1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2023, Intel Corporation. */
#include "ice.h"
#include "ice_lib.h"
#include "ice_irq.h"
/**
* ice_init_irq_tracker - initialize interrupt tracker
* @pf: board private structure
* @max_vectors: maximum number of vectors that tracker can hold
* @num_static: number of preallocated interrupts
*/
static void
ice_init_irq_tracker(struct ice_pf *pf, unsigned int max_vectors,
unsigned int num_static)
{
pf->irq_tracker.num_entries = max_vectors;
pf->irq_tracker.num_static = num_static;
xa_init_flags(&pf->irq_tracker.entries, XA_FLAGS_ALLOC);
}
static int
ice_init_virt_irq_tracker(struct ice_pf *pf, u32 base, u32 num_entries)
{
pf->virt_irq_tracker.bm = bitmap_zalloc(num_entries, GFP_KERNEL);
if (!pf->virt_irq_tracker.bm)
return -ENOMEM;
pf->virt_irq_tracker.num_entries = num_entries;
pf->virt_irq_tracker.base = base;
return 0;
}
/**
* ice_deinit_irq_tracker - free xarray tracker
* @pf: board private structure
*/
static void ice_deinit_irq_tracker(struct ice_pf *pf)
{
xa_destroy(&pf->irq_tracker.entries);
}
static void ice_deinit_virt_irq_tracker(struct ice_pf *pf)
{
bitmap_free(pf->virt_irq_tracker.bm);
}
/**
* ice_free_irq_res - free a block of resources
* @pf: board private structure
* @index: starting index previously returned by ice_get_res
*/
static void ice_free_irq_res(struct ice_pf *pf, u16 index)
{
struct ice_irq_entry *entry;
entry = xa_erase(&pf->irq_tracker.entries, index);
kfree(entry);
}
/**
* ice_get_irq_res - get an interrupt resource
* @pf: board private structure
* @dyn_allowed: allow entry to be dynamically allocated
*
* Allocate new irq entry in the free slot of the tracker. Since xarray
* is used, always allocate new entry at the lowest possible index. Set
* proper allocation limit for maximum tracker entries.
*
* Returns allocated irq entry or NULL on failure.
*/
static struct ice_irq_entry *ice_get_irq_res(struct ice_pf *pf,
bool dyn_allowed)
{
struct xa_limit limit = { .max = pf->irq_tracker.num_entries - 1,
.min = 0 };
unsigned int num_static = pf->irq_tracker.num_static - 1;
struct ice_irq_entry *entry;
unsigned int index;
int ret;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return NULL;
/* only already allocated if the caller says so */
if (!dyn_allowed)
limit.max = num_static;
ret = xa_alloc(&pf->irq_tracker.entries, &index, entry, limit,
GFP_KERNEL);
if (ret) {
kfree(entry);
entry = NULL;
} else {
entry->index = index;
entry->dynamic = index > num_static;
}
return entry;
}
#define ICE_RDMA_AEQ_MSIX 1
static int ice_get_default_msix_amount(struct ice_pf *pf)
{
return ICE_MIN_LAN_OICR_MSIX + num_online_cpus() +
(test_bit(ICE_FLAG_FD_ENA, pf->flags) ? ICE_FDIR_MSIX : 0) +
(ice_is_rdma_ena(pf) ? num_online_cpus() + ICE_RDMA_AEQ_MSIX : 0);
}
/**
* ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
* @pf: board private structure
*/
void ice_clear_interrupt_scheme(struct ice_pf *pf)
{
pci_free_irq_vectors(pf->pdev);
ice_deinit_irq_tracker(pf);
ice_deinit_virt_irq_tracker(pf);
}
/**
* ice_init_interrupt_scheme - Determine proper interrupt scheme
* @pf: board private structure to initialize
*/
int ice_init_interrupt_scheme(struct ice_pf *pf)
{
int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
int vectors;
/* load default PF MSI-X range */
if (!pf->msix.min)
pf->msix.min = ICE_MIN_MSIX;
if (!pf->msix.max)
pf->msix.max = min(total_vectors,
ice_get_default_msix_amount(pf));
pf->msix.total = total_vectors;
pf->msix.rest = total_vectors - pf->msix.max;
if (pci_msix_can_alloc_dyn(pf->pdev))
vectors = pf->msix.min;
else
vectors = pf->msix.max;
vectors = pci_alloc_irq_vectors(pf->pdev, pf->msix.min, vectors,
PCI_IRQ_MSIX);
if (vectors < 0)
return vectors;
ice_init_irq_tracker(pf, pf->msix.max, vectors);
return ice_init_virt_irq_tracker(pf, pf->msix.max, pf->msix.rest);
}
/**
* ice_alloc_irq - Allocate new interrupt vector
* @pf: board private structure
* @dyn_allowed: allow dynamic allocation of the interrupt
*
* Allocate new interrupt vector for a given owner id.
* return struct msi_map with interrupt details and track
* allocated interrupt appropriately.
*
* This function reserves new irq entry from the irq_tracker.
* if according to the tracker information all interrupts that
* were allocated with ice_pci_alloc_irq_vectors are already used
* and dynamically allocated interrupts are supported then new
* interrupt will be allocated with pci_msix_alloc_irq_at.
*
* Some callers may only support dynamically allocated interrupts.
* This is indicated with dyn_allowed flag.
*
* On failure, return map with negative .index. The caller
* is expected to check returned map index.
*
*/
struct msi_map ice_alloc_irq(struct ice_pf *pf, bool dyn_allowed)
{
struct msi_map map = { .index = -ENOENT };
struct device *dev = ice_pf_to_dev(pf);
struct ice_irq_entry *entry;
entry = ice_get_irq_res(pf, dyn_allowed);
if (!entry)
return map;
if (pci_msix_can_alloc_dyn(pf->pdev) && entry->dynamic) {
map = pci_msix_alloc_irq_at(pf->pdev, entry->index, NULL);
if (map.index < 0)
goto exit_free_res;
dev_dbg(dev, "allocated new irq at index %d\n", map.index);
} else {
map.index = entry->index;
map.virq = pci_irq_vector(pf->pdev, map.index);
}
return map;
exit_free_res:
dev_err(dev, "Could not allocate irq at idx %d\n", entry->index);
ice_free_irq_res(pf, entry->index);
return map;
}
/**
* ice_free_irq - Free interrupt vector
* @pf: board private structure
* @map: map with interrupt details
*
* Remove allocated interrupt from the interrupt tracker. If interrupt was
* allocated dynamically, free respective interrupt vector.
*/
void ice_free_irq(struct ice_pf *pf, struct msi_map map)
{
struct ice_irq_entry *entry;
entry = xa_load(&pf->irq_tracker.entries, map.index);
if (!entry) {
dev_err(ice_pf_to_dev(pf), "Failed to get MSIX interrupt entry at index %d",
map.index);
return;
}
dev_dbg(ice_pf_to_dev(pf), "Free irq at index %d\n", map.index);
if (entry->dynamic)
pci_msix_free_irq(pf->pdev, map);
ice_free_irq_res(pf, map.index);
}
/**
* ice_virt_get_irqs - get irqs for SR-IOV usacase
* @pf: pointer to PF structure
* @needed: number of irqs to get
*
* This returns the first MSI-X vector index in PF space that is used by this
* VF. This index is used when accessing PF relative registers such as
* GLINT_VECT2FUNC and GLINT_DYN_CTL.
* This will always be the OICR index in the AVF driver so any functionality
* using vf->first_vector_idx for queue configuration_id: id of VF which will
* use this irqs
*/
int ice_virt_get_irqs(struct ice_pf *pf, u32 needed)
{
int res = bitmap_find_next_zero_area(pf->virt_irq_tracker.bm,
pf->virt_irq_tracker.num_entries,
0, needed, 0);
if (res >= pf->virt_irq_tracker.num_entries)
return -ENOENT;
bitmap_set(pf->virt_irq_tracker.bm, res, needed);
/* conversion from number in bitmap to global irq index */
return res + pf->virt_irq_tracker.base;
}
/**
* ice_virt_free_irqs - free irqs used by the VF
* @pf: pointer to PF structure
* @index: first index to be free
* @irqs: number of irqs to free
*/
void ice_virt_free_irqs(struct ice_pf *pf, u32 index, u32 irqs)
{
bitmap_clear(pf->virt_irq_tracker.bm, index - pf->virt_irq_tracker.base,
irqs);
}
|