1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
|
// SPDX-License-Identifier: GPL-2.0+
#include <linux/crc32.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_blend.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_fixed.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_vblank.h>
#include <linux/minmax.h>
#include "vkms_drv.h"
static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha)
{
u32 new_color;
new_color = (src * 0xffff + dst * (0xffff - alpha));
return DIV_ROUND_CLOSEST(new_color, 0xffff);
}
/**
* pre_mul_alpha_blend - alpha blending equation
* @stage_buffer: The line with the pixels from src_plane
* @output_buffer: A line buffer that receives all the blends output
* @x_start: The start offset
* @pixel_count: The number of pixels to blend
*
* The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at
* [@x_start;@x_start+@pixel_count) in output_buffer.
*
* The current DRM assumption is that pixel color values have been already
* pre-multiplied with the alpha channel values. See more
* drm_plane_create_blend_mode_property(). Also, this formula assumes a
* completely opaque background.
*/
static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer,
struct line_buffer *output_buffer, int x_start, int pixel_count)
{
struct pixel_argb_u16 *out = &output_buffer->pixels[x_start];
const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start];
for (int i = 0; i < pixel_count; i++) {
out[i].a = (u16)0xffff;
out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a);
out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a);
out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a);
}
}
static void fill_background(const struct pixel_argb_u16 *background_color,
struct line_buffer *output_buffer)
{
for (size_t i = 0; i < output_buffer->n_pixels; i++)
output_buffer->pixels[i] = *background_color;
}
// lerp(a, b, t) = a + (b - a) * t
static u16 lerp_u16(u16 a, u16 b, s64 t)
{
s64 a_fp = drm_int2fixp(a);
s64 b_fp = drm_int2fixp(b);
s64 delta = drm_fixp_mul(b_fp - a_fp, t);
return drm_fixp2int_round(a_fp + delta);
}
static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value)
{
s64 color_channel_fp = drm_int2fixp(channel_value);
return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio);
}
/*
* This enum is related to the positions of the variables inside
* `struct drm_color_lut`, so the order of both needs to be the same.
*/
enum lut_channel {
LUT_RED = 0,
LUT_GREEN,
LUT_BLUE,
LUT_RESERVED
};
static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value,
enum lut_channel channel)
{
s64 lut_index = get_lut_index(lut, channel_value);
u16 *floor_lut_value, *ceil_lut_value;
u16 floor_channel_value, ceil_channel_value;
/*
* This checks if `struct drm_color_lut` has any gap added by the compiler
* between the struct fields.
*/
static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4);
floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)];
if (drm_fixp2int(lut_index) == (lut->lut_length - 1))
/* We're at the end of the LUT array, use same value for ceil and floor */
ceil_lut_value = floor_lut_value;
else
ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)];
floor_channel_value = floor_lut_value[channel];
ceil_channel_value = ceil_lut_value[channel];
return lerp_u16(floor_channel_value, ceil_channel_value,
lut_index & DRM_FIXED_DECIMAL_MASK);
}
static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer)
{
if (!crtc_state->gamma_lut.base)
return;
if (!crtc_state->gamma_lut.lut_length)
return;
for (size_t x = 0; x < output_buffer->n_pixels; x++) {
struct pixel_argb_u16 *pixel = &output_buffer->pixels[x];
pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED);
pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN);
pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE);
}
}
/**
* direction_for_rotation() - Get the correct reading direction for a given rotation
*
* @rotation: Rotation to analyze. It correspond the field @frame_info.rotation.
*
* This function will use the @rotation setting of a source plane to compute the reading
* direction in this plane which correspond to a "left to right writing" in the CRTC.
* For example, if the buffer is reflected on X axis, the pixel must be read from right to left
* to be written from left to right on the CRTC.
*/
static enum pixel_read_direction direction_for_rotation(unsigned int rotation)
{
struct drm_rect tmp_a, tmp_b;
int x, y;
/*
* Points A and B are depicted as zero-size rectangles on the CRTC.
* The CRTC writing direction is from A to B. The plane reading direction
* is discovered by inverse-transforming A and B.
* The reading direction is computed by rotating the vector AB (top-left to top-right) in a
* 1x1 square.
*/
tmp_a = DRM_RECT_INIT(0, 0, 0, 0);
tmp_b = DRM_RECT_INIT(1, 0, 0, 0);
drm_rect_rotate_inv(&tmp_a, 1, 1, rotation);
drm_rect_rotate_inv(&tmp_b, 1, 1, rotation);
x = tmp_b.x1 - tmp_a.x1;
y = tmp_b.y1 - tmp_a.y1;
if (x == 1 && y == 0)
return READ_LEFT_TO_RIGHT;
else if (x == -1 && y == 0)
return READ_RIGHT_TO_LEFT;
else if (y == 1 && x == 0)
return READ_TOP_TO_BOTTOM;
else if (y == -1 && x == 0)
return READ_BOTTOM_TO_TOP;
WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction.");
return READ_LEFT_TO_RIGHT;
}
/**
* clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend
* process.
*
* @direction: direction of the reading
* @current_plane: current plane blended
* @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle
* must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of
* pixel_count*1 if @direction is horizontal.
* @src_x_start: x start coordinate for the line reading
* @src_y_start: y start coordinate for the line reading
* @dst_x_start: x coordinate to blend the read line
* @pixel_count: number of pixels to blend
*
* This function is mainly a safety net to avoid reading outside the source buffer. As the
* userspace should never ask to read outside the source plane, all the cases covered here should
* be dead code.
*/
static void clamp_line_coordinates(enum pixel_read_direction direction,
const struct vkms_plane_state *current_plane,
const struct drm_rect *src_line, int *src_x_start,
int *src_y_start, int *dst_x_start, int *pixel_count)
{
/* By default the start points are correct */
*src_x_start = src_line->x1;
*src_y_start = src_line->y1;
*dst_x_start = current_plane->frame_info->dst.x1;
/* Get the correct number of pixel to blend, it depends of the direction */
switch (direction) {
case READ_LEFT_TO_RIGHT:
case READ_RIGHT_TO_LEFT:
*pixel_count = drm_rect_width(src_line);
break;
case READ_BOTTOM_TO_TOP:
case READ_TOP_TO_BOTTOM:
*pixel_count = drm_rect_height(src_line);
break;
}
/*
* Clamp the coordinates to avoid reading outside the buffer
*
* This is mainly a security check to avoid reading outside the buffer, the userspace
* should never request to read outside the source buffer.
*/
switch (direction) {
case READ_LEFT_TO_RIGHT:
case READ_RIGHT_TO_LEFT:
if (*src_x_start < 0) {
*pixel_count += *src_x_start;
*dst_x_start -= *src_x_start;
*src_x_start = 0;
}
if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width)
*pixel_count = max(0, (int)current_plane->frame_info->fb->width -
*src_x_start);
break;
case READ_BOTTOM_TO_TOP:
case READ_TOP_TO_BOTTOM:
if (*src_y_start < 0) {
*pixel_count += *src_y_start;
*dst_x_start -= *src_y_start;
*src_y_start = 0;
}
if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height)
*pixel_count = max(0, (int)current_plane->frame_info->fb->height -
*src_y_start);
break;
}
}
/**
* blend_line() - Blend a line from a plane to the output buffer
*
* @current_plane: current plane to work on
* @y: line to write in the output buffer
* @crtc_x_limit: width of the output buffer
* @stage_buffer: temporary buffer to convert the pixel line from the source buffer
* @output_buffer: buffer to blend the read line into.
*/
static void blend_line(struct vkms_plane_state *current_plane, int y,
int crtc_x_limit, struct line_buffer *stage_buffer,
struct line_buffer *output_buffer)
{
int src_x_start, src_y_start, dst_x_start, pixel_count;
struct drm_rect dst_line, tmp_src, src_line;
/* Avoid rendering useless lines */
if (y < current_plane->frame_info->dst.y1 ||
y >= current_plane->frame_info->dst.y2)
return;
/*
* dst_line is the line to copy. The initial coordinates are inside the
* destination framebuffer, and then drm_rect_* helpers are used to
* compute the correct position into the source framebuffer.
*/
dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y,
drm_rect_width(¤t_plane->frame_info->dst),
1);
drm_rect_fp_to_int(&tmp_src, ¤t_plane->frame_info->src);
/*
* [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of
* the destination buffer
*/
dst_line.x1 = max_t(int, dst_line.x1, 0);
dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit);
/* The destination is completely outside of the crtc. */
if (dst_line.x2 <= dst_line.x1)
return;
src_line = dst_line;
/*
* Transform the coordinate x/y from the crtc to coordinates into
* coordinates for the src buffer.
*
* - Cancel the offset of the dst buffer.
* - Invert the rotation. This assumes that
* dst = drm_rect_rotate(src, rotation) (dst and src have the
* same size, but can be rotated).
* - Apply the offset of the source rectangle to the coordinate.
*/
drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1,
-current_plane->frame_info->dst.y1);
drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src),
drm_rect_height(&tmp_src),
current_plane->frame_info->rotation);
drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1);
/* Get the correct reading direction in the source buffer. */
enum pixel_read_direction direction =
direction_for_rotation(current_plane->frame_info->rotation);
/* [2]: Compute and clamp the number of pixel to read */
clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start,
&dst_x_start, &pixel_count);
if (pixel_count <= 0) {
/* Nothing to read, so avoid multiple function calls */
return;
}
/*
* Modify the starting point to take in account the rotation
*
* src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or
* READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left
* corner.
*/
if (direction == READ_RIGHT_TO_LEFT) {
// src_x_start is now the right point
src_x_start += pixel_count - 1;
} else if (direction == READ_BOTTOM_TO_TOP) {
// src_y_start is now the bottom point
src_y_start += pixel_count - 1;
}
/*
* Perform the conversion and the blending
*
* Here we know that the read line (x_start, y_start, pixel_count) is
* inside the source buffer [2] and we don't write outside the stage
* buffer [1].
*/
current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction,
pixel_count, &stage_buffer->pixels[dst_x_start]);
pre_mul_alpha_blend(stage_buffer, output_buffer,
dst_x_start, pixel_count);
}
/**
* blend - blend the pixels from all planes and compute crc
* @wb: The writeback frame buffer metadata
* @crtc_state: The crtc state
* @crc32: The crc output of the final frame
* @output_buffer: A buffer of a row that will receive the result of the blend(s)
* @stage_buffer: The line with the pixels from plane being blend to the output
* @row_size: The size, in bytes, of a single row
*
* This function blends the pixels (Using the `pre_mul_alpha_blend`)
* from all planes, calculates the crc32 of the output from the former step,
* and, if necessary, convert and store the output to the writeback buffer.
*/
static void blend(struct vkms_writeback_job *wb,
struct vkms_crtc_state *crtc_state,
u32 *crc32, struct line_buffer *stage_buffer,
struct line_buffer *output_buffer, size_t row_size)
{
struct vkms_plane_state **plane = crtc_state->active_planes;
u32 n_active_planes = crtc_state->num_active_planes;
const struct pixel_argb_u16 background_color = { .a = 0xffff };
int crtc_y_limit = crtc_state->base.mode.vdisplay;
int crtc_x_limit = crtc_state->base.mode.hdisplay;
/*
* The planes are composed line-by-line to avoid heavy memory usage. It is a necessary
* complexity to avoid poor blending performance.
*
* The function pixel_read_line callback is used to read a line, using an efficient
* algorithm for a specific format, into the staging buffer.
*/
for (int y = 0; y < crtc_y_limit; y++) {
fill_background(&background_color, output_buffer);
/* The active planes are composed associatively in z-order. */
for (size_t i = 0; i < n_active_planes; i++) {
blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer);
}
apply_lut(crtc_state, output_buffer);
*crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size);
if (wb)
vkms_writeback_row(wb, output_buffer, y);
}
}
static int check_format_funcs(struct vkms_crtc_state *crtc_state,
struct vkms_writeback_job *active_wb)
{
struct vkms_plane_state **planes = crtc_state->active_planes;
u32 n_active_planes = crtc_state->num_active_planes;
for (size_t i = 0; i < n_active_planes; i++)
if (!planes[i]->pixel_read_line)
return -1;
if (active_wb && !active_wb->pixel_write)
return -1;
return 0;
}
static int check_iosys_map(struct vkms_crtc_state *crtc_state)
{
struct vkms_plane_state **plane_state = crtc_state->active_planes;
u32 n_active_planes = crtc_state->num_active_planes;
for (size_t i = 0; i < n_active_planes; i++)
if (iosys_map_is_null(&plane_state[i]->frame_info->map[0]))
return -1;
return 0;
}
static int compose_active_planes(struct vkms_writeback_job *active_wb,
struct vkms_crtc_state *crtc_state,
u32 *crc32)
{
size_t line_width, pixel_size = sizeof(struct pixel_argb_u16);
struct line_buffer output_buffer, stage_buffer;
int ret = 0;
/*
* This check exists so we can call `crc32_le` for the entire line
* instead doing it for each channel of each pixel in case
* `struct `pixel_argb_u16` had any gap added by the compiler
* between the struct fields.
*/
static_assert(sizeof(struct pixel_argb_u16) == 8);
if (WARN_ON(check_iosys_map(crtc_state)))
return -EINVAL;
if (WARN_ON(check_format_funcs(crtc_state, active_wb)))
return -EINVAL;
line_width = crtc_state->base.mode.hdisplay;
stage_buffer.n_pixels = line_width;
output_buffer.n_pixels = line_width;
stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
if (!stage_buffer.pixels) {
DRM_ERROR("Cannot allocate memory for the output line buffer");
return -ENOMEM;
}
output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
if (!output_buffer.pixels) {
DRM_ERROR("Cannot allocate memory for intermediate line buffer");
ret = -ENOMEM;
goto free_stage_buffer;
}
blend(active_wb, crtc_state, crc32, &stage_buffer,
&output_buffer, line_width * pixel_size);
kvfree(output_buffer.pixels);
free_stage_buffer:
kvfree(stage_buffer.pixels);
return ret;
}
/**
* vkms_composer_worker - ordered work_struct to compute CRC
*
* @work: work_struct
*
* Work handler for composing and computing CRCs. work_struct scheduled in
* an ordered workqueue that's periodically scheduled to run by
* vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail().
*/
void vkms_composer_worker(struct work_struct *work)
{
struct vkms_crtc_state *crtc_state = container_of(work,
struct vkms_crtc_state,
composer_work);
struct drm_crtc *crtc = crtc_state->base.crtc;
struct vkms_writeback_job *active_wb = crtc_state->active_writeback;
struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
bool crc_pending, wb_pending;
u64 frame_start, frame_end;
u32 crc32 = 0;
int ret;
spin_lock_irq(&out->composer_lock);
frame_start = crtc_state->frame_start;
frame_end = crtc_state->frame_end;
crc_pending = crtc_state->crc_pending;
wb_pending = crtc_state->wb_pending;
crtc_state->frame_start = 0;
crtc_state->frame_end = 0;
crtc_state->crc_pending = false;
if (crtc->state->gamma_lut) {
s64 max_lut_index_fp;
s64 u16_max_fp = drm_int2fixp(0xffff);
crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data;
crtc_state->gamma_lut.lut_length =
crtc->state->gamma_lut->length / sizeof(struct drm_color_lut);
max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1);
crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp,
u16_max_fp);
} else {
crtc_state->gamma_lut.base = NULL;
}
spin_unlock_irq(&out->composer_lock);
/*
* We raced with the vblank hrtimer and previous work already computed
* the crc, nothing to do.
*/
if (!crc_pending)
return;
if (wb_pending)
ret = compose_active_planes(active_wb, crtc_state, &crc32);
else
ret = compose_active_planes(NULL, crtc_state, &crc32);
if (ret)
return;
if (wb_pending) {
drm_writeback_signal_completion(&out->wb_connector, 0);
spin_lock_irq(&out->composer_lock);
crtc_state->wb_pending = false;
spin_unlock_irq(&out->composer_lock);
}
/*
* The worker can fall behind the vblank hrtimer, make sure we catch up.
*/
while (frame_start <= frame_end)
drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32);
}
static const char *const pipe_crc_sources[] = { "auto" };
const char *const *vkms_get_crc_sources(struct drm_crtc *crtc,
size_t *count)
{
*count = ARRAY_SIZE(pipe_crc_sources);
return pipe_crc_sources;
}
static int vkms_crc_parse_source(const char *src_name, bool *enabled)
{
int ret = 0;
if (!src_name) {
*enabled = false;
} else if (strcmp(src_name, "auto") == 0) {
*enabled = true;
} else {
*enabled = false;
ret = -EINVAL;
}
return ret;
}
int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name,
size_t *values_cnt)
{
bool enabled;
if (vkms_crc_parse_source(src_name, &enabled) < 0) {
DRM_DEBUG_DRIVER("unknown source %s\n", src_name);
return -EINVAL;
}
*values_cnt = 1;
return 0;
}
void vkms_set_composer(struct vkms_output *out, bool enabled)
{
bool old_enabled;
if (enabled)
drm_crtc_vblank_get(&out->crtc);
spin_lock_irq(&out->lock);
old_enabled = out->composer_enabled;
out->composer_enabled = enabled;
spin_unlock_irq(&out->lock);
if (old_enabled)
drm_crtc_vblank_put(&out->crtc);
}
int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name)
{
struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
bool enabled = false;
int ret = 0;
ret = vkms_crc_parse_source(src_name, &enabled);
vkms_set_composer(out, enabled);
return ret;
}
|