE: We don't need to protect the register access using
* drm_dev_enter() there because the interrupt handler lifetime
* is tied to the device itself, and not to the DRM device.
*
* So when the device will be gone, one of the first thing we
* will be doing will be to unregister the interrupt handler,
* and then unregister the DRM device. drm_dev_enter() would
* thus always succeed if we are here.
*/
status = HVS_READ(SCALER_DISPSTAT);
control = HVS_READ(SCALER_DISPCTRL);
for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
dspeislur = (vc4->gen == VC4_GEN_5) ?
SCALER5_DISPCTRL_DSPEISLUR(channel) :
SCALER_DISPCTRL_DSPEISLUR(channel);
/* Interrupt masking is not always honored, so check it here. */
if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
control & dspeislur) {
vc4_hvs_mask_underrun(hvs, channel);
vc4_hvs_report_underrun(dev);
irqret = IRQ_HANDLED;
}
}
/* Clear every per-channel interrupt flag. */
HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
SCALER_DISPSTAT_IRQMASK(1) |
SCALER_DISPSTAT_IRQMASK(2));
return irqret;
}
int vc4_hvs_debugfs_init(struct drm_minor *minor)
{
struct drm_device *drm = minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_hvs *hvs = vc4->hvs;
if (!vc4->hvs)
return -ENODEV;
if (vc4->gen == VC4_GEN_4)
debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
minor->debugfs_root,
&vc4->load_tracker_enabled);
if (vc4->gen >= VC4_GEN_6_C) {
drm_debugfs_add_file(drm, "hvs_dlists", vc6_hvs_debugfs_dlist, NULL);
drm_debugfs_add_file(drm, "hvs_upm", vc6_hvs_debugfs_upm_allocs, NULL);
} else {
drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
}
drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
return 0;
}
struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4,
void __iomem *regs,
struct platform_device *pdev)
{
struct drm_device *drm = &vc4->base;
struct vc4_hvs *hvs;
unsigned int dlist_start;
size_t dlist_size;
size_t lbm_size;
unsigned int i;
hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
if (!hvs)
return ERR_PTR(-ENOMEM);
hvs->vc4 = vc4;
hvs->regs = regs;
hvs->pdev = pdev;
spin_lock_init(&hvs->mm_lock);
switch (vc4->gen) {
case VC4_GEN_4:
case VC4_GEN_5:
/* Set up the HVS display list memory manager. We never
* overwrite the setup from the bootloader (just 128b
* out of our 16K), since we don't want to scramble the
* screen when transitioning from the firmware's boot
* setup to runtime.
*/
dlist_start = HVS_BOOTLOADER_DLIST_END;
dlist_size = (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END;
break;
case VC4_GEN_6_C:
case VC4_GEN_6_D:
dlist_start = HVS_BOOTLOADER_DLIST_END;
/*
* If we are running a test, it means that we can't
* access a register. Use a plausible size then.
*/
if (!kunit_get_current_test())
dlist_size = HVS_READ(SCALER6_CXM_SIZE);
else
dlist_size = 4096;
for (i = 0; i < VC4_NUM_UPM_HANDLES; i++) {
refcount_set(&hvs->upm_refcounts[i].refcount, 0);
hvs->upm_refcounts[i].hvs = hvs;
}
break;
default:
drm_err(drm, "Unknown VC4 generation: %d", vc4->gen);
return ERR_PTR(-ENODEV);
}
drm_mm_init(&hvs->dlist_mm, dlist_start, dlist_size);
hvs->dlist_mem_size = dlist_size;
/* Set up the HVS LBM memory manager. We could have some more
* complicated data structure that allowed reuse of LBM areas
* between planes when they don't overlap on the screen, but
* for now we just allocate globally.
*/
switch (vc4->gen) {
case VC4_GEN_4:
/* 48k words of 2x12-bit pixels */
lbm_size = 48 * SZ_1K;
break;
case VC4_GEN_5:
/* 60k words of 4x12-bit pixels */
lbm_size = 60 * SZ_1K;
break;
case VC4_GEN_6_C:
case VC4_GEN_6_D:
/*
* If we are running a test, it means that we can't
* access a register. Use a plausible size then.
*/
lbm_size = 1024;
break;
default:
drm_err(drm, "Unknown VC4 generation: %d", vc4->gen);
return ERR_PTR(-ENODEV);
}
drm_mm_init(&hvs->lbm_mm, 0, lbm_size);
if (vc4->gen >= VC4_GEN_6_C) {
ida_init(&hvs->upm_handles);
/*
* NOTE: On BCM2712, the size can also be read through
* the SCALER_UBM_SIZE register. We would need to do a
* register access though, which we can't do with kunit
* that also uses this function to create its mock
* device.
*/
drm_mm_init(&hvs->upm_mm, 0, 1024 * HVS_UBM_WORD_SIZE);
}
vc4->hvs = hvs;
return hvs;
}
static int vc4_hvs_hw_init(struct vc4_hvs *hvs)
{
struct vc4_dev *vc4 = hvs->vc4;
u32 dispctrl, reg;
dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl |= SCALER_DISPCTRL_ENABLE;
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
reg = HVS_READ(SCALER_DISPECTRL);
reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
HVS_WRITE(SCALER_DISPECTRL,
reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
reg = HVS_READ(SCALER_DISPCTRL);
reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
HVS_WRITE(SCALER_DISPCTRL,
reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
reg = HVS_READ(SCALER_DISPEOLN);
reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
HVS_WRITE(SCALER_DISPEOLN,
reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
reg = HVS_READ(SCALER_DISPDITHER);
reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
HVS_WRITE(SCALER_DISPDITHER,
reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
SCALER_DISPCTRL_DISPEIRQ(1) |
SCALER_DISPCTRL_DISPEIRQ(2);
if (vc4->gen == VC4_GEN_4)
dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
SCALER_DISPCTRL_SLVWREIRQ |
SCALER_DISPCTRL_SLVRDEIRQ |
SCALER_DISPCTRL_DSPEIEOF(0) |
SCALER_DISPCTRL_DSPEIEOF(1) |
SCALER_DISPCTRL_DSPEIEOF(2) |
SCALER_DISPCTRL_DSPEIEOLN(0) |
SCALER_DISPCTRL_DSPEIEOLN(1) |
SCALER_DISPCTRL_DSPEIEOLN(2) |
SCALER_DISPCTRL_DSPEISLUR(0) |
SCALER_DISPCTRL_DSPEISLUR(1) |
SCALER_DISPCTRL_DSPEISLUR(2) |
SCALER_DISPCTRL_SCLEIRQ);
else
dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
SCALER5_DISPCTRL_SLVEIRQ |
SCALER5_DISPCTRL_DSPEIEOF(0) |
SCALER5_DISPCTRL_DSPEIEOF(1) |
SCALER5_DISPCTRL_DSPEIEOF(2) |
SCALER5_DISPCTRL_DSPEIEOLN(0) |
SCALER5_DISPCTRL_DSPEIEOLN(1) |
SCALER5_DISPCTRL_DSPEIEOLN(2) |
SCALER5_DISPCTRL_DSPEISLUR(0) |
SCALER5_DISPCTRL_DSPEISLUR(1) |
SCALER5_DISPCTRL_DSPEISLUR(2) |
SCALER_DISPCTRL_SCLEIRQ);
/* Set AXI panic mode.
* VC4 panics when < 2 lines in FIFO.
* VC5 panics when less than 1 line in the FIFO.
*/
dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
SCALER_DISPCTRL_PANIC1_MASK |
SCALER_DISPCTRL_PANIC2_MASK);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
/* Set AXI panic mode.
* VC4 panics when < 2 lines in FIFO.
* VC5 panics when less than 1 line in the FIFO.
*/
dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
SCALER_DISPCTRL_PANIC1_MASK |
SCALER_DISPCTRL_PANIC2_MASK);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
return 0;
}
#define CFC1_N_NL_CSC_CTRL(x) (0xa000 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C00(x) (0xa008 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C01(x) (0xa00c + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C02(x) (0xa010 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C03(x) (0xa014 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C04(x) (0xa018 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C10(x) (0xa01c + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C11(x) (0xa020 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C12(x) (0xa024 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C13(x) (0xa028 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C14(x) (0xa02c + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C20(x) (0xa030 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C21(x) (0xa034 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C22(x) (0xa038 + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C23(x) (0xa03c + ((x) * 0x3000))
#define CFC1_N_MA_CSC_COEFF_C24(x) (0xa040 + ((x) * 0x3000))
#define SCALER_PI_CMP_CSC_RED0(x) (0x200 + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_RED1(x) (0x204 + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_RED_CLAMP(x) (0x208 + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_CFG(x) (0x20c + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_GREEN0(x) (0x210 + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_GREEN1(x) (0x214 + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_GREEN_CLAMP(x) (0x218 + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_BLUE0(x) (0x220 + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_BLUE1(x) (0x224 + ((x) * 0x40))
#define SCALER_PI_CMP_CSC_BLUE_CLAMP(x) (0x228 + ((x) * 0x40))
/* 4 S2.22 multiplication factors, and 1 S9.15 addititive element for each of 3
* output components
*/
struct vc6_csc_coeff_entry {
u32 csc[3][5];
};
static const struct vc6_csc_coeff_entry csc_coeffs[2][3] = {
[DRM_COLOR_YCBCR_LIMITED_RANGE] = {
[DRM_COLOR_YCBCR_BT601] = {
.csc = {
{ 0x004A8542, 0x0, 0x0066254A, 0x0, 0xFF908A0D },
{ 0x004A8542, 0xFFE6ED5D, 0xFFCBF856, 0x0, 0x0043C9A3 },
{ 0x004A8542, 0x00811A54, 0x0, 0x0, 0xFF759502 }
}
},
[DRM_COLOR_YCBCR_BT709] = {
.csc = {
{ 0x004A8542, 0x0, 0x0072BC44, 0x0, 0xFF83F312 },
{ 0x004A8542, 0xFFF25A22, 0xFFDDE4D0, 0x0, 0x00267064 },
{ 0x004A8542, 0x00873197, 0x0, 0x0, 0xFF6F7DC0 }
}
},
[DRM_COLOR_YCBCR_BT2020] = {
.csc = {
{ 0x004A8542, 0x0, 0x006B4A17, 0x0, 0xFF8B653F },
{ 0x004A8542, 0xFFF402D9, 0xFFDDE4D0, 0x0, 0x0024C7AE },
{ 0x004A8542, 0x008912CC, 0x0, 0x0, 0xFF6D9C8B }
}
}
},
[DRM_COLOR_YCBCR_FULL_RANGE] = {
[DRM_COLOR_YCBCR_BT601] = {
.csc = {
{ 0x00400000, 0x0, 0x0059BA5E, 0x0, 0xFFA645A1 },
{ 0x00400000, 0xFFE9F9AC, 0xFFD24B97, 0x0, 0x0043BABB },
{ 0x00400000, 0x00716872, 0x0, 0x0, 0xFF8E978D }
}
},
[DRM_COLOR_YCBCR_BT709] = {
.csc = {
{ 0x00400000, 0x0, 0x0064C985, 0x0, 0xFF9B367A },
{ 0x00400000, 0xFFF402E1, 0xFFE20A40, 0x0, 0x0029F2DE },
{ 0x00400000, 0x0076C226, 0x0, 0x0, 0xFF893DD9 }
}
},
[DRM_COLOR_YCBCR_BT2020] = {
.csc = {
{ 0x00400000, 0x0, 0x005E3F14, 0x0, 0xFFA1C0EB },
{ 0x00400000, 0xFFF577F6, 0xFFDB580F, 0x0, 0x002F2FFA },
{ 0x00400000, 0x007868DB, 0x0, 0x0, 0xFF879724 }
}
}
}
};
static int vc6_hvs_hw_init(struct vc4_hvs *hvs)
{
const struct vc6_csc_coeff_entry *coeffs;
unsigned int i;
HVS_WRITE(SCALER6_CONTROL,
SCALER6_CONTROL_HVS_EN |
VC4_SET_FIELD(8, SCALER6_CONTROL_PF_LINES) |
VC4_SET_FIELD(15, SCALER6_CONTROL_MAX_REQS));
/* Set HVS arbiter priority to max */
HVS_WRITE(SCALER6(PRI_MAP0), 0xffffffff);
HVS_WRITE(SCALER6(PRI_MAP1), 0xffffffff);
if (hvs->vc4->gen == VC4_GEN_6_C) {
for (i = 0; i < 6; i++) {
coeffs = &csc_coeffs[i / 3][i % 3];
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C00(i), coeffs->csc[0][0]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C01(i), coeffs->csc[0][1]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C02(i), coeffs->csc[0][2]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C03(i), coeffs->csc[0][3]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C04(i), coeffs->csc[0][4]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C10(i), coeffs->csc[1][0]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C11(i), coeffs->csc[1][1]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C12(i), coeffs->csc[1][2]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C13(i), coeffs->csc[1][3]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C14(i), coeffs->csc[1][4]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C20(i), coeffs->csc[2][0]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C21(i), coeffs->csc[2][1]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C22(i), coeffs->csc[2][2]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C23(i), coeffs->csc[2][3]);
HVS_WRITE(CFC1_N_MA_CSC_COEFF_C24(i), coeffs->csc[2][4]);
HVS_WRITE(CFC1_N_NL_CSC_CTRL(i), BIT(15));
}
} else {
for (i = 0; i < 8; i++) {
HVS_WRITE(SCALER_PI_CMP_CSC_RED0(i), 0x1f002566);
HVS_WRITE(SCALER_PI_CMP_CSC_RED1(i), 0x3994);
HVS_WRITE(SCALER_PI_CMP_CSC_RED_CLAMP(i), 0xfff00000);
HVS_WRITE(SCALER_PI_CMP_CSC_CFG(i), 0x1);
HVS_WRITE(SCALER_PI_CMP_CSC_GREEN0(i), 0x18002566);
HVS_WRITE(SCALER_PI_CMP_CSC_GREEN1(i), 0xf927eee2);
HVS_WRITE(SCALER_PI_CMP_CSC_GREEN_CLAMP(i), 0xfff00000);
HVS_WRITE(SCALER_PI_CMP_CSC_BLUE0(i), 0x18002566);
HVS_WRITE(SCALER_PI_CMP_CSC_BLUE1(i), 0x43d80000);
HVS_WRITE(SCALER_PI_CMP_CSC_BLUE_CLAMP(i), 0xfff00000);
}
}
return 0;
}
static int vc4_hvs_cob_init(struct vc4_hvs *hvs)
{
struct vc4_dev *vc4 = hvs->vc4;
u32 reg, top, base;
/*
* Recompute Composite Output Buffer (COB) allocations for the
* displays
*/
switch (vc4->gen) {
case VC4_GEN_4:
/* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
* The bottom 2048 pixels are full 32bpp RGBA (intended for the
* TXP composing RGBA to memory), whilst the remainder are only
* 24bpp RGB.
*
* Assign 3 lines to channels 1 & 2, and just over 4 lines to
* channel 0.
*/
#define VC4_COB_SIZE 20736
#define VC4_COB_LINE_WIDTH 2048
#define VC4_COB_NUM_LINES 3
reg = 0;
top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
reg |= (top - 1) << 16;
HVS_WRITE(SCALER_DISPBASE2, reg);
reg = top;
top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
reg |= (top - 1) << 16;
HVS_WRITE(SCALER_DISPBASE1, reg);
reg = top;
top = VC4_COB_SIZE;
reg |= (top - 1) << 16;
HVS_WRITE(SCALER_DISPBASE0, reg);
break;
case VC4_GEN_5:
/* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
* The bottom 4096 pixels are full RGBA (intended for the TXP
* composing RGBA to memory), whilst the remainder are only
* RGB. Addressing is always pixel wide.
*
* Assign 3 lines of 4096 to channels 1 & 2, and just over 4
* lines. to channel 0.
*/
#define VC5_COB_SIZE 44416
#define VC5_COB_LINE_WIDTH 4096
#define VC5_COB_NUM_LINES 3
reg = 0;
top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
reg |= top << 16;
HVS_WRITE(SCALER_DISPBASE2, reg);
top += 16;
reg = top;
top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
reg |= top << 16;
HVS_WRITE(SCALER_DISPBASE1, reg);
top += 16;
reg = top;
top = VC5_COB_SIZE;
reg |= top << 16;
HVS_WRITE(SCALER_DISPBASE0, reg);
break;
case VC4_GEN_6_C:
case VC4_GEN_6_D:
#define VC6_COB_LINE_WIDTH 3840
#define VC6_COB_NUM_LINES 4
base = 0;
top = 3840;
HVS_WRITE(SCALER6_DISPX_COB(2),
VC4_SET_FIELD(top, SCALER6_DISPX_COB_TOP) |
VC4_SET_FIELD(base, SCALER6_DISPX_COB_BASE));
base = top + 16;
top += VC6_COB_LINE_WIDTH * VC6_COB_NUM_LINES;
HVS_WRITE(SCALER6_DISPX_COB(1),
VC4_SET_FIELD(top, SCALER6_DISPX_COB_TOP) |
VC4_SET_FIELD(base, SCALER6_DISPX_COB_BASE));
base = top + 16;
top += VC6_COB_LINE_WIDTH * VC6_COB_NUM_LINES;
HVS_WRITE(SCALER6_DISPX_COB(0),
VC4_SET_FIELD(top, SCALER6_DISPX_COB_TOP) |
VC4_SET_FIELD(base, SCALER6_DISPX_COB_BASE));
break;
default:
return -EINVAL;
}
return 0;
}
static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_hvs *hvs = NULL;
void __iomem *regs;
int ret;
regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
hvs = __vc4_hvs_alloc(vc4, regs, pdev);
if (IS_ERR(hvs))
return PTR_ERR(hvs);
hvs->regset.base = hvs->regs;
if (vc4->gen == VC4_GEN_6_C) {
hvs->regset.regs = vc6_hvs_regs;
hvs->regset.nregs = ARRAY_SIZE(vc6_hvs_regs);
if (VC4_GET_FIELD(HVS_READ(SCALER6_VERSION), SCALER6_VERSION) ==
SCALER6_VERSION_D0) {
vc4->gen = VC4_GEN_6_D;
hvs->regset.regs = vc6_d_hvs_regs;
hvs->regset.nregs = ARRAY_SIZE(vc6_d_hvs_regs);
}
} else {
hvs->regset.regs = vc4_hvs_regs;
hvs->regset.nregs = ARRAY_SIZE(vc4_hvs_regs);
}
if (vc4->gen >= VC4_GEN_5) {
struct rpi_firmware *firmware;
struct device_node *node;
unsigned int max_rate;
node = rpi_firmware_find_node();
if (!node)
return -EINVAL;
firmware = rpi_firmware_get(node);
of_node_put(node);
if (!firmware)
return -EPROBE_DEFER;
hvs->core_clk = devm_clk_get(&pdev->dev,
(vc4->gen >= VC4_GEN_6_C) ? "core" : NULL);
if (IS_ERR(hvs->core_clk)) {
dev_err(&pdev->dev, "Couldn't get core clock\n");
return PTR_ERR(hvs->core_clk);
}
hvs->disp_clk = devm_clk_get(&pdev->dev,
(vc4->gen >= VC4_GEN_6_C) ? "disp" : NULL);
if (IS_ERR(hvs->disp_clk)) {
dev_err(&pdev->dev, "Couldn't get disp clock\n");
return PTR_ERR(hvs->disp_clk);
}
max_rate = rpi_firmware_clk_get_max_rate(firmware,
RPI_FIRMWARE_CORE_CLK_ID);
rpi_firmware_put(firmware);
if (max_rate >= 550000000)
hvs->vc5_hdmi_enable_hdmi_20 = true;
if (max_rate >= 600000000)
hvs->vc5_hdmi_enable_4096by2160 = true;
hvs->max_core_rate = max_rate;
ret = clk_prepare_enable(hvs->core_clk);
if (ret) {
dev_err(&pdev->dev, "Couldn't enable the core clock\n");
return ret;
}
ret = clk_prepare_enable(hvs->disp_clk);
if (ret) {
dev_err(&pdev->dev, "Couldn't enable the disp clock\n");
return ret;
}
}
if (vc4->gen >= VC4_GEN_5)
hvs->dlist = hvs->regs + SCALER5_DLIST_START;
else
hvs->dlist = hvs->regs + SCALER_DLIST_START;
if (vc4->gen >= VC4_GEN_6_C)
ret = vc6_hvs_hw_init(hvs);
else
ret = vc4_hvs_hw_init(hvs);
if (ret)
return ret;
/* Upload filter kernels. We only have the one for now, so we
* keep it around for the lifetime of the driver.
*/
ret = vc4_hvs_upload_linear_kernel(hvs,
&hvs->mitchell_netravali_filter,
mitchell_netravali_1_3_1_3_kernel);
if (ret)
return ret;
ret = vc4_hvs_cob_init(hvs);
if (ret)
return ret;
if (vc4->gen < VC4_GEN_6_C) {
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
if (ret)
return ret;
}
return 0;
}
static void vc4_hvs_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_hvs *hvs = vc4->hvs;
struct drm_mm_node *node, *next;
if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
drm_mm_remove_node(node);
drm_mm_takedown(&vc4->hvs->dlist_mm);
drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
drm_mm_remove_node(node);
drm_mm_takedown(&vc4->hvs->lbm_mm);
clk_disable_unprepare(hvs->disp_clk);
clk_disable_unprepare(hvs->core_clk);
vc4->hvs = NULL;
}
static const struct component_ops vc4_hvs_ops = {
.bind = vc4_hvs_bind,
.unbind = vc4_hvs_unbind,
};
static int vc4_hvs_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_hvs_ops);
}
static void vc4_hvs_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_hvs_ops);
}
static const struct of_device_id vc4_hvs_dt_match[] = {
{ .compatible = "brcm,bcm2711-hvs" },
{ .compatible = "brcm,bcm2712-hvs" },
{ .compatible = "brcm,bcm2835-hvs" },
{}
};
struct platform_driver vc4_hvs_driver = {
.probe = vc4_hvs_dev_probe,
.remove = vc4_hvs_dev_remove,
.driver = {
.name = "vc4_hvs",
.of_match_table = vc4_hvs_dt_match,
},
};
|