1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021, Intel Corporation. */
#include <linux/delay.h>
#include <linux/iopoll.h>
#include "ice_common.h"
#include "ice_ptp_hw.h"
#include "ice_ptp_consts.h"
#include "ice_cgu_regs.h"
static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
DPLL_PIN_FREQUENCY_1PPS,
DPLL_PIN_FREQUENCY_10MHZ,
};
static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
DPLL_PIN_FREQUENCY_1PPS,
};
static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
DPLL_PIN_FREQUENCY_10MHZ,
};
static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
{ "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
{ "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
};
static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
{ "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
{ "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
{ "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
{ "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
};
static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
{ "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
{ "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
{ "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
};
static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
{ "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
};
static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
{ "NONE", SI_REF0P, 0, 0 },
{ "NONE", SI_REF0N, 0, 0 },
{ "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
{ "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
{ "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "NONE", SI_REF2N, 0, 0 },
{ "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
};
static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
{ "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
{ "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
};
static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
{ "NONE", ZL_REF0P, 0, 0 },
{ "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
{ "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
{ "NONE", ZL_REF2P, 0, 0 },
{ "NONE", ZL_REF2N, 0, 0 },
{ "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "NONE", ZL_REF3N, 0, 0 },
{ "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
};
static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
{ "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
{ "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "NONE", ZL_OUT5, 0, 0 },
};
/* Low level functions for interacting with and managing the device clock used
* for the Precision Time Protocol.
*
* The ice hardware represents the current time using three registers:
*
* GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
* +---------------+ +---------------+ +---------------+
* | 32 bits | | 32 bits | | 32 bits |
* +---------------+ +---------------+ +---------------+
*
* The registers are incremented every clock tick using a 40bit increment
* value defined over two registers:
*
* GLTSYN_INCVAL_H GLTSYN_INCVAL_L
* +---------------+ +---------------+
* | 8 bit s | | 32 bits |
* +---------------+ +---------------+
*
* The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
* registers every clock source tick. Depending on the specific device
* configuration, the clock source frequency could be one of a number of
* values.
*
* For E810 devices, the increment frequency is 812.5 MHz
*
* For E822 devices the clock can be derived from different sources, and the
* increment has an effective frequency of one of the following:
* - 823.4375 MHz
* - 783.36 MHz
* - 796.875 MHz
* - 816 MHz
* - 830.078125 MHz
* - 783.36 MHz
*
* The hardware captures timestamps in the PHY for incoming packets, and for
* outgoing packets on request. To support this, the PHY maintains a timer
* that matches the lower 64 bits of the global source timer.
*
* In order to ensure that the PHY timers and the source timer are equivalent,
* shadow registers are used to prepare the desired initial values. A special
* sync command is issued to trigger copying from the shadow registers into
* the appropriate source and PHY registers simultaneously.
*
* The driver supports devices which have different PHYs with subtly different
* mechanisms to program and control the timers. We divide the devices into
* families named after the first major device, E810 and similar devices, and
* E822 and similar devices.
*
* - E822 based devices have additional support for fine grained Vernier
* calibration which requires significant setup
* - The layout of timestamp data in the PHY register blocks is different
* - The way timer synchronization commands are issued is different.
*
* To support this, very low level functions have an e810 or e822 suffix
* indicating what type of device they work on. Higher level abstractions for
* tasks that can be done on both devices do not have the suffix and will
* correctly look up the appropriate low level function when running.
*
* Functions which only make sense on a single device family may not have
* a suitable generic implementation
*/
/**
* ice_get_ptp_src_clock_index - determine source clock index
* @hw: pointer to HW struct
*
* Determine the source clock index currently in use, based on device
* capabilities reported during initialization.
*/
u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
{
return hw->func_caps.ts_func_info.tmr_index_assoc;
}
/**
* ice_ptp_read_src_incval - Read source timer increment value
* @hw: pointer to HW struct
*
* Read the increment value of the source timer and return it.
*/
static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
{
u32 lo, hi;
u8 tmr_idx;
tmr_idx = ice_get_ptp_src_clock_index(hw);
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
}
/**
* ice_read_cgu_reg_e82x - Read a CGU register
* @hw: pointer to the HW struct
* @addr: Register address to read
* @val: storage for register value read
*
* Read the contents of a register of the Clock Generation Unit. Only
* applicable to E822 devices.
*
* Return: 0 on success, other error codes when failed to read from CGU
*/
static int ice_read_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 *val)
{
struct ice_sbq_msg_input cgu_msg = {
.opcode = ice_sbq_msg_rd,
.dest_dev = ice_sbq_dev_cgu,
.msg_addr_low = addr
};
int err;
err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
addr, err);
return err;
}
*val = cgu_msg.data;
return 0;
}
/**
* ice_write_cgu_reg_e82x - Write a CGU register
* @hw: pointer to the HW struct
* @addr: Register address to write
* @val: value to write into the register
*
* Write the specified value to a register of the Clock Generation Unit. Only
* applicable to E822 devices.
*
* Return: 0 on success, other error codes when failed to write to CGU
*/
static int ice_write_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 val)
{
struct ice_sbq_msg_input cgu_msg = {
.opcode = ice_sbq_msg_wr,
.dest_dev = ice_sbq_dev_cgu,
.msg_addr_low = addr,
.data = val
};
int err;
err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
addr, err);
return err;
}
return err;
}
/**
* ice_clk_freq_str - Convert time_ref_freq to string
* @clk_freq: Clock frequency
*
* Return: specified TIME_REF clock frequency converted to a string
*/
static const char *ice_clk_freq_str(enum ice_time_ref_freq clk_freq)
{
switch (clk_freq) {
case ICE_TIME_REF_FREQ_25_000:
return "25 MHz";
case ICE_TIME_REF_FREQ_122_880:
return "122.88 MHz";
case ICE_TIME_REF_FREQ_125_000:
return "125 MHz";
case ICE_TIME_REF_FREQ_153_600:
return "153.6 MHz";
case ICE_TIME_REF_FREQ_156_250:
return "156.25 MHz";
case ICE_TIME_REF_FREQ_245_760:
return "245.76 MHz";
default:
return "Unknown";
}
}
/**
* ice_clk_src_str - Convert time_ref_src to string
* @clk_src: Clock source
*
* Return: specified clock source converted to its string name
*/
static const char *ice_clk_src_str(enum ice_clk_src clk_src)
{
switch (clk_src) {
case ICE_CLK_SRC_TCXO:
return "TCXO";
case ICE_CLK_SRC_TIME_REF:
return "TIME_REF";
default:
return "Unknown";
}
}
/**
* ice_cfg_cgu_pll_e82x - Configure the Clock Generation Unit
* @hw: pointer to the HW struct
* @clk_freq: Clock frequency to program
* @clk_src: Clock source to select (TIME_REF, or TCXO)
*
* Configure the Clock Generation Unit with the desired clock frequency and
* time reference, enabling the PLL which drives the PTP hardware clock.
*
* Return:
* * %0 - success
* * %-EINVAL - input parameters are incorrect
* * %-EBUSY - failed to lock TS PLL
* * %other - CGU read/write failure
*/
static int ice_cfg_cgu_pll_e82x(struct ice_hw *hw,
enum ice_time_ref_freq clk_freq,
enum ice_clk_src clk_src)
{
union tspll_ro_bwm_lf bwm_lf;
union nac_cgu_dword19 dw19;
union nac_cgu_dword22 dw22;
union nac_cgu_dword24 dw24;
union nac_cgu_dword9 dw9;
int err;
if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
clk_freq);
return -EINVAL;
}
if (clk_src >= NUM_ICE_CLK_SRC) {
dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
clk_src);
return -EINVAL;
}
if (clk_src == ICE_CLK_SRC_TCXO &&
clk_freq != ICE_TIME_REF_FREQ_25_000) {
dev_warn(ice_hw_to_dev(hw),
"TCXO only supports 25 MHz frequency\n");
return -EINVAL;
}
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
if (err)
return err;
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
str_enabled_disabled(dw24.ts_pll_enable),
ice_clk_src_str(dw24.time_ref_sel),
ice_clk_freq_str(dw9.time_ref_freq_sel),
bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
/* Disable the PLL before changing the clock source or frequency */
if (dw24.ts_pll_enable) {
dw24.ts_pll_enable = 0;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
}
/* Set the frequency */
dw9.time_ref_freq_sel = clk_freq;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
if (err)
return err;
/* Configure the TS PLL feedback divisor */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
if (err)
return err;
dw19.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
dw19.tspll_ndivratio = 1;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
if (err)
return err;
/* Configure the TS PLL post divisor */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
if (err)
return err;
dw22.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
dw22.time1588clk_sel_div2 = 0;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
if (err)
return err;
/* Configure the TS PLL pre divisor and clock source */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
dw24.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
dw24.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
dw24.time_ref_sel = clk_src;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Finally, enable the PLL */
dw24.ts_pll_enable = 1;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Wait to verify if the PLL locks */
usleep_range(1000, 5000);
err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
if (err)
return err;
if (!bwm_lf.plllock_true_lock_cri) {
dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
return -EBUSY;
}
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
str_enabled_disabled(dw24.ts_pll_enable),
ice_clk_src_str(dw24.time_ref_sel),
ice_clk_freq_str(dw9.time_ref_freq_sel),
bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
return 0;
}
/**
* ice_cfg_cgu_pll_e825c - Configure the Clock Generation Unit for E825-C
* @hw: pointer to the HW struct
* @clk_freq: Clock frequency to program
* @clk_src: Clock source to select (TIME_REF, or TCXO)
*
* Configure the Clock Generation Unit with the desired clock frequency and
* time reference, enabling the PLL which drives the PTP hardware clock.
*
* Return:
* * %0 - success
* * %-EINVAL - input parameters are incorrect
* * %-EBUSY - failed to lock TS PLL
* * %other - CGU read/write failure
*/
static int ice_cfg_cgu_pll_e825c(struct ice_hw *hw,
enum ice_time_ref_freq clk_freq,
enum ice_clk_src clk_src)
{
union tspll_ro_lock_e825c ro_lock;
union nac_cgu_dword16_e825c dw16;
union nac_cgu_dword23_e825c dw23;
union nac_cgu_dword19 dw19;
union nac_cgu_dword22 dw22;
union nac_cgu_dword24 dw24;
union nac_cgu_dword9 dw9;
int err;
if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
clk_freq);
return -EINVAL;
}
if (clk_src >= NUM_ICE_CLK_SRC) {
dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
clk_src);
return -EINVAL;
}
if (clk_src == ICE_CLK_SRC_TCXO &&
clk_freq != ICE_TIME_REF_FREQ_156_250) {
dev_warn(ice_hw_to_dev(hw),
"TCXO only supports 156.25 MHz frequency\n");
return -EINVAL;
}
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, &dw16.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
if (err)
return err;
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
str_enabled_disabled(dw24.ts_pll_enable),
ice_clk_src_str(dw23.time_ref_sel),
ice_clk_freq_str(dw9.time_ref_freq_sel),
ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
/* Disable the PLL before changing the clock source or frequency */
if (dw23.ts_pll_enable) {
dw23.ts_pll_enable = 0;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C,
dw23.val);
if (err)
return err;
}
/* Set the frequency */
dw9.time_ref_freq_sel = clk_freq;
/* Enable the correct receiver */
if (clk_src == ICE_CLK_SRC_TCXO) {
dw9.time_ref_en = 0;
dw9.clk_eref0_en = 1;
} else {
dw9.time_ref_en = 1;
dw9.clk_eref0_en = 0;
}
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
if (err)
return err;
/* Choose the referenced frequency */
dw16.tspll_ck_refclkfreq =
e825c_cgu_params[clk_freq].tspll_ck_refclkfreq;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, dw16.val);
if (err)
return err;
/* Configure the TS PLL feedback divisor */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
if (err)
return err;
dw19.tspll_fbdiv_intgr =
e825c_cgu_params[clk_freq].tspll_fbdiv_intgr;
dw19.tspll_ndivratio =
e825c_cgu_params[clk_freq].tspll_ndivratio;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
if (err)
return err;
/* Configure the TS PLL post divisor */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
if (err)
return err;
/* These two are constant for E825C */
dw22.time1588clk_div = 5;
dw22.time1588clk_sel_div2 = 0;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
if (err)
return err;
/* Configure the TS PLL pre divisor and clock source */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
if (err)
return err;
dw23.ref1588_ck_div =
e825c_cgu_params[clk_freq].ref1588_ck_div;
dw23.time_ref_sel = clk_src;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
if (err)
return err;
dw24.tspll_fbdiv_frac =
e825c_cgu_params[clk_freq].tspll_fbdiv_frac;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Finally, enable the PLL */
dw23.ts_pll_enable = 1;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
if (err)
return err;
/* Wait to verify if the PLL locks */
usleep_range(1000, 5000);
err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
if (err)
return err;
if (!ro_lock.plllock_true_lock_cri) {
dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
return -EBUSY;
}
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
str_enabled_disabled(dw24.ts_pll_enable),
ice_clk_src_str(dw23.time_ref_sel),
ice_clk_freq_str(dw9.time_ref_freq_sel),
ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
return 0;
}
#define ICE_ONE_PPS_OUT_AMP_MAX 3
/**
* ice_cgu_cfg_pps_out - Configure 1PPS output from CGU
* @hw: pointer to the HW struct
* @enable: true to enable 1PPS output, false to disable it
*
* Return: 0 on success, other negative error code when CGU read/write failed
*/
int ice_cgu_cfg_pps_out(struct ice_hw *hw, bool enable)
{
union nac_cgu_dword9 dw9;
int err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
if (err)
return err;
dw9.one_pps_out_en = enable;
dw9.one_pps_out_amp = enable * ICE_ONE_PPS_OUT_AMP_MAX;
return ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
}
/**
* ice_cfg_cgu_pll_dis_sticky_bits_e82x - disable TS PLL sticky bits
* @hw: pointer to the HW struct
*
* Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
* losing TS PLL lock, but always show current state.
*
* Return: 0 on success, other error codes when failed to read/write CGU
*/
static int ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw *hw)
{
union tspll_cntr_bist_settings cntr_bist;
int err;
err = ice_read_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
&cntr_bist.val);
if (err)
return err;
/* Disable sticky lock detection so lock err reported is accurate */
cntr_bist.i_plllock_sel_0 = 0;
cntr_bist.i_plllock_sel_1 = 0;
return ice_write_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
cntr_bist.val);
}
/**
* ice_cfg_cgu_pll_dis_sticky_bits_e825c - disable TS PLL sticky bits for E825-C
* @hw: pointer to the HW struct
*
* Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
* losing TS PLL lock, but always show current state.
*
* Return: 0 on success, other error codes when failed to read/write CGU
*/
static int ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw *hw)
{
union tspll_bw_tdc_e825c bw_tdc;
int err;
err = ice_read_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, &bw_tdc.val);
if (err)
return err;
bw_tdc.i_plllock_sel_1_0 = 0;
return ice_write_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, bw_tdc.val);
}
/**
* ice_init_cgu_e82x - Initialize CGU with settings from firmware
* @hw: pointer to the HW structure
*
* Initialize the Clock Generation Unit of the E822 device.
*
* Return: 0 on success, other error codes when failed to read/write/cfg CGU
*/
static int ice_init_cgu_e82x(struct ice_hw *hw)
{
struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
int err;
/* Disable sticky lock detection so lock err reported is accurate */
if (hw->mac_type == ICE_MAC_GENERIC_3K_E825)
err = ice_cfg_cgu_pll_dis_sticky_bits_e825c(hw);
else
err = ice_cfg_cgu_pll_dis_sticky_bits_e82x(hw);
if (err)
return err;
/* Configure the CGU PLL using the parameters from the function
* capabilities.
*/
if (hw->mac_type == ICE_MAC_GENERIC_3K_E825)
err = ice_cfg_cgu_pll_e825c(hw, ts_info->time_ref,
(enum ice_clk_src)ts_info->clk_src);
else
err = ice_cfg_cgu_pll_e82x(hw, ts_info->time_ref,
(enum ice_clk_src)ts_info->clk_src);
return err;
}
/**
* ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value
* @hw: pointer to HW struct
* @cmd: Timer command
*
* Return: the source timer command register value for the given PTP timer
* command.
*/
static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw,
enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val, tmr_idx;
switch (cmd) {
case ICE_PTP_INIT_TIME:
cmd_val = GLTSYN_CMD_INIT_TIME;
break;
case ICE_PTP_INIT_INCVAL:
cmd_val = GLTSYN_CMD_INIT_INCVAL;
break;
case ICE_PTP_ADJ_TIME:
cmd_val = GLTSYN_CMD_ADJ_TIME;
break;
case ICE_PTP_ADJ_TIME_AT_TIME:
cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
break;
case ICE_PTP_NOP:
case ICE_PTP_READ_TIME:
cmd_val = GLTSYN_CMD_READ_TIME;
break;
default:
dev_warn(ice_hw_to_dev(hw),
"Ignoring unrecognized timer command %u\n", cmd);
cmd_val = 0;
}
tmr_idx = ice_get_ptp_src_clock_index(hw);
return tmr_idx << SEL_CPK_SRC | cmd_val;
}
/**
* ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value
* @hw: pointer to HW struct
* @cmd: Timer command
*
* Note that some hardware families use a different command register value for
* the PHY ports, while other hardware families use the same register values
* as the source timer.
*
* Return: the PHY port timer command register value for the given PTP timer
* command.
*/
static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw,
enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val, tmr_idx;
/* Certain hardware families share the same register values for the
* port register and source timer register.
*/
switch (hw->mac_type) {
case ICE_MAC_E810:
case ICE_MAC_E830:
return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810;
default:
break;
}
switch (cmd) {
case ICE_PTP_INIT_TIME:
cmd_val = PHY_CMD_INIT_TIME;
break;
case ICE_PTP_INIT_INCVAL:
cmd_val = PHY_CMD_INIT_INCVAL;
break;
case ICE_PTP_ADJ_TIME:
cmd_val = PHY_CMD_ADJ_TIME;
break;
case ICE_PTP_ADJ_TIME_AT_TIME:
cmd_val = PHY_CMD_ADJ_TIME_AT_TIME;
break;
case ICE_PTP_READ_TIME:
cmd_val = PHY_CMD_READ_TIME;
break;
case ICE_PTP_NOP:
cmd_val = 0;
break;
default:
dev_warn(ice_hw_to_dev(hw),
"Ignoring unrecognized timer command %u\n", cmd);
cmd_val = 0;
}
tmr_idx = ice_get_ptp_src_clock_index(hw);
return tmr_idx << SEL_PHY_SRC | cmd_val;
}
/**
* ice_ptp_src_cmd - Prepare source timer for a timer command
* @hw: pointer to HW structure
* @cmd: Timer command
*
* Prepare the source timer for an upcoming timer sync command.
*/
void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd);
if (!ice_is_primary(hw))
hw = ice_get_primary_hw(pf);
wr32(hw, GLTSYN_CMD, cmd_val);
}
/**
* ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
* @hw: pointer to HW struct
*
* Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
* write immediately. This triggers the hardware to begin executing all of the
* source and PHY timer commands synchronously.
*/
static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
{
struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
if (!ice_is_primary(hw))
hw = ice_get_primary_hw(pf);
guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
ice_flush(hw);
}
/**
* ice_ptp_cfg_sync_delay - Configure PHC to PHY synchronization delay
* @hw: pointer to HW struct
* @delay: delay between PHC and PHY SYNC command execution in nanoseconds
*/
static void ice_ptp_cfg_sync_delay(const struct ice_hw *hw, u32 delay)
{
wr32(hw, GLTSYN_SYNC_DLAY, delay);
ice_flush(hw);
}
/* 56G PHY device functions
*
* The following functions operate on devices with the ETH 56G PHY.
*/
/**
* ice_ptp_get_dest_dev_e825 - get destination PHY for given port number
* @hw: pointer to the HW struct
* @port: destination port
*
* Return: destination sideband queue PHY device.
*/
static enum ice_sbq_dev_id ice_ptp_get_dest_dev_e825(struct ice_hw *hw,
u8 port)
{
u8 curr_phy, tgt_phy;
tgt_phy = port >= hw->ptp.ports_per_phy;
curr_phy = hw->lane_num >= hw->ptp.ports_per_phy;
/* In the driver, lanes 4..7 are in fact 0..3 on a second PHY.
* On a single complex E825C, PHY 0 is always destination device phy_0
* and PHY 1 is phy_0_peer.
* On dual complex E825C, device phy_0 points to PHY on a current
* complex and phy_0_peer to PHY on a different complex.
*/
if ((!ice_is_dual(hw) && tgt_phy == 1) ||
(ice_is_dual(hw) && tgt_phy != curr_phy))
return ice_sbq_dev_phy_0_peer;
else
return ice_sbq_dev_phy_0;
}
/**
* ice_write_phy_eth56g - Write a PHY port register
* @hw: pointer to the HW struct
* @port: destination port
* @addr: PHY register address
* @val: Value to write
*
* Return: 0 on success, other error codes when failed to write to PHY
*/
static int ice_write_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 val)
{
struct ice_sbq_msg_input msg = {
.dest_dev = ice_ptp_get_dest_dev_e825(hw, port),
.opcode = ice_sbq_msg_wr,
.msg_addr_low = lower_16_bits(addr),
.msg_addr_high = upper_16_bits(addr),
.data = val
};
int err;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err)
ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
err);
return err;
}
/**
* ice_read_phy_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @port: destination port
* @addr: PHY register address
* @val: Value to write
*
* Return: 0 on success, other error codes when failed to read from PHY
*/
static int ice_read_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 *val)
{
struct ice_sbq_msg_input msg = {
.dest_dev = ice_ptp_get_dest_dev_e825(hw, port),
.opcode = ice_sbq_msg_rd,
.msg_addr_low = lower_16_bits(addr),
.msg_addr_high = upper_16_bits(addr)
};
int err;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err)
ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
err);
else
*val = msg.data;
return err;
}
/**
* ice_phy_res_address_eth56g - Calculate a PHY port register address
* @hw: pointer to the HW struct
* @lane: Lane number to be written
* @res_type: resource type (register/memory)
* @offset: Offset from PHY port register base
* @addr: The result address
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
*/
static int ice_phy_res_address_eth56g(struct ice_hw *hw, u8 lane,
enum eth56g_res_type res_type,
u32 offset,
u32 *addr)
{
if (res_type >= NUM_ETH56G_PHY_RES)
return -EINVAL;
/* Lanes 4..7 are in fact 0..3 on a second PHY */
lane %= hw->ptp.ports_per_phy;
*addr = eth56g_phy_res[res_type].base_addr +
lane * eth56g_phy_res[res_type].step + offset;
return 0;
}
/**
* ice_write_port_eth56g - Write a PHY port register
* @hw: pointer to the HW struct
* @offset: PHY register offset
* @port: Port number
* @val: Value to write
* @res_type: resource type (register/memory)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
u32 val, enum eth56g_res_type res_type)
{
u32 addr;
int err;
if (port >= hw->ptp.num_lports)
return -EINVAL;
err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr);
if (err)
return err;
return ice_write_phy_eth56g(hw, port, addr, val);
}
/**
* ice_read_port_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @offset: PHY register offset
* @port: Port number
* @val: Value to write
* @res_type: resource type (register/memory)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
u32 *val, enum eth56g_res_type res_type)
{
u32 addr;
int err;
if (port >= hw->ptp.num_lports)
return -EINVAL;
err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr);
if (err)
return err;
return ice_read_phy_eth56g(hw, port, addr, val);
}
/**
* ice_write_ptp_reg_eth56g - Write a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be written
* @offset: Offset from PHY port register base
* @val: Value to write
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 val)
{
return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
}
/**
* ice_write_mac_reg_eth56g - Write a MAC PHY port register
* parameter
* @hw: pointer to the HW struct
* @port: Port number to be written
* @offset: Offset from PHY port register base
* @val: Value to write
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
u32 val)
{
return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
}
/**
* ice_write_xpcs_reg_eth56g - Write a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be written
* @offset: Offset from PHY port register base
* @val: Value to write
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
u32 val)
{
return ice_write_port_eth56g(hw, port, offset, val,
ETH56G_PHY_REG_XPCS);
}
/**
* ice_read_ptp_reg_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 *val)
{
return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
}
/**
* ice_read_mac_reg_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 *val)
{
return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
}
/**
* ice_read_gpcs_reg_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 *val)
{
return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS);
}
/**
* ice_read_port_mem_eth56g - Read a PHY port memory location
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 *val)
{
return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
}
/**
* ice_write_port_mem_eth56g - Write a PHY port memory location
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 val)
{
return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
}
/**
* ice_write_quad_ptp_reg_eth56g - Write a PHY quad register
* @hw: pointer to the HW struct
* @offset: PHY register offset
* @port: Port number
* @val: Value to write
*
* Return:
* * %0 - success
* * %EIO - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
u32 offset, u32 val)
{
u32 addr;
if (port >= hw->ptp.num_lports)
return -EIO;
addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base_addr + offset;
return ice_write_phy_eth56g(hw, port, addr, val);
}
/**
* ice_read_quad_ptp_reg_eth56g - Read a PHY quad register
* @hw: pointer to the HW struct
* @offset: PHY register offset
* @port: Port number
* @val: Value to read
*
* Return:
* * %0 - success
* * %EIO - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
u32 offset, u32 *val)
{
u32 addr;
if (port >= hw->ptp.num_lports)
return -EIO;
addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base_addr + offset;
return ice_read_phy_eth56g(hw, port, addr, val);
}
/**
* ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 64bit register
*
* Write the appropriate high register offset to use.
*
* Return: true if the provided low address is one of the known 64bit PHY values
* represented as two 32bit registers, false otherwise.
*/
static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case PHY_REG_TX_TIMER_INC_PRE_L:
*high_addr = PHY_REG_TX_TIMER_INC_PRE_U;
return true;
case PHY_REG_RX_TIMER_INC_PRE_L:
*high_addr = PHY_REG_RX_TIMER_INC_PRE_U;
return true;
case PHY_REG_TX_CAPTURE_L:
*high_addr = PHY_REG_TX_CAPTURE_U;
return true;
case PHY_REG_RX_CAPTURE_L:
*high_addr = PHY_REG_RX_CAPTURE_U;
return true;
case PHY_REG_TOTAL_TX_OFFSET_L:
*high_addr = PHY_REG_TOTAL_TX_OFFSET_U;
return true;
case PHY_REG_TOTAL_RX_OFFSET_L:
*high_addr = PHY_REG_TOTAL_RX_OFFSET_U;
return true;
case PHY_REG_TX_MEMORY_STATUS_L:
*high_addr = PHY_REG_TX_MEMORY_STATUS_U;
return true;
default:
return false;
}
}
/**
* ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 40bit value
*
* Write the appropriate high register offset to use.
*
* Return: true if the provided low address is one of the known 40bit PHY
* values split into two registers with the lower 8 bits in the low register and
* the upper 32 bits in the high register, false otherwise.
*/
static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case PHY_REG_TIMETUS_L:
*high_addr = PHY_REG_TIMETUS_U;
return true;
case PHY_PCS_REF_TUS_L:
*high_addr = PHY_PCS_REF_TUS_U;
return true;
case PHY_PCS_REF_INC_L:
*high_addr = PHY_PCS_REF_INC_U;
return true;
default:
return false;
}
}
/**
* ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: on return, the contents of the 64bit value from the PHY registers
* @res_type: resource type
*
* Check if the caller has specified a known 40 bit register offset and read
* the two registers associated with a 40bit value and return it in the val
* pointer.
*
* Return:
* * %0 - success
* * %EINVAL - not a 64 bit register
* * %other - failed to read from PHY
*/
static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
u64 *val, enum eth56g_res_type res_type)
{
u16 high_addr;
u32 lo, hi;
int err;
if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
return -EINVAL;
err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d",
low_addr, err);
return err;
}
err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d",
high_addr, err);
return err;
}
*val = ((u64)hi << 32) | lo;
return 0;
}
/**
* ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: on return, the contents of the 64bit value from the PHY registers
*
* Check if the caller has specified a known 40 bit register offset and read
* the two registers associated with a 40bit value and return it in the val
* pointer.
*
* Return:
* * %0 - success
* * %EINVAL - not a 64 bit register
* * %other - failed to read from PHY
*/
static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
u64 *val)
{
return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val,
ETH56G_PHY_REG_PTP);
}
/**
* ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY
* @hw: pointer to the HW struct
* @port: port to write to
* @low_addr: offset of the low register
* @val: 40b value to write
* @res_type: resource type
*
* Check if the caller has specified a known 40 bit register offset and write
* provided 40b value to the two associated registers by splitting it up into
* two chunks, the lower 8 bits and the upper 32 bits.
*
* Return:
* * %0 - success
* * %EINVAL - not a 40 bit register
* * %other - failed to write to PHY
*/
static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
u16 low_addr, u64 val,
enum eth56g_res_type res_type)
{
u16 high_addr;
u32 lo, hi;
int err;
if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr))
return -EINVAL;
lo = FIELD_GET(P_REG_40B_LOW_M, val);
hi = (u32)(val >> P_REG_40B_HIGH_S);
err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY
* @hw: pointer to the HW struct
* @port: port to write to
* @low_addr: offset of the low register
* @val: 40b value to write
*
* Check if the caller has specified a known 40 bit register offset and write
* provided 40b value to the two associated registers by splitting it up into
* two chunks, the lower 8 bits and the upper 32 bits.
*
* Return:
* * %0 - success
* * %EINVAL - not a 40 bit register
* * %other - failed to write to PHY
*/
static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
u16 low_addr, u64 val)
{
return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val,
ETH56G_PHY_REG_PTP);
}
/**
* ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: the contents of the 64bit value to write to PHY
* @res_type: resource type
*
* Check if the caller has specified a known 64 bit register offset and write
* the 64bit value to the two associated 32bit PHY registers.
*
* Return:
* * %0 - success
* * %EINVAL - not a 64 bit register
* * %other - failed to write to PHY
*/
static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
u16 low_addr, u64 val,
enum eth56g_res_type res_type)
{
u16 high_addr;
u32 lo, hi;
int err;
if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
return -EINVAL;
lo = lower_32_bits(val);
hi = upper_32_bits(val);
err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: the contents of the 64bit value to write to PHY
*
* Check if the caller has specified a known 64 bit register offset and write
* the 64bit value to the two associated 32bit PHY registers.
*
* Return:
* * %0 - success
* * %EINVAL - not a 64 bit register
* * %other - failed to write to PHY
*/
static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
u16 low_addr, u64 val)
{
return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val,
ETH56G_PHY_REG_PTP);
}
/**
* ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory
* @hw: pointer to the HW struct
* @port: the port to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the two associated entries in the
* port memory block of the internal PHYs of the 56G devices.
*
* Return:
* * %0 - success
* * %other - failed to read from PHY
*/
static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx,
u64 *tstamp)
{
u16 lo_addr, hi_addr;
u32 lo, hi;
int err;
lo_addr = (u16)PHY_TSTAMP_L(idx);
hi_addr = (u16)PHY_TSTAMP_U(idx);
err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
/* For 56G based internal PHYs, the timestamp is reported with the
* lower 8 bits in the low register, and the upper 32 bits in the high
* register.
*/
*tstamp = FIELD_PREP(PHY_40B_HIGH_M, hi) |
FIELD_PREP(PHY_40B_LOW_M, lo);
return 0;
}
/**
* ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block
* @hw: pointer to the HW struct
* @port: the quad to read from
* @idx: the timestamp index to reset
*
* Read and then forcibly clear the timestamp index to ensure the valid bit is
* cleared and the timestamp status bit is reset in the PHY port memory of
* internal PHYs of the 56G devices.
*
* To directly clear the contents of the timestamp block entirely, discarding
* all timestamp data at once, software should instead use
* ice_ptp_reset_ts_memory_quad_eth56g().
*
* This function should only be called on an idx whose bit is set according to
* ice_get_phy_tx_tstamp_ready().
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx)
{
u64 unused_tstamp;
u16 lo_addr;
int err;
/* Read the timestamp register to ensure the timestamp status bit is
* cleared.
*/
err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n",
port, idx, err);
}
lo_addr = (u16)PHY_TSTAMP_L(idx);
err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n",
port, idx, err);
return err;
}
return 0;
}
/**
* ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block
* @hw: pointer to the HW struct
*/
static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw)
{
unsigned int port;
for (port = 0; port < hw->ptp.num_lports; port++) {
ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
0);
ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U,
0);
}
}
/**
* ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time
* @hw: pointer to the HW struct
* @port: port number
* @time: time to initialize the PHY port clocks to
*
* Write a new initial time value into registers of a specific PHY port.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port,
u64 time)
{
int err;
/* Tx case */
err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
time);
if (err)
return err;
/* Rx case */
return ice_write_64b_ptp_reg_eth56g(hw, port,
PHY_REG_RX_TIMER_INC_PRE_L, time);
}
/**
* ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time
* @hw: pointer to the HW struct
* @time: Time to initialize the PHY port clocks to
*
* Program the PHY port registers with a new initial time value. The port
* clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
* command. The time value is the upper 32 bits of the PHY timer, usually in
* units of nominal nanoseconds.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time)
{
u64 phy_time;
u8 port;
/* The time represents the upper 32 bits of the PHY timer, so we need
* to shift to account for this when programming.
*/
phy_time = (u64)time << 32;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
port, err);
return err;
}
}
return 0;
}
/**
* ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust
* @hw: pointer to HW struct
* @port: Port number to be programmed
* @time: time in cycles to adjust the port clocks
*
* Program the port for an atomic adjustment by writing the Tx and Rx timer
* registers. The atomic adjustment won't be completed until the driver issues
* an ICE_PTP_ADJ_TIME command.
*
* Note that time is not in units of nanoseconds. It is in clock time
* including the lower sub-nanosecond portion of the port timer.
*
* Negative adjustments are supported using 2s complement arithmetic.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time)
{
u32 l_time, u_time;
int err;
l_time = lower_32_bits(time);
u_time = upper_32_bits(time);
/* Tx case */
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment in nanoseconds
*
* Prepare the PHY ports for an atomic time adjustment by programming the PHY
* Tx and Rx port registers. The actual adjustment is completed by issuing an
* ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj)
{
s64 cycles;
u8 port;
/* The port clock supports adjustment of the sub-nanosecond portion of
* the clock (lowest 32 bits). We shift the provided adjustment in
* nanoseconds by 32 to calculate the appropriate adjustment to program
* into the PHY ports.
*/
cycles = (s64)adj << 32;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment
* @hw: pointer to HW struct
* @incval: new increment value to prepare
*
* Prepare each of the PHY ports for a new increment value by programming the
* port's TIMETUS registers. The new increment value will be updated after
* issuing an ICE_PTP_INIT_INCVAL command.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval)
{
u8 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L,
incval);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
port, err);
return err;
}
}
return 0;
}
/**
* ice_ptp_read_port_capture_eth56g - Read a port's local time capture
* @hw: pointer to HW struct
* @port: Port number to read
* @tx_ts: on return, the Tx port time capture
* @rx_ts: on return, the Rx port time capture
*
* Read the port's Tx and Rx local time capture values.
*
* Return:
* * %0 - success
* * %other - failed to read from PHY
*/
static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port,
u64 *tx_ts, u64 *rx_ts)
{
int err;
/* Tx case */
err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L,
tx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts);
/* Rx case */
err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L,
rx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts);
return 0;
}
/**
* ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command
* @hw: pointer to HW struct
* @port: Port to which cmd has to be sent
* @cmd: Command to be sent to the port
*
* Prepare the requested port for an upcoming timer sync command.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port,
enum ice_ptp_tmr_cmd cmd)
{
u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
int err;
/* Tx case */
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
err);
return err;
}
/* Rx case */
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_phy_get_speed_eth56g - Get link speed based on PHY link type
* @li: pointer to link information struct
*
* Return: simplified ETH56G PHY speed
*/
static enum ice_eth56g_link_spd
ice_phy_get_speed_eth56g(struct ice_link_status *li)
{
u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low,
li->phy_type_high);
switch (speed) {
case ICE_AQ_LINK_SPEED_1000MB:
return ICE_ETH56G_LNK_SPD_1G;
case ICE_AQ_LINK_SPEED_2500MB:
return ICE_ETH56G_LNK_SPD_2_5G;
case ICE_AQ_LINK_SPEED_10GB:
return ICE_ETH56G_LNK_SPD_10G;
case ICE_AQ_LINK_SPEED_25GB:
return ICE_ETH56G_LNK_SPD_25G;
case ICE_AQ_LINK_SPEED_40GB:
return ICE_ETH56G_LNK_SPD_40G;
case ICE_AQ_LINK_SPEED_50GB:
switch (li->phy_type_low) {
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI1:
return ICE_ETH56G_LNK_SPD_50G;
default:
return ICE_ETH56G_LNK_SPD_50G2;
}
case ICE_AQ_LINK_SPEED_100GB:
if (li->phy_type_high ||
li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2)
return ICE_ETH56G_LNK_SPD_100G2;
else
return ICE_ETH56G_LNK_SPD_100G;
default:
return ICE_ETH56G_LNK_SPD_1G;
}
}
/**
* ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle
* @hw: pointer to the HW struct
* @port: port to configure
*
* Configure the number of TUs for the PAR and PCS clocks used as part of the
* timestamp calibration process.
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port)
{
u32 val;
int err;
err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH,
ICE_ETH56G_NOMINAL_THRESH4);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d",
err);
return err;
}
switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
case ICE_ETH56G_LNK_SPD_1G:
case ICE_ETH56G_LNK_SPD_2_5G:
err = ice_read_quad_ptp_reg_eth56g(hw, port,
PHY_GPCS_CONFIG_REG0, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d",
err);
return err;
}
val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M;
val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M,
ICE_ETH56G_NOMINAL_TX_THRESH);
err = ice_write_quad_ptp_reg_eth56g(hw, port,
PHY_GPCS_CONFIG_REG0, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d",
err);
return err;
}
break;
default:
break;
}
err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L,
ICE_ETH56G_NOMINAL_PCS_REF_TUS);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d",
err);
return err;
}
err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L,
ICE_ETH56G_NOMINAL_PCS_REF_INC);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d",
err);
return err;
}
return 0;
}
/**
* ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings
* @hw: Pointer to the HW struct
* @port: Port to configure
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port)
{
u8 quad_lane = port % ICE_PORTS_PER_QUAD;
u32 addr, val, peer_delay;
bool enable, sfd_ena;
int err;
enable = hw->ptp.phy.eth56g.onestep_ena;
peer_delay = hw->ptp.phy.eth56g.peer_delay;
sfd_ena = hw->ptp.phy.eth56g.sfd_ena;
addr = PHY_PTP_1STEP_CONFIG;
err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &val);
if (err)
return err;
if (enable)
val |= BIT(quad_lane);
else
val &= ~BIT(quad_lane);
val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M);
err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
if (err)
return err;
addr = PHY_PTP_1STEP_PEER_DELAY(quad_lane);
val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay);
if (peer_delay)
val |= PHY_PTP_1STEP_PD_ADD_PD_M;
val |= PHY_PTP_1STEP_PD_DLY_V_M;
err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
if (err)
return err;
val &= ~PHY_PTP_1STEP_PD_DLY_V_M;
err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
if (err)
return err;
addr = PHY_MAC_XIF_MODE;
err = ice_read_mac_reg_eth56g(hw, port, addr, &val);
if (err)
return err;
val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M |
PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M);
switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
case ICE_ETH56G_LNK_SPD_1G:
case ICE_ETH56G_LNK_SPD_2_5G:
val |= PHY_MAC_XIF_GMII_TS_SEL_M;
break;
default:
break;
}
val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) |
FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) |
FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena);
return ice_write_mac_reg_eth56g(hw, port, addr, val);
}
/**
* mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values
* @a: multiplier value
* @b: multiplicand value
*
* Return: result of multiplication
*/
static u32 mul_u32_u32_fx_q9(u32 a, u32 b)
{
return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W);
}
/**
* add_u32_u32_fx - Add two u32 fixed point values and discard overflow
* @a: first value
* @b: second value
*
* Return: result of addition
*/
static u32 add_u32_u32_fx(u32 a, u32 b)
{
return lower_32_bits(((u64)a + b));
}
/**
* ice_ptp_calc_bitslip_eth56g - Calculate bitslip value
* @hw: pointer to the HW struct
* @port: port to configure
* @bs: bitslip multiplier
* @fc: FC-FEC enabled
* @rs: RS-FEC enabled
* @spd: link speed
*
* Return: calculated bitslip value
*/
static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs,
bool fc, bool rs,
enum ice_eth56g_link_spd spd)
{
u32 bitslip;
int err;
if (!bs || rs)
return 0;
if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G) {
err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP,
&bitslip);
} else {
u8 quad_lane = port % ICE_PORTS_PER_QUAD;
u32 addr;
addr = PHY_REG_SD_BIT_SLIP(quad_lane);
err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &bitslip);
}
if (err)
return 0;
if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) {
/* Bitslip register value of 0 corresponds to 10 so substitute
* it for calculations
*/
bitslip = 10;
} else if (spd == ICE_ETH56G_LNK_SPD_10G ||
spd == ICE_ETH56G_LNK_SPD_25G) {
if (fc)
bitslip = bitslip * 2 + 32;
else
bitslip = (u32)((s32)bitslip * -1 + 20);
}
bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W;
return mul_u32_u32_fx_q9(bitslip, bs);
}
/**
* ice_ptp_calc_deskew_eth56g - Calculate deskew value
* @hw: pointer to the HW struct
* @port: port to configure
* @ds: deskew multiplier
* @rs: RS-FEC enabled
* @spd: link speed
*
* Return: calculated deskew value
*/
static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds,
bool rs, enum ice_eth56g_link_spd spd)
{
u32 deskew_i, deskew_f;
int err;
if (!ds)
return 0;
read_poll_timeout(ice_read_ptp_reg_eth56g, err,
FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500,
50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0,
&deskew_i);
if (err)
return err;
deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i);
deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i);
if (rs && spd == ICE_ETH56G_LNK_SPD_50G2)
ds = 0x633; /* 3.1 */
else if (rs && spd == ICE_ETH56G_LNK_SPD_100G)
ds = 0x31b; /* 1.552 */
deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i);
/* Shift 3 fractional bits to the end of the integer part */
deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W;
return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds);
}
/**
* ice_phy_set_offsets_eth56g - Set Tx/Rx offset values
* @hw: pointer to the HW struct
* @port: port to configure
* @spd: link speed
* @cfg: structure to store output values
* @fc: FC-FEC enabled
* @rs: RS-FEC enabled
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port,
enum ice_eth56g_link_spd spd,
const struct ice_eth56g_mac_reg_cfg *cfg,
bool fc, bool rs)
{
u32 rx_offset, tx_offset, bs_ds;
bool onestep, sfd;
onestep = hw->ptp.phy.eth56g.onestep_ena;
sfd = hw->ptp.phy.eth56g.sfd_ena;
bs_ds = cfg->rx_offset.bs_ds;
if (fc)
rx_offset = cfg->rx_offset.fc;
else if (rs)
rx_offset = cfg->rx_offset.rs;
else
rx_offset = cfg->rx_offset.no_fec;
rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes);
if (sfd)
rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd);
if (spd < ICE_ETH56G_LNK_SPD_40G)
bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs,
spd);
else
bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd);
rx_offset = add_u32_u32_fx(rx_offset, bs_ds);
rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT |
ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC;
if (fc)
tx_offset = cfg->tx_offset.fc;
else if (rs)
tx_offset = cfg->tx_offset.rs;
else
tx_offset = cfg->tx_offset.no_fec;
tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd +
cfg->tx_offset.onestep * onestep;
ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset);
return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset);
}
/**
* ice_phy_cfg_mac_eth56g - Configure MAC for PTP
* @hw: Pointer to the HW struct
* @port: Port to configure
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port)
{
const struct ice_eth56g_mac_reg_cfg *cfg;
enum ice_eth56g_link_spd spd;
struct ice_link_status *li;
bool fc = false;
bool rs = false;
bool onestep;
u32 val;
int err;
onestep = hw->ptp.phy.eth56g.onestep_ena;
li = &hw->port_info->phy.link_info;
spd = ice_phy_get_speed_eth56g(li);
if (!!(li->an_info & ICE_AQ_FEC_EN)) {
if (spd == ICE_ETH56G_LNK_SPD_10G) {
fc = true;
} else {
fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN);
rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN);
}
}
cfg = ð56g_mac_cfg[spd];
err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0);
if (err)
return err;
err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0);
if (err)
return err;
val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M,
cfg->tx_mode.def + rs * cfg->tx_mode.rs) |
FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) |
FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M,
cfg->tx_cw_dly.def +
onestep * cfg->tx_cw_dly.onestep) |
FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M,
cfg->rx_mode.def + rs * cfg->rx_mode.rs) |
FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M,
cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) |
FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M,
cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) |
FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk);
err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val);
if (err)
return err;
err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME,
cfg->blktime);
if (err)
return err;
err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs);
if (err)
return err;
if (spd == ICE_ETH56G_LNK_SPD_25G && !rs)
val = 0;
else
val = cfg->mktime;
return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val);
}
/**
* ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt
* @hw: pointer to the HW struct
* @port: the timestamp port
* @ena: enable or disable interrupt
* @threshold: interrupt threshold
*
* Configure TX timestamp interrupt for the specified port
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold)
{
int err;
u32 val;
err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val);
if (err)
return err;
if (ena) {
val |= PHY_TS_INT_CONFIG_ENA_M;
val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M;
val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold);
} else {
val &= ~PHY_TS_INT_CONFIG_ENA_M;
}
return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val);
}
/**
* ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @phy_time: on return, the 64bit PHY timer value
* @phc_time: on return, the lower 64bits of PHC time
*
* Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
* and PHC timer values.
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port,
u64 *phy_time, u64 *phc_time)
{
struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
u64 tx_time, rx_time;
u32 zo, lo;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
if (err)
return err;
/* Issue the sync to start the ICE_PTP_READ_TIME capture */
ice_ptp_exec_tmr_cmd(hw);
/* Read the captured PHC time from the shadow time registers */
if (ice_is_primary(hw)) {
zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
} else {
zo = rd32(ice_get_primary_hw(pf), GLTSYN_SHTIME_0(tmr_idx));
lo = rd32(ice_get_primary_hw(pf), GLTSYN_SHTIME_L(tmr_idx));
}
*phc_time = (u64)lo << 32 | zo;
/* Read the captured PHY time from the PHY shadow registers */
err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time);
if (err)
return err;
/* If the PHY Tx and Rx timers don't match, log a warning message.
* Note that this should not happen in normal circumstances since the
* driver always programs them together.
*/
if (tx_time != rx_time)
dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
port, tx_time, rx_time);
*phy_time = tx_time;
return 0;
}
/**
* ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer
* @hw: pointer to the HW struct
* @port: the PHY port to synchronize
*
* Perform an adjustment to ensure that the PHY and PHC timers are in sync.
* This is done by issuing a ICE_PTP_READ_TIME command which triggers a
* simultaneous read of the PHY timer and PHC timer. Then we use the
* difference to calculate an appropriate 2s complement addition to add
* to the PHY timer in order to ensure it reads the same value as the
* primary PHC timer.
*
* Return:
* * %0 - success
* * %-EBUSY- failed to acquire PTP semaphore
* * %other - PHY read/write failed
*/
static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port)
{
u64 phc_time, phy_time, difference;
int err;
if (!ice_ptp_lock(hw)) {
ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
return -EBUSY;
}
err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
/* Calculate the amount required to add to the port time in order for
* it to match the PHC time.
*
* Note that the port adjustment is done using 2s complement
* arithmetic. This is convenient since it means that we can simply
* calculate the difference between the PHC time and the port time,
* and it will be interpreted correctly.
*/
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
difference = phc_time - phy_time;
err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference);
if (err)
goto err_unlock;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
if (err)
goto err_unlock;
/* Issue the sync to activate the time adjustment */
ice_ptp_exec_tmr_cmd(hw);
/* Re-capture the timer values to flush the command registers and
* verify that the time was properly adjusted.
*/
err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
dev_info(ice_hw_to_dev(hw),
"Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
port, phy_time, phc_time);
err_unlock:
ice_ptp_unlock(hw);
return err;
}
/**
* ice_stop_phy_timer_eth56g - Stop the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to stop
* @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS
*
* Stop the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset)
{
int err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0);
if (err)
return err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0);
if (err)
return err;
ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_start_phy_timer_eth56g - Start the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to start
*
* Start the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port)
{
struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
u32 lo, hi;
u64 incval;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
err = ice_stop_phy_timer_eth56g(hw, port, false);
if (err)
return err;
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
err = ice_phy_cfg_parpcs_eth56g(hw, port);
if (err)
return err;
err = ice_phy_cfg_ptp_1step_eth56g(hw, port);
if (err)
return err;
err = ice_phy_cfg_mac_eth56g(hw, port);
if (err)
return err;
if (ice_is_primary(hw)) {
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
} else {
lo = rd32(ice_get_primary_hw(pf), GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(ice_get_primary_hw(pf), GLTSYN_INCVAL_H(tmr_idx));
}
incval = (u64)hi << 32 | lo;
err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
err = ice_sync_phy_timer_eth56g(hw, port);
if (err)
return err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1);
if (err)
return err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1);
if (err)
return err;
ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_ptp_init_phc_e825 - Perform E825 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform E825-specific PTP hardware clock initialization steps.
*
* Return: 0 on success, negative error code otherwise.
*/
static int ice_ptp_init_phc_e825(struct ice_hw *hw)
{
/* Initialize the Clock Generation Unit */
return ice_init_cgu_e82x(hw);
}
/**
* ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status
* @hw: pointer to the HW struct
* @ts_status: the timestamp mask pointer
*
* Read the PHY Tx timestamp status mask indicating which ports have Tx
* timestamps available.
*
* Return:
* * %0 - success
* * %other - failed to read from PHY
*/
int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status)
{
const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g;
u8 phy, mask;
u32 status;
mask = (1 << hw->ptp.ports_per_phy) - 1;
*ts_status = 0;
for (phy = 0; phy < params->num_phys; phy++) {
int err;
err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status);
if (err)
return err;
*ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy);
}
ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status);
return 0;
}
/**
* ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register
* @hw: pointer to the HW struct
* @port: the PHY port to read from
* @tstamp_ready: contents of the Tx memory status register
*
* Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in
* the PHY are ready. A set bit means the corresponding timestamp is valid and
* ready to be captured from the PHY timestamp block.
*
* Return:
* * %0 - success
* * %other - failed to read from PHY
*/
static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port,
u64 *tstamp_ready)
{
int err;
err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
tstamp_ready);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n",
port, err);
return err;
}
return 0;
}
/**
* ice_ptp_init_phy_e825 - initialize PHY parameters
* @hw: pointer to the HW struct
*/
static void ice_ptp_init_phy_e825(struct ice_hw *hw)
{
struct ice_ptp_hw *ptp = &hw->ptp;
struct ice_eth56g_params *params;
params = &ptp->phy.eth56g;
params->onestep_ena = false;
params->peer_delay = 0;
params->sfd_ena = false;
params->num_phys = 2;
ptp->ports_per_phy = 4;
ptp->num_lports = params->num_phys * ptp->ports_per_phy;
}
/* E822 family functions
*
* The following functions operate on the E822 family of devices.
*/
/**
* ice_fill_phy_msg_e82x - Fill message data for a PHY register access
* @hw: pointer to the HW struct
* @msg: the PHY message buffer to fill in
* @port: the port to access
* @offset: the register offset
*/
static void ice_fill_phy_msg_e82x(struct ice_hw *hw,
struct ice_sbq_msg_input *msg, u8 port,
u16 offset)
{
int phy_port, quadtype;
phy_port = port % hw->ptp.ports_per_phy;
quadtype = ICE_GET_QUAD_NUM(port) %
ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy);
if (quadtype == 0) {
msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
} else {
msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
}
msg->dest_dev = ice_sbq_dev_phy_0;
}
/**
* ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 64bit register
*
* Checks if the provided low address is one of the known 64bit PHY values
* represented as two 32bit registers. If it is, return the appropriate high
* register offset to use.
*/
static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case P_REG_PAR_PCS_TX_OFFSET_L:
*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
return true;
case P_REG_PAR_PCS_RX_OFFSET_L:
*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
return true;
case P_REG_PAR_TX_TIME_L:
*high_addr = P_REG_PAR_TX_TIME_U;
return true;
case P_REG_PAR_RX_TIME_L:
*high_addr = P_REG_PAR_RX_TIME_U;
return true;
case P_REG_TOTAL_TX_OFFSET_L:
*high_addr = P_REG_TOTAL_TX_OFFSET_U;
return true;
case P_REG_TOTAL_RX_OFFSET_L:
*high_addr = P_REG_TOTAL_RX_OFFSET_U;
return true;
case P_REG_UIX66_10G_40G_L:
*high_addr = P_REG_UIX66_10G_40G_U;
return true;
case P_REG_UIX66_25G_100G_L:
*high_addr = P_REG_UIX66_25G_100G_U;
return true;
case P_REG_TX_CAPTURE_L:
*high_addr = P_REG_TX_CAPTURE_U;
return true;
case P_REG_RX_CAPTURE_L:
*high_addr = P_REG_RX_CAPTURE_U;
return true;
case P_REG_TX_TIMER_INC_PRE_L:
*high_addr = P_REG_TX_TIMER_INC_PRE_U;
return true;
case P_REG_RX_TIMER_INC_PRE_L:
*high_addr = P_REG_RX_TIMER_INC_PRE_U;
return true;
default:
return false;
}
}
/**
* ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 40bit value
*
* Checks if the provided low address is one of the known 40bit PHY values
* split into two registers with the lower 8 bits in the low register and the
* upper 32 bits in the high register. If it is, return the appropriate high
* register offset to use.
*/
static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case P_REG_TIMETUS_L:
*high_addr = P_REG_TIMETUS_U;
return true;
case P_REG_PAR_RX_TUS_L:
*high_addr = P_REG_PAR_RX_TUS_U;
return true;
case P_REG_PAR_TX_TUS_L:
*high_addr = P_REG_PAR_TX_TUS_U;
return true;
case P_REG_PCS_RX_TUS_L:
*high_addr = P_REG_PCS_RX_TUS_U;
return true;
case P_REG_PCS_TX_TUS_L:
*high_addr = P_REG_PCS_TX_TUS_U;
return true;
case P_REG_DESK_PAR_RX_TUS_L:
*high_addr = P_REG_DESK_PAR_RX_TUS_U;
return true;
case P_REG_DESK_PAR_TX_TUS_L:
*high_addr = P_REG_DESK_PAR_TX_TUS_U;
return true;
case P_REG_DESK_PCS_RX_TUS_L:
*high_addr = P_REG_DESK_PCS_RX_TUS_U;
return true;
case P_REG_DESK_PCS_TX_TUS_L:
*high_addr = P_REG_DESK_PCS_TX_TUS_U;
return true;
default:
return false;
}
}
/**
* ice_read_phy_reg_e82x - Read a PHY register
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @offset: PHY register offset to read
* @val: on return, the contents read from the PHY
*
* Read a PHY register for the given port over the device sideband queue.
*/
static int
ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
ice_fill_phy_msg_e82x(hw, &msg, port, offset);
msg.opcode = ice_sbq_msg_rd;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: on return, the contents of the 64bit value from the PHY registers
*
* Reads the two registers associated with a 64bit value and returns it in the
* val pointer. The offset always specifies the lower register offset to use.
* The high offset is looked up. This function only operates on registers
* known to be two parts of a 64bit value.
*/
static int
ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into two 32bit
* registers.
*/
if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
err = ice_read_phy_reg_e82x(hw, port, low_addr, &low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_read_phy_reg_e82x(hw, port, high_addr, &high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
*val = (u64)high << 32 | low;
return 0;
}
/**
* ice_write_phy_reg_e82x - Write a PHY register
* @hw: pointer to the HW struct
* @port: PHY port to write to
* @offset: PHY register offset to write
* @val: The value to write to the register
*
* Write a PHY register for the given port over the device sideband queue.
*/
static int
ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
ice_fill_phy_msg_e82x(hw, &msg, port, offset);
msg.opcode = ice_sbq_msg_wr;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY
* @hw: pointer to the HW struct
* @port: port to write to
* @low_addr: offset of the low register
* @val: 40b value to write
*
* Write the provided 40b value to the two associated registers by splitting
* it up into two chunks, the lower 8 bits and the upper 32 bits.
*/
static int
ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into a lower 8 bit
* register and an upper 32 bit register.
*/
if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
low = FIELD_GET(P_REG_40B_LOW_M, val);
high = (u32)(val >> P_REG_40B_HIGH_S);
err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: the contents of the 64bit value to write to PHY
*
* Write the 64bit value to the two associated 32bit PHY registers. The offset
* is always specified as the lower register, and the high address is looked
* up. This function only operates on registers known to be two parts of
* a 64bit value.
*/
static int
ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into two 32bit
* registers.
*/
if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
low = lower_32_bits(val);
high = upper_32_bits(val);
err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_fill_quad_msg_e82x - Fill message data for quad register access
* @hw: pointer to the HW struct
* @msg: the PHY message buffer to fill in
* @quad: the quad to access
* @offset: the register offset
*
* Fill a message buffer for accessing a register in a quad shared between
* multiple PHYs.
*
* Return:
* * %0 - OK
* * %-EINVAL - invalid quad number
*/
static int ice_fill_quad_msg_e82x(struct ice_hw *hw,
struct ice_sbq_msg_input *msg, u8 quad,
u16 offset)
{
u32 addr;
if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports))
return -EINVAL;
msg->dest_dev = ice_sbq_dev_phy_0;
if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy)))
addr = Q_0_BASE + offset;
else
addr = Q_1_BASE + offset;
msg->msg_addr_low = lower_16_bits(addr);
msg->msg_addr_high = upper_16_bits(addr);
return 0;
}
/**
* ice_read_quad_reg_e82x - Read a PHY quad register
* @hw: pointer to the HW struct
* @quad: quad to read from
* @offset: quad register offset to read
* @val: on return, the contents read from the quad
*
* Read a quad register over the device sideband queue. Quad registers are
* shared between multiple PHYs.
*/
int
ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
if (err)
return err;
msg.opcode = ice_sbq_msg_rd;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_write_quad_reg_e82x - Write a PHY quad register
* @hw: pointer to the HW struct
* @quad: quad to write to
* @offset: quad register offset to write
* @val: The value to write to the register
*
* Write a quad register over the device sideband queue. Quad registers are
* shared between multiple PHYs.
*/
int
ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
if (err)
return err;
msg.opcode = ice_sbq_msg_wr;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the two associated registers in the
* quad memory block that is shared between the internal PHYs of the E822
* family of devices.
*/
static int
ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
{
u16 lo_addr, hi_addr;
u32 lo, hi;
int err;
lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
/* For E822 based internal PHYs, the timestamp is reported with the
* lower 8 bits in the low register, and the upper 32 bits in the high
* register.
*/
*tstamp = FIELD_PREP(PHY_40B_HIGH_M, hi) |
FIELD_PREP(PHY_40B_LOW_M, lo);
return 0;
}
/**
* ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
* @idx: the timestamp index to reset
*
* Read the timestamp out of the quad to clear its timestamp status bit from
* the PHY quad block that is shared between the internal PHYs of the E822
* devices.
*
* Note that unlike E810, software cannot directly write to the quad memory
* bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
* to determine which timestamps are valid. Reading a timestamp auto-clears
* the valid bit.
*
* To directly clear the contents of the timestamp block entirely, discarding
* all timestamp data at once, software should instead use
* ice_ptp_reset_ts_memory_quad_e82x().
*
* This function should only be called on an idx whose bit is set according to
* ice_get_phy_tx_tstamp_ready().
*/
static int
ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx)
{
u64 unused_tstamp;
int err;
err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
quad, idx, err);
return err;
}
return 0;
}
/**
* ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
*
* Clear all timestamps from the PHY quad block that is shared between the
* internal PHYs on the E822 devices.
*/
void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad)
{
ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
}
/**
* ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks
* @hw: pointer to the HW struct
*/
static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw)
{
unsigned int quad;
for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++)
ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
}
/**
* ice_ptp_set_vernier_wl - Set the window length for vernier calibration
* @hw: pointer to the HW struct
*
* Set the window length used for the vernier port calibration process.
*/
static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
{
u8 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_WL,
PTP_VERNIER_WL);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
port, err);
return err;
}
}
return 0;
}
/**
* ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform PHC initialization steps specific to E822 devices.
*/
static int ice_ptp_init_phc_e82x(struct ice_hw *hw)
{
int err;
u32 val;
/* Enable reading switch and PHY registers over the sideband queue */
#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
val = rd32(hw, PF_SB_REM_DEV_CTL);
val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0);
wr32(hw, PF_SB_REM_DEV_CTL, val);
/* Initialize the Clock Generation Unit */
err = ice_init_cgu_e82x(hw);
if (err)
return err;
/* Set window length for all the ports */
return ice_ptp_set_vernier_wl(hw);
}
/**
* ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time
* @hw: pointer to the HW struct
* @time: Time to initialize the PHY port clocks to
*
* Program the PHY port registers with a new initial time value. The port
* clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
* command. The time value is the upper 32 bits of the PHY timer, usually in
* units of nominal nanoseconds.
*/
static int
ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time)
{
u64 phy_time;
u8 port;
int err;
/* The time represents the upper 32 bits of the PHY timer, so we need
* to shift to account for this when programming.
*/
phy_time = (u64)time << 32;
for (port = 0; port < hw->ptp.num_lports; port++) {
/* Tx case */
err = ice_write_64b_phy_reg_e82x(hw, port,
P_REG_TX_TIMER_INC_PRE_L,
phy_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_64b_phy_reg_e82x(hw, port,
P_REG_RX_TIMER_INC_PRE_L,
phy_time);
if (err)
goto exit_err;
}
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust
* @hw: pointer to HW struct
* @port: Port number to be programmed
* @time: time in cycles to adjust the port Tx and Rx clocks
*
* Program the port for an atomic adjustment by writing the Tx and Rx timer
* registers. The atomic adjustment won't be completed until the driver issues
* an ICE_PTP_ADJ_TIME command.
*
* Note that time is not in units of nanoseconds. It is in clock time
* including the lower sub-nanosecond portion of the port timer.
*
* Negative adjustments are supported using 2s complement arithmetic.
*/
static int
ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time)
{
u32 l_time, u_time;
int err;
l_time = lower_32_bits(time);
u_time = upper_32_bits(time);
/* Tx case */
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment in nanoseconds
*
* Prepare the PHY ports for an atomic time adjustment by programming the PHY
* Tx and Rx port registers. The actual adjustment is completed by issuing an
* ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
*/
static int
ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj)
{
s64 cycles;
u8 port;
/* The port clock supports adjustment of the sub-nanosecond portion of
* the clock. We shift the provided adjustment in nanoseconds to
* calculate the appropriate adjustment to program into the PHY ports.
*/
if (adj > 0)
cycles = (s64)adj << 32;
else
cycles = -(((s64)-adj) << 32);
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_ptp_prep_port_adj_e82x(hw, port, cycles);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment
* @hw: pointer to HW struct
* @incval: new increment value to prepare
*
* Prepare each of the PHY ports for a new increment value by programming the
* port's TIMETUS registers. The new increment value will be updated after
* issuing an ICE_PTP_INIT_INCVAL command.
*/
static int
ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval)
{
int err;
u8 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L,
incval);
if (err)
goto exit_err;
}
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_read_port_capture - Read a port's local time capture
* @hw: pointer to HW struct
* @port: Port number to read
* @tx_ts: on return, the Tx port time capture
* @rx_ts: on return, the Rx port time capture
*
* Read the port's Tx and Rx local time capture values.
*
* Note this has no equivalent for the E810 devices.
*/
static int
ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
{
int err;
/* Tx case */
err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
(unsigned long long)*tx_ts);
/* Rx case */
err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
(unsigned long long)*rx_ts);
return 0;
}
/**
* ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command
* @hw: pointer to HW struct
* @port: Port to which cmd has to be sent
* @cmd: Command to be sent to the port
*
* Prepare the requested port for an upcoming timer sync command.
*
* Note there is no equivalent of this operation on E810, as that device
* always handles all external PHYs internally.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port,
enum ice_ptp_tmr_cmd cmd)
{
u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
int err;
/* Tx case */
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
err);
return err;
}
/* Rx case */
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD,
val | TS_CMD_RX_TYPE);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
err);
return err;
}
return 0;
}
/* E822 Vernier calibration functions
*
* The following functions are used as part of the vernier calibration of
* a port. This calibration increases the precision of the timestamps on the
* port.
*/
/**
* ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode
* @hw: pointer to HW struct
* @port: the port to read from
* @link_out: if non-NULL, holds link speed on success
* @fec_out: if non-NULL, holds FEC algorithm on success
*
* Read the serdes data for the PHY port and extract the link speed and FEC
* algorithm.
*/
static int
ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port,
enum ice_ptp_link_spd *link_out,
enum ice_ptp_fec_mode *fec_out)
{
enum ice_ptp_link_spd link;
enum ice_ptp_fec_mode fec;
u32 serdes;
int err;
err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
return err;
}
/* Determine the FEC algorithm */
fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
serdes &= P_REG_LINK_SPEED_SERDES_M;
/* Determine the link speed */
if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
switch (serdes) {
case ICE_PTP_SERDES_25G:
link = ICE_PTP_LNK_SPD_25G_RS;
break;
case ICE_PTP_SERDES_50G:
link = ICE_PTP_LNK_SPD_50G_RS;
break;
case ICE_PTP_SERDES_100G:
link = ICE_PTP_LNK_SPD_100G_RS;
break;
default:
return -EIO;
}
} else {
switch (serdes) {
case ICE_PTP_SERDES_1G:
link = ICE_PTP_LNK_SPD_1G;
break;
case ICE_PTP_SERDES_10G:
link = ICE_PTP_LNK_SPD_10G;
break;
case ICE_PTP_SERDES_25G:
link = ICE_PTP_LNK_SPD_25G;
break;
case ICE_PTP_SERDES_40G:
link = ICE_PTP_LNK_SPD_40G;
break;
case ICE_PTP_SERDES_50G:
link = ICE_PTP_LNK_SPD_50G;
break;
default:
return -EIO;
}
}
if (link_out)
*link_out = link;
if (fec_out)
*fec_out = fec;
return 0;
}
/**
* ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp
* @hw: pointer to HW struct
* @port: to configure the quad for
*/
static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
int err;
u32 val;
u8 quad;
err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
err);
return;
}
quad = ICE_GET_QUAD_NUM(port);
err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
err);
return;
}
if (link_spd >= ICE_PTP_LNK_SPD_40G)
val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
else
val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
err);
return;
}
}
/**
* ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822
* @hw: pointer to the HW structure
* @port: the port to configure
*
* Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
* hardware clock time units (TUs). That is, determine the number of TUs per
* serdes unit interval, and program the UIX registers with this conversion.
*
* This conversion is used as part of the calibration process when determining
* the additional error of a timestamp vs the real time of transmission or
* receipt of the packet.
*
* Hardware uses the number of TUs per 66 UIs, written to the UIX registers
* for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
*
* To calculate the conversion ratio, we use the following facts:
*
* a) the clock frequency in Hz (cycles per second)
* b) the number of TUs per cycle (the increment value of the clock)
* c) 1 second per 1 billion nanoseconds
* d) the duration of 66 UIs in nanoseconds
*
* Given these facts, we can use the following table to work out what ratios
* to multiply in order to get the number of TUs per 66 UIs:
*
* cycles | 1 second | incval (TUs) | nanoseconds
* -------+--------------+--------------+-------------
* second | 1 billion ns | cycle | 66 UIs
*
* To perform the multiplication using integers without too much loss of
* precision, we can take use the following equation:
*
* (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
*
* We scale up to using 6600 UI instead of 66 in order to avoid fractional
* nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
*
* The increment value has a maximum expected range of about 34 bits, while
* the frequency value is about 29 bits. Multiplying these values shouldn't
* overflow the 64 bits. However, we must then further multiply them again by
* the Serdes unit interval duration. To avoid overflow here, we split the
* overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
* a divide by 390,625,000. This does lose some precision, but avoids
* miscalculation due to arithmetic overflow.
*/
static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port)
{
u64 cur_freq, clk_incval, tu_per_sec, uix;
int err;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second divided by 256 */
tu_per_sec = (cur_freq * clk_incval) >> 8;
#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
/* Program the 10Gb/40Gb conversion ratio */
uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L,
uix);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
err);
return err;
}
/* Program the 25Gb/100Gb conversion ratio */
uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L,
uix);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle
* @hw: pointer to the HW struct
* @port: port to configure
*
* Configure the number of TUs for the PAR and PCS clocks used as part of the
* timestamp calibration process. This depends on the link speed, as the PHY
* uses different markers depending on the speed.
*
* 1Gb/10Gb/25Gb:
* - Tx/Rx PAR/PCS markers
*
* 25Gb RS:
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
*
* 40Gb/50Gb:
* - Tx/Rx PAR/PCS markers
* - Rx Deskew PAR/PCS markers
*
* 50G RS and 100GB RS:
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
* - Rx Deskew PAR/PCS markers
* - Tx PAR/PCS markers
*
* To calculate the conversion, we use the PHC clock frequency (cycles per
* second), the increment value (TUs per cycle), and the related PHY clock
* frequency to calculate the TUs per unit of the PHY link clock. The
* following table shows how the units convert:
*
* cycles | TUs | second
* -------+-------+--------
* second | cycle | cycles
*
* For each conversion register, look up the appropriate frequency from the
* e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
* this to the appropriate register, preparing hardware to perform timestamp
* calibration to calculate the total Tx or Rx offset to adjust the timestamp
* in order to calibrate for the internal PHY delays.
*
* Note that the increment value ranges up to ~34 bits, and the clock
* frequency is ~29 bits, so multiplying them together should fit within the
* 64 bit arithmetic.
*/
static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port)
{
u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
int err;
err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
if (err)
return err;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per cycle of the PHC clock */
tu_per_sec = cur_freq * clk_incval;
/* For each PHY conversion register, look up the appropriate link
* speed frequency and determine the TUs per that clock's cycle time.
* Split this into a high and low value and then program the
* appropriate register. If that link speed does not use the
* associated register, write zeros to clear it instead.
*/
/* P_REG_PAR_TX_TUS */
if (e822_vernier[link_spd].tx_par_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_par_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PAR_RX_TUS */
if (e822_vernier[link_spd].rx_par_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_par_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PCS_TX_TUS */
if (e822_vernier[link_spd].tx_pcs_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_pcs_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PCS_RX_TUS */
if (e822_vernier[link_spd].rx_pcs_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_pcs_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PAR_TX_TUS */
if (e822_vernier[link_spd].tx_desk_rsgb_par)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_desk_rsgb_par);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PAR_RX_TUS */
if (e822_vernier[link_spd].rx_desk_rsgb_par)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_desk_rsgb_par);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PCS_TX_TUS */
if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_desk_rsgb_pcs);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PCS_RX_TUS */
if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_desk_rsgb_pcs);
else
phy_tus = 0;
return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L,
phy_tus);
}
/**
* ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port
* @hw: pointer to the HW struct
* @link_spd: the Link speed to calculate for
*
* Calculate the fixed offset due to known static latency data.
*/
static u64
ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
{
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* Calculate number of TUs to add for the fixed Tx latency. Since the
* latency measurement is in 1/100th of a nanosecond, we need to
* multiply by tu_per_sec and then divide by 1e11. This calculation
* overflows 64 bit integer arithmetic, so break it up into two
* divisions by 1e4 first then by 1e7.
*/
fixed_offset = div_u64(tu_per_sec, 10000);
fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
fixed_offset = div_u64(fixed_offset, 10000000);
return fixed_offset;
}
/**
* ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
* adjust Tx timestamps by. This is calculated by combining some known static
* latency along with the Vernier offset computations done by hardware.
*
* This function will not return successfully until the Tx offset calculations
* have been completed, which requires waiting until at least one packet has
* been transmitted by the device. It is safe to call this function
* periodically until calibration succeeds, as it will only program the offset
* once.
*
* To avoid overflow, when calculating the offset based on the known static
* latency values, we use measurements in 1/100th of a nanosecond, and divide
* the TUs per second up front. This avoids overflow while allowing
* calculation of the adjustment using integer arithmetic.
*
* Returns zero on success, -EBUSY if the hardware vernier offset
* calibration has not completed, or another error code on failure.
*/
int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset, val;
int err;
u32 reg;
/* Nothing to do if we've already programmed the offset */
err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, ®);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
port, err);
return err;
}
if (reg)
return 0;
err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, ®);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
port, err);
return err;
}
if (!(reg & P_REG_TX_OV_STATUS_OV_M))
return -EBUSY;
err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd);
/* Read the first Vernier offset from the PHY register and add it to
* the total offset.
*/
if (link_spd == ICE_PTP_LNK_SPD_1G ||
link_spd == ICE_PTP_LNK_SPD_10G ||
link_spd == ICE_PTP_LNK_SPD_25G ||
link_spd == ICE_PTP_LNK_SPD_25G_RS ||
link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G) {
err = ice_read_64b_phy_reg_e82x(hw, port,
P_REG_PAR_PCS_TX_OFFSET_L,
&val);
if (err)
return err;
total_offset += val;
}
/* For Tx, we only need to use the second Vernier offset for
* multi-lane link speeds with RS-FEC. The lanes will always be
* aligned.
*/
if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
err = ice_read_64b_phy_reg_e82x(hw, port,
P_REG_PAR_TX_TIME_L,
&val);
if (err)
return err;
total_offset += val;
}
/* Now that the total offset has been calculated, program it to the
* PHY and indicate that the Tx offset is ready. After this,
* timestamps will be enabled.
*/
err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1);
if (err)
return err;
dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
port);
return 0;
}
/**
* ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx
* @hw: pointer to the HW struct
* @port: the PHY port to adjust for
* @link_spd: the current link speed of the PHY
* @fec_mode: the current FEC mode of the PHY
* @pmd_adj: on return, the amount to adjust the Rx total offset by
*
* Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
* This varies by link speed and FEC mode. The value calculated accounts for
* various delays caused when receiving a packet.
*/
static int
ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port,
enum ice_ptp_link_spd link_spd,
enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
{
u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
u8 pmd_align;
u32 val;
int err;
err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
err);
return err;
}
pmd_align = (u8)val;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* The PMD alignment adjustment measurement depends on the link speed,
* and whether FEC is enabled. For each link speed, the alignment
* adjustment is calculated by dividing a value by the length of
* a Time Unit in nanoseconds.
*
* 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
* 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
* 10G w/FEC: align * 0.1 * 32/33
* 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
* 25G w/FEC: align * 0.4 * 32/33
* 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
* 40G w/FEC: align * 0.1 * 32/33
* 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
* 50G w/FEC: align * 0.8 * 32/33
*
* For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
*
* To allow for calculating this value using integer arithmetic, we
* instead start with the number of TUs per second, (inverse of the
* length of a Time Unit in nanoseconds), multiply by a value based
* on the PMD alignment register, and then divide by the right value
* calculated based on the table above. To avoid integer overflow this
* division is broken up into a step of dividing by 125 first.
*/
if (link_spd == ICE_PTP_LNK_SPD_1G) {
if (pmd_align == 4)
mult = 10;
else
mult = (pmd_align + 6) % 10;
} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
link_spd == ICE_PTP_LNK_SPD_25G ||
link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G) {
/* If Clause 74 FEC, always calculate PMD adjust */
if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
mult = pmd_align;
else
mult = 0;
} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
if (pmd_align < 17)
mult = pmd_align + 40;
else
mult = pmd_align;
} else {
ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
link_spd);
mult = 0;
}
/* In some cases, there's no need to adjust for the PMD alignment */
if (!mult) {
*pmd_adj = 0;
return 0;
}
/* Calculate the adjustment by multiplying TUs per second by the
* appropriate multiplier and divisor. To avoid overflow, we first
* divide by 125, and then handle remaining divisor based on the link
* speed pmd_adj_divisor value.
*/
adj = div_u64(tu_per_sec, 125);
adj *= mult;
adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
* cycle count is necessary.
*/
if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
u64 cycle_adj;
u8 rx_cycle;
err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT,
&val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
err);
return err;
}
rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
if (rx_cycle) {
mult = (4 - rx_cycle) * 40;
cycle_adj = div_u64(tu_per_sec, 125);
cycle_adj *= mult;
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
adj += cycle_adj;
}
} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
u64 cycle_adj;
u8 rx_cycle;
err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT,
&val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
err);
return err;
}
rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
if (rx_cycle) {
mult = rx_cycle * 40;
cycle_adj = div_u64(tu_per_sec, 125);
cycle_adj *= mult;
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
adj += cycle_adj;
}
}
/* Return the calculated adjustment */
*pmd_adj = adj;
return 0;
}
/**
* ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port
* @hw: pointer to HW struct
* @link_spd: The Link speed to calculate for
*
* Determine the fixed Rx latency for a given link speed.
*/
static u64
ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
{
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* Calculate number of TUs to add for the fixed Rx latency. Since the
* latency measurement is in 1/100th of a nanosecond, we need to
* multiply by tu_per_sec and then divide by 1e11. This calculation
* overflows 64 bit integer arithmetic, so break it up into two
* divisions by 1e4 first then by 1e7.
*/
fixed_offset = div_u64(tu_per_sec, 10000);
fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
fixed_offset = div_u64(fixed_offset, 10000000);
return fixed_offset;
}
/**
* ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
* adjust Rx timestamps by. This combines calculations from the Vernier offset
* measurements taken in hardware with some data about known fixed delay as
* well as adjusting for multi-lane alignment delay.
*
* This function will not return successfully until the Rx offset calculations
* have been completed, which requires waiting until at least one packet has
* been received by the device. It is safe to call this function periodically
* until calibration succeeds, as it will only program the offset once.
*
* This function must be called only after the offset registers are valid,
* i.e. after the Vernier calibration wait has passed, to ensure that the PHY
* has measured the offset.
*
* To avoid overflow, when calculating the offset based on the known static
* latency values, we use measurements in 1/100th of a nanosecond, and divide
* the TUs per second up front. This avoids overflow while allowing
* calculation of the adjustment using integer arithmetic.
*
* Returns zero on success, -EBUSY if the hardware vernier offset
* calibration has not completed, or another error code on failure.
*/
int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset, pmd, val;
int err;
u32 reg;
/* Nothing to do if we've already programmed the offset */
err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, ®);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
port, err);
return err;
}
if (reg)
return 0;
err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, ®);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
port, err);
return err;
}
if (!(reg & P_REG_RX_OV_STATUS_OV_M))
return -EBUSY;
err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd);
/* Read the first Vernier offset from the PHY register and add it to
* the total offset.
*/
err = ice_read_64b_phy_reg_e82x(hw, port,
P_REG_PAR_PCS_RX_OFFSET_L,
&val);
if (err)
return err;
total_offset += val;
/* For Rx, all multi-lane link speeds include a second Vernier
* calibration, because the lanes might not be aligned.
*/
if (link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G ||
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
err = ice_read_64b_phy_reg_e82x(hw, port,
P_REG_PAR_RX_TIME_L,
&val);
if (err)
return err;
total_offset += val;
}
/* In addition, Rx must account for the PMD alignment */
err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd);
if (err)
return err;
/* For RS-FEC, this adjustment adds delay, but for other modes, it
* subtracts delay.
*/
if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
total_offset += pmd;
else
total_offset -= pmd;
/* Now that the total offset has been calculated, program it to the
* PHY and indicate that the Rx offset is ready. After this,
* timestamps will be enabled.
*/
err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1);
if (err)
return err;
dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
port);
return 0;
}
/**
* ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers
* @hw: pointer to the HW struct
*
* Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted
* and received timestamps as invalid.
*
* Return: 0 on success, other error codes when failed to write to PHY
*/
int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw)
{
u8 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
if (err) {
dev_warn(ice_hw_to_dev(hw),
"Failed to clear PHY TX_OFFSET_READY register\n");
return err;
}
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
if (err) {
dev_warn(ice_hw_to_dev(hw),
"Failed to clear PHY RX_OFFSET_READY register\n");
return err;
}
}
return 0;
}
/**
* ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @phy_time: on return, the 64bit PHY timer value
* @phc_time: on return, the lower 64bits of PHC time
*
* Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
* and PHC timer values.
*/
static int
ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time,
u64 *phc_time)
{
u64 tx_time, rx_time;
u32 zo, lo;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
if (err)
return err;
/* Issue the sync to start the ICE_PTP_READ_TIME capture */
ice_ptp_exec_tmr_cmd(hw);
/* Read the captured PHC time from the shadow time registers */
zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
*phc_time = (u64)lo << 32 | zo;
/* Read the captured PHY time from the PHY shadow registers */
err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
if (err)
return err;
/* If the PHY Tx and Rx timers don't match, log a warning message.
* Note that this should not happen in normal circumstances since the
* driver always programs them together.
*/
if (tx_time != rx_time)
dev_warn(ice_hw_to_dev(hw),
"PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
port, (unsigned long long)tx_time,
(unsigned long long)rx_time);
*phy_time = tx_time;
return 0;
}
/**
* ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer
* @hw: pointer to the HW struct
* @port: the PHY port to synchronize
*
* Perform an adjustment to ensure that the PHY and PHC timers are in sync.
* This is done by issuing a ICE_PTP_READ_TIME command which triggers a
* simultaneous read of the PHY timer and PHC timer. Then we use the
* difference to calculate an appropriate 2s complement addition to add
* to the PHY timer in order to ensure it reads the same value as the
* primary PHC timer.
*/
static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port)
{
u64 phc_time, phy_time, difference;
int err;
if (!ice_ptp_lock(hw)) {
ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
return -EBUSY;
}
err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
/* Calculate the amount required to add to the port time in order for
* it to match the PHC time.
*
* Note that the port adjustment is done using 2s complement
* arithmetic. This is convenient since it means that we can simply
* calculate the difference between the PHC time and the port time,
* and it will be interpreted correctly.
*/
difference = phc_time - phy_time;
err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference);
if (err)
goto err_unlock;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
if (err)
goto err_unlock;
/* Do not perform any action on the main timer */
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
/* Issue the sync to activate the time adjustment */
ice_ptp_exec_tmr_cmd(hw);
/* Re-capture the timer values to flush the command registers and
* verify that the time was properly adjusted.
*/
err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
dev_info(ice_hw_to_dev(hw),
"Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
port, (unsigned long long)phy_time,
(unsigned long long)phc_time);
ice_ptp_unlock(hw);
return 0;
err_unlock:
ice_ptp_unlock(hw);
return err;
}
/**
* ice_stop_phy_timer_e82x - Stop the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to stop
* @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
*
* Stop the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*/
int
ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset)
{
int err;
u32 val;
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
if (err)
return err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
if (err)
return err;
err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
if (err)
return err;
val &= ~P_REG_PS_START_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
val &= ~P_REG_PS_ENA_CLK_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
if (soft_reset) {
val |= P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
}
ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_start_phy_timer_e82x - Start the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to start
*
* Start the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*
* Hardware will take Vernier measurements on Tx or Rx of packets.
*/
int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port)
{
u32 lo, hi, val;
u64 incval;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
err = ice_stop_phy_timer_e82x(hw, port, false);
if (err)
return err;
ice_phy_cfg_lane_e82x(hw, port);
err = ice_phy_cfg_uix_e82x(hw, port);
if (err)
return err;
err = ice_phy_cfg_parpcs_e82x(hw, port);
if (err)
return err;
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
incval = (u64)hi << 32 | lo;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
if (err)
return err;
/* Do not perform any action on the main timer */
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
ice_ptp_exec_tmr_cmd(hw);
err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
if (err)
return err;
val |= P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
val |= P_REG_PS_START_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
val &= ~P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
val |= P_REG_PS_ENA_CLK_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
val |= P_REG_PS_LOAD_OFFSET_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
err = ice_sync_phy_timer_e82x(hw, port);
if (err)
return err;
ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register
* @hw: pointer to the HW struct
* @quad: the timestamp quad to read from
* @tstamp_ready: contents of the Tx memory status register
*
* Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
* the PHY are ready. A set bit means the corresponding timestamp is valid and
* ready to be captured from the PHY timestamp block.
*/
static int
ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
{
u32 hi, lo;
int err;
err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
quad, err);
return err;
}
err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
quad, err);
return err;
}
*tstamp_ready = (u64)hi << 32 | (u64)lo;
return 0;
}
/**
* ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt
* @hw: pointer to the HW struct
* @quad: the timestamp quad
* @ena: enable or disable interrupt
* @threshold: interrupt threshold
*
* Configure TX timestamp interrupt for the specified quad
*
* Return: 0 on success, other error codes when failed to read/write quad
*/
int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold)
{
int err;
u32 val;
err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
if (err)
return err;
val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
if (ena) {
val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold);
}
return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
}
/**
* ice_ptp_init_phy_e82x - initialize PHY parameters
* @ptp: pointer to the PTP HW struct
*/
static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp)
{
ptp->num_lports = 8;
ptp->ports_per_phy = 8;
}
/* E810 functions
*
* The following functions operate on the E810 series devices which use
* a separate external PHY.
*/
/**
* ice_read_phy_reg_e810 - Read register from external PHY on E810
* @hw: pointer to the HW struct
* @addr: the address to read from
* @val: On return, the value read from the PHY
*
* Read a register from the external PHY on the E810 device.
*/
static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
msg.msg_addr_low = lower_16_bits(addr);
msg.msg_addr_high = upper_16_bits(addr);
msg.opcode = ice_sbq_msg_rd;
msg.dest_dev = ice_sbq_dev_phy_0;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_write_phy_reg_e810 - Write register on external PHY on E810
* @hw: pointer to the HW struct
* @addr: the address to writem to
* @val: the value to write to the PHY
*
* Write a value to a register of the external PHY on the E810 device.
*/
static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
msg.msg_addr_low = lower_16_bits(addr);
msg.msg_addr_high = upper_16_bits(addr);
msg.opcode = ice_sbq_msg_wr;
msg.dest_dev = ice_sbq_dev_phy_0;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
* @hw: pointer to the HW struct
* @idx: the timestamp index to read
* @hi: 8 bit timestamp high value
* @lo: 32 bit timestamp low value
*
* Read a 8bit timestamp high value and 32 bit timestamp low value out of the
* timestamp block of the external PHY on the E810 device using the low latency
* timestamp read.
*/
static int
ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
{
struct ice_e810_params *params = &hw->ptp.phy.e810;
unsigned long flags;
u32 val;
int err;
spin_lock_irqsave(¶ms->atqbal_wq.lock, flags);
/* Wait for any pending in-progress low latency interrupt */
err = wait_event_interruptible_locked_irq(params->atqbal_wq,
!(params->atqbal_flags &
ATQBAL_FLAGS_INTR_IN_PROGRESS));
if (err) {
spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
return err;
}
/* Write TS index to read to the PF register so the FW can read it */
val = FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) | REG_LL_PROXY_H_EXEC;
wr32(hw, REG_LL_PROXY_H, val);
/* Read the register repeatedly until the FW provides us the TS */
err = read_poll_timeout_atomic(rd32, val,
!FIELD_GET(REG_LL_PROXY_H_EXEC, val), 10,
REG_LL_PROXY_H_TIMEOUT_US, false, hw,
REG_LL_PROXY_H);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
return err;
}
/* High 8 bit value of the TS is on the bits 16:23 */
*hi = FIELD_GET(REG_LL_PROXY_H_TS_HIGH, val);
/* Read the low 32 bit value and set the TS valid bit */
*lo = rd32(hw, REG_LL_PROXY_L) | TS_VALID;
spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
return 0;
}
/**
* ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to read
* @hi: 8 bit timestamp high value
* @lo: 32 bit timestamp low value
*
* Read a 8bit timestamp high value and 32 bit timestamp low value out of the
* timestamp block of the external PHY on the E810 device using sideband queue.
*/
static int
ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
u32 *lo)
{
u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
u32 lo_val, hi_val;
int err;
err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
*lo = lo_val;
*hi = (u8)hi_val;
return 0;
}
/**
* ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block of the external PHY
* on the E810 device.
*/
static int
ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
{
u32 lo = 0;
u8 hi = 0;
int err;
if (hw->dev_caps.ts_dev_info.ts_ll_read)
err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
else
err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
if (err)
return err;
/* For E810 devices, the timestamp is reported with the lower 32 bits
* in the low register, and the upper 8 bits in the high register.
*/
*tstamp = FIELD_PREP(PHY_EXT_40B_HIGH_M, hi) |
FIELD_PREP(PHY_EXT_40B_LOW_M, lo);
return 0;
}
/**
* ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to reset
*
* Read the timestamp and then forcibly overwrite its value to clear the valid
* bit from the timestamp block of the external PHY on the E810 device.
*
* This function should only be called on an idx whose bit is set according to
* ice_get_phy_tx_tstamp_ready().
*/
static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
{
u32 lo_addr, hi_addr;
u64 unused_tstamp;
int err;
err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
lport, idx, err);
return err;
}
lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
err = ice_write_phy_reg_e810(hw, lo_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
lport, idx, err);
return err;
}
err = ice_write_phy_reg_e810(hw, hi_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
lport, idx, err);
return err;
}
return 0;
}
/**
* ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform E810-specific PTP hardware clock initialization steps.
*
* Return: 0 on success, other error codes when failed to initialize TimeSync
*/
static int ice_ptp_init_phc_e810(struct ice_hw *hw)
{
u8 tmr_idx;
int err;
ice_ptp_cfg_sync_delay(hw, ICE_E810_E830_SYNC_DELAY);
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
GLTSYN_ENA_TSYN_ENA_M);
if (err)
ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
err);
return err;
}
/**
* ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
* @hw: Board private structure
* @time: Time to initialize the PHY port clock to
*
* Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
* initial clock time. The time will not actually be programmed until the
* driver issues an ICE_PTP_INIT_TIME command.
*
* The time value is the upper 32 bits of the PHY timer, usually in units of
* nominal nanoseconds.
*/
static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_adj_ll_e810 - Prep PHY ports for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment value to program
*
* Use the low latency firmware interface to program PHY time adjustment to
* all PHY ports.
*
* Return: 0 on success, -EBUSY on timeout
*/
static int ice_ptp_prep_phy_adj_ll_e810(struct ice_hw *hw, s32 adj)
{
const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
struct ice_e810_params *params = &hw->ptp.phy.e810;
u32 val;
int err;
spin_lock_irq(¶ms->atqbal_wq.lock);
/* Wait for any pending in-progress low latency interrupt */
err = wait_event_interruptible_locked_irq(params->atqbal_wq,
!(params->atqbal_flags &
ATQBAL_FLAGS_INTR_IN_PROGRESS));
if (err) {
spin_unlock_irq(¶ms->atqbal_wq.lock);
return err;
}
wr32(hw, REG_LL_PROXY_L, adj);
val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_ADJ) |
FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC;
wr32(hw, REG_LL_PROXY_H, val);
/* Read the register repeatedly until the FW indicates completion */
err = read_poll_timeout_atomic(rd32, val,
!FIELD_GET(REG_LL_PROXY_H_EXEC, val),
10, REG_LL_PROXY_H_TIMEOUT_US, false, hw,
REG_LL_PROXY_H);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer adjustment using low latency interface\n");
spin_unlock_irq(¶ms->atqbal_wq.lock);
return err;
}
spin_unlock_irq(¶ms->atqbal_wq.lock);
return 0;
}
/**
* ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment value to program
*
* Prepare the PHY port for an atomic adjustment by programming the PHY
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
* is completed by issuing an ICE_PTP_ADJ_TIME sync command.
*
* The adjustment value only contains the portion used for the upper 32bits of
* the PHY timer, usually in units of nominal nanoseconds. Negative
* adjustments are supported using 2s complement arithmetic.
*/
static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
{
u8 tmr_idx;
int err;
if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update)
return ice_ptp_prep_phy_adj_ll_e810(hw, adj);
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Adjustments are represented as signed 2's complement values in
* nanoseconds. Sub-nanosecond adjustment is not supported.
*/
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_ll_e810 - Prep PHY ports increment value change
* @hw: pointer to HW struct
* @incval: The new 40bit increment value to prepare
*
* Use the low latency firmware interface to program PHY time increment value
* for all PHY ports.
*
* Return: 0 on success, -EBUSY on timeout
*/
static int ice_ptp_prep_phy_incval_ll_e810(struct ice_hw *hw, u64 incval)
{
const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
struct ice_e810_params *params = &hw->ptp.phy.e810;
u32 val;
int err;
spin_lock_irq(¶ms->atqbal_wq.lock);
/* Wait for any pending in-progress low latency interrupt */
err = wait_event_interruptible_locked_irq(params->atqbal_wq,
!(params->atqbal_flags &
ATQBAL_FLAGS_INTR_IN_PROGRESS));
if (err) {
spin_unlock_irq(¶ms->atqbal_wq.lock);
return err;
}
wr32(hw, REG_LL_PROXY_L, lower_32_bits(incval));
val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_FREQ) |
FIELD_PREP(REG_LL_PROXY_H_TS_HIGH, (u8)upper_32_bits(incval)) |
FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC;
wr32(hw, REG_LL_PROXY_H, val);
/* Read the register repeatedly until the FW indicates completion */
err = read_poll_timeout_atomic(rd32, val,
!FIELD_GET(REG_LL_PROXY_H_EXEC, val),
10, REG_LL_PROXY_H_TIMEOUT_US, false, hw,
REG_LL_PROXY_H);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer increment using low latency interface\n");
spin_unlock_irq(¶ms->atqbal_wq.lock);
return err;
}
spin_unlock_irq(¶ms->atqbal_wq.lock);
return 0;
}
/**
* ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
* @hw: pointer to HW struct
* @incval: The new 40bit increment value to prepare
*
* Prepare the PHY port for a new increment value by programming the PHY
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
* completed by issuing an ICE_PTP_INIT_INCVAL command.
*/
static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
{
u32 high, low;
u8 tmr_idx;
int err;
if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update)
return ice_ptp_prep_phy_incval_ll_e810(hw, incval);
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
low = lower_32_bits(incval);
high = upper_32_bits(incval);
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
* @hw: pointer to HW struct
* @cmd: Command to be sent to the port
*
* Prepare the external PHYs connected to this device for a timer sync
* command.
*/
static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val);
}
/**
* ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @tstamp_ready: contents of the Tx memory status register
*
* E810 devices do not use a Tx memory status register. Instead simply
* indicate that all timestamps are currently ready.
*/
static int
ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
{
*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
return 0;
}
/* E810 SMA functions
*
* The following functions operate specifically on E810 hardware and are used
* to access the extended GPIOs available.
*/
/**
* ice_read_sma_ctrl
* @hw: pointer to the hw struct
* @data: pointer to data to be read from the GPIO controller
*
* Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
* PCA9575 expander, so only bits 3-7 in data are valid.
*/
int ice_read_sma_ctrl(struct ice_hw *hw, u8 *data)
{
int status;
u16 handle;
u8 i;
status = ice_get_pca9575_handle(hw, &handle);
if (status)
return status;
*data = 0;
for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
bool pin;
status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
&pin, NULL);
if (status)
break;
*data |= (u8)(!pin) << i;
}
return status;
}
/**
* ice_write_sma_ctrl
* @hw: pointer to the hw struct
* @data: data to be written to the GPIO controller
*
* Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
* of the PCA9575 expander, so only bits 3-7 in data are valid.
*/
int ice_write_sma_ctrl(struct ice_hw *hw, u8 data)
{
int status;
u16 handle;
u8 i;
status = ice_get_pca9575_handle(hw, &handle);
if (status)
return status;
for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
bool pin;
pin = !(data & (1 << i));
status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
pin, NULL);
if (status)
break;
}
return status;
}
/**
* ice_ptp_read_sdp_ac - read SDP available connections section from NVM
* @hw: pointer to the HW struct
* @entries: returns the SDP available connections section from NVM
* @num_entries: returns the number of valid entries
*
* Return: 0 on success, negative error code if NVM read failed or section does
* not exist or is corrupted
*/
int ice_ptp_read_sdp_ac(struct ice_hw *hw, __le16 *entries, uint *num_entries)
{
__le16 data;
u32 offset;
int err;
err = ice_acquire_nvm(hw, ICE_RES_READ);
if (err)
goto exit;
/* Read the offset of SDP_AC */
offset = ICE_AQC_NVM_SDP_AC_PTR_OFFSET;
err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
NULL);
if (err)
goto exit;
/* Check if section exist */
offset = FIELD_GET(ICE_AQC_NVM_SDP_AC_PTR_M, le16_to_cpu(data));
if (offset == ICE_AQC_NVM_SDP_AC_PTR_INVAL) {
err = -EINVAL;
goto exit;
}
if (offset & ICE_AQC_NVM_SDP_AC_PTR_TYPE_M) {
offset &= ICE_AQC_NVM_SDP_AC_PTR_M;
offset *= ICE_AQC_NVM_SECTOR_UNIT;
} else {
offset *= sizeof(data);
}
/* Skip reading section length and read the number of valid entries */
offset += sizeof(data);
err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
NULL);
if (err)
goto exit;
*num_entries = le16_to_cpu(data);
/* Read SDP configuration section */
offset += sizeof(data);
err = ice_aq_read_nvm(hw, 0, offset, *num_entries * sizeof(data),
entries, false, true, NULL);
exit:
if (err)
dev_dbg(ice_hw_to_dev(hw), "Failed to configure SDP connection section\n");
ice_release_nvm(hw);
return err;
}
/**
* ice_ptp_init_phy_e810 - initialize PHY parameters
* @ptp: pointer to the PTP HW struct
*/
static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp)
{
ptp->num_lports = 8;
ptp->ports_per_phy = 4;
init_waitqueue_head(&ptp->phy.e810.atqbal_wq);
}
/* E830 functions
*
* The following functions operate on the E830 series devices.
*
*/
/**
* ice_ptp_init_phc_e830 - Perform E830 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform E830-specific PTP hardware clock initialization steps.
*/
static void ice_ptp_init_phc_e830(const struct ice_hw *hw)
{
ice_ptp_cfg_sync_delay(hw, ICE_E810_E830_SYNC_DELAY);
}
/**
* ice_ptp_write_direct_incval_e830 - Prep PHY port increment value change
* @hw: pointer to HW struct
* @incval: The new 40bit increment value to prepare
*
* Prepare the PHY port for a new increment value by programming the PHC
* GLTSYN_INCVAL_L and GLTSYN_INCVAL_H registers. The actual change is
* completed by FW automatically.
*/
static void ice_ptp_write_direct_incval_e830(const struct ice_hw *hw,
u64 incval)
{
u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
wr32(hw, GLTSYN_INCVAL_L(tmr_idx), lower_32_bits(incval));
wr32(hw, GLTSYN_INCVAL_H(tmr_idx), upper_32_bits(incval));
}
/**
* ice_ptp_write_direct_phc_time_e830 - Prepare PHY port with initial time
* @hw: Board private structure
* @time: Time to initialize the PHY port clock to
*
* Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
* initial clock time. The time will not actually be programmed until the
* driver issues an ICE_PTP_INIT_TIME command.
*
* The time value is the upper 32 bits of the PHY timer, usually in units of
* nominal nanoseconds.
*/
static void ice_ptp_write_direct_phc_time_e830(const struct ice_hw *hw,
u64 time)
{
u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
wr32(hw, GLTSYN_TIME_0(tmr_idx), 0);
wr32(hw, GLTSYN_TIME_L(tmr_idx), lower_32_bits(time));
wr32(hw, GLTSYN_TIME_H(tmr_idx), upper_32_bits(time));
}
/**
* ice_ptp_port_cmd_e830 - Prepare all external PHYs for a timer command
* @hw: pointer to HW struct
* @cmd: Command to be sent to the port
*
* Prepare the external PHYs connected to this device for a timer sync
* command.
*
* Return: 0 on success, negative error code when PHY write failed
*/
static int ice_ptp_port_cmd_e830(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
return ice_write_phy_reg_e810(hw, E830_ETH_GLTSYN_CMD, val);
}
/**
* ice_read_phy_tstamp_e830 - Read a PHY timestamp out of the external PHY
* @hw: pointer to the HW struct
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block of the external PHY
* on the E830 device.
*/
static void ice_read_phy_tstamp_e830(const struct ice_hw *hw, u8 idx,
u64 *tstamp)
{
u32 hi, lo;
hi = rd32(hw, E830_PRTTSYN_TXTIME_H(idx));
lo = rd32(hw, E830_PRTTSYN_TXTIME_L(idx));
/* For E830 devices, the timestamp is reported with the lower 32 bits
* in the low register, and the upper 8 bits in the high register.
*/
*tstamp = FIELD_PREP(PHY_EXT_40B_HIGH_M, hi) |
FIELD_PREP(PHY_EXT_40B_LOW_M, lo);
}
/**
* ice_get_phy_tx_tstamp_ready_e830 - Read Tx memory status register
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @tstamp_ready: contents of the Tx memory status register
*/
static void ice_get_phy_tx_tstamp_ready_e830(const struct ice_hw *hw, u8 port,
u64 *tstamp_ready)
{
*tstamp_ready = rd32(hw, E830_PRTMAC_TS_TX_MEM_VALID_H);
*tstamp_ready <<= 32;
*tstamp_ready |= rd32(hw, E830_PRTMAC_TS_TX_MEM_VALID_L);
}
/**
* ice_ptp_init_phy_e830 - initialize PHY parameters
* @ptp: pointer to the PTP HW struct
*/
static void ice_ptp_init_phy_e830(struct ice_ptp_hw *ptp)
{
ptp->num_lports = 8;
ptp->ports_per_phy = 4;
}
/* Device agnostic functions
*
* The following functions implement shared behavior common to all devices,
* possibly calling a device specific implementation where necessary.
*/
/**
* ice_ptp_lock - Acquire PTP global semaphore register lock
* @hw: pointer to the HW struct
*
* Acquire the global PTP hardware semaphore lock. Returns true if the lock
* was acquired, false otherwise.
*
* The PFTSYN_SEM register sets the busy bit on read, returning the previous
* value. If software sees the busy bit cleared, this means that this function
* acquired the lock (and the busy bit is now set). If software sees the busy
* bit set, it means that another function acquired the lock.
*
* Software must clear the busy bit with a write to release the lock for other
* functions when done.
*/
bool ice_ptp_lock(struct ice_hw *hw)
{
u32 hw_lock;
int i;
#define MAX_TRIES 15
for (i = 0; i < MAX_TRIES; i++) {
hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
if (hw_lock) {
/* Somebody is holding the lock */
usleep_range(5000, 6000);
continue;
}
break;
}
return !hw_lock;
}
/**
* ice_ptp_unlock - Release PTP global semaphore register lock
* @hw: pointer to the HW struct
*
* Release the global PTP hardware semaphore lock. This is done by writing to
* the PFTSYN_SEM register.
*/
void ice_ptp_unlock(struct ice_hw *hw)
{
wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
}
/**
* ice_ptp_init_hw - Initialize hw based on device type
* @hw: pointer to the HW structure
*
* Determine the PHY model for the device, and initialize hw
* for use by other functions.
*/
void ice_ptp_init_hw(struct ice_hw *hw)
{
struct ice_ptp_hw *ptp = &hw->ptp;
switch (hw->mac_type) {
case ICE_MAC_E810:
ice_ptp_init_phy_e810(ptp);
break;
case ICE_MAC_E830:
ice_ptp_init_phy_e830(ptp);
break;
case ICE_MAC_GENERIC:
ice_ptp_init_phy_e82x(ptp);
break;
case ICE_MAC_GENERIC_3K_E825:
ice_ptp_init_phy_e825(hw);
break;
default:
return;
}
}
/**
* ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command
* @hw: pointer to HW struct
* @port: Port to which cmd has to be sent
* @cmd: Command to be sent to the port
*
* Prepare one port for the upcoming timer sync command. Do not use this for
* programming only a single port, instead use ice_ptp_one_port_cmd() to
* ensure non-modified ports get properly initialized to ICE_PTP_NOP.
*
* Return:
* * %0 - success
* %-EBUSY - PHY type not supported
* * %other - failed to write port command
*/
static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port,
enum ice_ptp_tmr_cmd cmd)
{
switch (hw->mac_type) {
case ICE_MAC_GENERIC:
return ice_ptp_write_port_cmd_e82x(hw, port, cmd);
case ICE_MAC_GENERIC_3K_E825:
return ice_ptp_write_port_cmd_eth56g(hw, port, cmd);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_ptp_one_port_cmd - Program one PHY port for a timer command
* @hw: pointer to HW struct
* @configured_port: the port that should execute the command
* @configured_cmd: the command to be executed on the configured port
*
* Prepare one port for executing a timer command, while preparing all other
* ports to ICE_PTP_NOP. This allows executing a command on a single port
* while ensuring all other ports do not execute stale commands.
*
* Return:
* * %0 - success
* * %other - failed to write port command
*/
int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
enum ice_ptp_tmr_cmd configured_cmd)
{
u32 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
/* Program the configured port with the configured command,
* program all other ports with ICE_PTP_NOP.
*/
if (port == configured_port)
err = ice_ptp_write_port_cmd(hw, port, configured_cmd);
else
err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_port_cmd - Prepare PHY ports for a timer sync command
* @hw: pointer to HW struct
* @cmd: the timer command to setup
*
* Prepare all PHY ports on this device for the requested timer command. For
* some families this can be done in one shot, but for other families each
* port must be configured individually.
*
* Return:
* * %0 - success
* * %other - failed to write port command
*/
static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 port;
/* PHY models which can program all ports simultaneously */
switch (hw->mac_type) {
case ICE_MAC_E810:
return ice_ptp_port_cmd_e810(hw, cmd);
case ICE_MAC_E830:
return ice_ptp_port_cmd_e830(hw, cmd);
default:
break;
}
/* PHY models which require programming each port separately */
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_ptp_write_port_cmd(hw, port, cmd);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
* @hw: pointer to HW struct
* @cmd: the command to issue
*
* Prepare the source timer and PHY timers and then trigger the requested
* command. This causes the shadow registers previously written in preparation
* for the command to be synchronously applied to both the source and PHY
* timers.
*/
static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
int err;
/* First, prepare the source timer */
ice_ptp_src_cmd(hw, cmd);
/* Next, prepare the ports */
err = ice_ptp_port_cmd(hw, cmd);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
cmd, err);
return err;
}
/* Write the sync command register to drive both source and PHY timer
* commands synchronously
*/
ice_ptp_exec_tmr_cmd(hw);
return 0;
}
/**
* ice_ptp_init_time - Initialize device time to provided value
* @hw: pointer to HW struct
* @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
*
* Initialize the device to the specified time provided. This requires a three
* step process:
*
* 1) write the new init time to the source timer shadow registers
* 2) write the new init time to the PHY timer shadow registers
* 3) issue an init_time timer command to synchronously switch both the source
* and port timers to the new init time value at the next clock cycle.
*/
int ice_ptp_init_time(struct ice_hw *hw, u64 time)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Source timers */
/* For E830 we don't need to use shadow registers, its automatic */
if (hw->mac_type == ICE_MAC_E830) {
ice_ptp_write_direct_phc_time_e830(hw, time);
return 0;
}
wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
/* PHY timers */
/* Fill Rx and Tx ports and send msg to PHY */
switch (hw->mac_type) {
case ICE_MAC_E810:
err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
break;
case ICE_MAC_GENERIC:
err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF);
break;
case ICE_MAC_GENERIC_3K_E825:
err = ice_ptp_prep_phy_time_eth56g(hw,
(u32)(time & 0xFFFFFFFF));
break;
default:
err = -EOPNOTSUPP;
}
if (err)
return err;
return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
}
/**
* ice_ptp_write_incval - Program PHC with new increment value
* @hw: pointer to HW struct
* @incval: Source timer increment value per clock cycle
*
* Program the PHC with a new increment value. This requires a three-step
* process:
*
* 1) Write the increment value to the source timer shadow registers
* 2) Write the increment value to the PHY timer shadow registers
* 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
* the source and port timers to the new increment value at the next clock
* cycle.
*/
int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* For E830 we don't need to use shadow registers, its automatic */
if (hw->mac_type == ICE_MAC_E830) {
ice_ptp_write_direct_incval_e830(hw, incval);
return 0;
}
/* Shadow Adjust */
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
switch (hw->mac_type) {
case ICE_MAC_E810:
err = ice_ptp_prep_phy_incval_e810(hw, incval);
break;
case ICE_MAC_GENERIC:
err = ice_ptp_prep_phy_incval_e82x(hw, incval);
break;
case ICE_MAC_GENERIC_3K_E825:
err = ice_ptp_prep_phy_incval_eth56g(hw, incval);
break;
default:
err = -EOPNOTSUPP;
}
if (err)
return err;
return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
}
/**
* ice_ptp_write_incval_locked - Program new incval while holding semaphore
* @hw: pointer to HW struct
* @incval: Source timer increment value per clock cycle
*
* Program a new PHC incval while holding the PTP semaphore.
*/
int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
{
int err;
if (!ice_ptp_lock(hw))
return -EBUSY;
err = ice_ptp_write_incval(hw, incval);
ice_ptp_unlock(hw);
return err;
}
/**
* ice_ptp_adj_clock - Adjust PHC clock time atomically
* @hw: pointer to HW struct
* @adj: Adjustment in nanoseconds
*
* Perform an atomic adjustment of the PHC time by the specified number of
* nanoseconds. This requires a three-step process:
*
* 1) Write the adjustment to the source timer shadow registers
* 2) Write the adjustment to the PHY timer shadow registers
* 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
* adjustment to both the source and port timers at the next clock cycle.
*/
int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
* For an ICE_PTP_ADJ_TIME command, this set of registers represents
* the value to add to the clock time. It supports subtraction by
* interpreting the value as a 2's complement integer.
*/
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
switch (hw->mac_type) {
case ICE_MAC_E810:
err = ice_ptp_prep_phy_adj_e810(hw, adj);
break;
case ICE_MAC_E830:
/* E830 sync PHYs automatically after setting GLTSYN_SHADJ */
return 0;
case ICE_MAC_GENERIC:
err = ice_ptp_prep_phy_adj_e82x(hw, adj);
break;
case ICE_MAC_GENERIC_3K_E825:
err = ice_ptp_prep_phy_adj_eth56g(hw, adj);
break;
default:
err = -EOPNOTSUPP;
}
if (err)
return err;
return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
}
/**
* ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
* @hw: pointer to the HW struct
* @block: the block to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block. For E822 devices,
* the block is the quad to read from. For E810 devices, the block is the
* logical port to read from.
*/
int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
{
switch (hw->mac_type) {
case ICE_MAC_E810:
return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
case ICE_MAC_E830:
ice_read_phy_tstamp_e830(hw, idx, tstamp);
return 0;
case ICE_MAC_GENERIC:
return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp);
case ICE_MAC_GENERIC_3K_E825:
return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
* @hw: pointer to the HW struct
* @block: the block to read from
* @idx: the timestamp index to reset
*
* Clear a timestamp from the timestamp block, discarding its value without
* returning it. This resets the memory status bit for the timestamp index
* allowing it to be reused for another timestamp in the future.
*
* For E822 devices, the block number is the PHY quad to clear from. For E810
* devices, the block number is the logical port to clear from.
*
* This function must only be called on a timestamp index whose valid bit is
* set according to ice_get_phy_tx_tstamp_ready().
*/
int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
{
switch (hw->mac_type) {
case ICE_MAC_E810:
return ice_clear_phy_tstamp_e810(hw, block, idx);
case ICE_MAC_GENERIC:
return ice_clear_phy_tstamp_e82x(hw, block, idx);
case ICE_MAC_GENERIC_3K_E825:
return ice_clear_ptp_tstamp_eth56g(hw, block, idx);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_get_pf_c827_idx - find and return the C827 index for the current pf
* @hw: pointer to the hw struct
* @idx: index of the found C827 PHY
* Return:
* * 0 - success
* * negative - failure
*/
static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
{
struct ice_aqc_get_link_topo cmd;
u8 node_part_number;
u16 node_handle;
int status;
u8 ctx;
if (hw->mac_type != ICE_MAC_E810)
return -ENODEV;
if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
*idx = C827_0;
return 0;
}
memset(&cmd, 0, sizeof(cmd));
ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
cmd.addr.topo_params.node_type_ctx = ctx;
status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
&node_handle);
if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
return -ENOENT;
if (node_handle == E810C_QSFP_C827_0_HANDLE)
*idx = C827_0;
else if (node_handle == E810C_QSFP_C827_1_HANDLE)
*idx = C827_1;
else
return -EIO;
return 0;
}
/**
* ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
* @hw: pointer to the HW struct
*/
void ice_ptp_reset_ts_memory(struct ice_hw *hw)
{
switch (hw->mac_type) {
case ICE_MAC_GENERIC:
ice_ptp_reset_ts_memory_e82x(hw);
break;
case ICE_MAC_GENERIC_3K_E825:
ice_ptp_reset_ts_memory_eth56g(hw);
break;
case ICE_MAC_E810:
default:
return;
}
}
/**
* ice_ptp_init_phc - Initialize PTP hardware clock
* @hw: pointer to the HW struct
*
* Perform the steps required to initialize the PTP hardware clock.
*/
int ice_ptp_init_phc(struct ice_hw *hw)
{
u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Enable source clocks */
wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
/* Clear event err indications for auxiliary pins */
(void)rd32(hw, GLTSYN_STAT(src_idx));
switch (hw->mac_type) {
case ICE_MAC_E810:
return ice_ptp_init_phc_e810(hw);
case ICE_MAC_E830:
ice_ptp_init_phc_e830(hw);
return 0;
case ICE_MAC_GENERIC:
return ice_ptp_init_phc_e82x(hw);
case ICE_MAC_GENERIC_3K_E825:
return ice_ptp_init_phc_e825(hw);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
* @hw: pointer to the HW struct
* @block: the timestamp block to check
* @tstamp_ready: storage for the PHY Tx memory status information
*
* Check the PHY for Tx timestamp memory status. This reports a 64 bit value
* which indicates which timestamps in the block may be captured. A set bit
* means the timestamp can be read. An unset bit means the timestamp is not
* ready and software should avoid reading the register.
*/
int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
{
switch (hw->mac_type) {
case ICE_MAC_E810:
return ice_get_phy_tx_tstamp_ready_e810(hw, block,
tstamp_ready);
case ICE_MAC_E830:
ice_get_phy_tx_tstamp_ready_e830(hw, block, tstamp_ready);
return 0;
case ICE_MAC_GENERIC:
return ice_get_phy_tx_tstamp_ready_e82x(hw, block,
tstamp_ready);
case ICE_MAC_GENERIC_3K_E825:
return ice_get_phy_tx_tstamp_ready_eth56g(hw, block,
tstamp_ready);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_cgu_get_pin_desc_e823 - get pin description array
* @hw: pointer to the hw struct
* @input: if request is done against input or output pin
* @size: number of inputs/outputs
*
* Return: pointer to pin description array associated to given hw.
*/
static const struct ice_cgu_pin_desc *
ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
{
static const struct ice_cgu_pin_desc *t;
if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
if (input) {
t = ice_e823_zl_cgu_inputs;
*size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
} else {
t = ice_e823_zl_cgu_outputs;
*size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
}
} else if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
if (input) {
t = ice_e823_si_cgu_inputs;
*size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
} else {
t = ice_e823_si_cgu_outputs;
*size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
}
} else {
t = NULL;
*size = 0;
}
return t;
}
/**
* ice_cgu_get_pin_desc - get pin description array
* @hw: pointer to the hw struct
* @input: if request is done against input or output pins
* @size: size of array returned by function
*
* Return: pointer to pin description array associated to given hw.
*/
static const struct ice_cgu_pin_desc *
ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
{
const struct ice_cgu_pin_desc *t = NULL;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_SFP:
if (input) {
t = ice_e810t_sfp_cgu_inputs;
*size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
} else {
t = ice_e810t_sfp_cgu_outputs;
*size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
}
break;
case ICE_DEV_ID_E810C_QSFP:
if (input) {
t = ice_e810t_qsfp_cgu_inputs;
*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
} else {
t = ice_e810t_qsfp_cgu_outputs;
*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
}
break;
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_SGMII:
t = ice_cgu_get_pin_desc_e823(hw, input, size);
break;
default:
break;
}
return t;
}
/**
* ice_cgu_get_num_pins - get pin description array size
* @hw: pointer to the hw struct
* @input: if request is done against input or output pins
*
* Return: size of pin description array for given hw.
*/
int ice_cgu_get_num_pins(struct ice_hw *hw, bool input)
{
const struct ice_cgu_pin_desc *t;
int size;
t = ice_cgu_get_pin_desc(hw, input, &size);
if (t)
return size;
return 0;
}
/**
* ice_cgu_get_pin_type - get pin's type
* @hw: pointer to the hw struct
* @pin: pin index
* @input: if request is done against input or output pin
*
* Return: type of a pin.
*/
enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
{
const struct ice_cgu_pin_desc *t;
int t_size;
t = ice_cgu_get_pin_desc(hw, input, &t_size);
if (!t)
return 0;
if (pin >= t_size)
return 0;
return t[pin].type;
}
/**
* ice_cgu_get_pin_freq_supp - get pin's supported frequency
* @hw: pointer to the hw struct
* @pin: pin index
* @input: if request is done against input or output pin
* @num: output number of supported frequencies
*
* Get frequency supported number and array of supported frequencies.
*
* Return: array of supported frequencies for given pin.
*/
struct dpll_pin_frequency *
ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
{
const struct ice_cgu_pin_desc *t;
int t_size;
*num = 0;
t = ice_cgu_get_pin_desc(hw, input, &t_size);
if (!t)
return NULL;
if (pin >= t_size)
return NULL;
*num = t[pin].freq_supp_num;
return t[pin].freq_supp;
}
/**
* ice_cgu_get_pin_name - get pin's name
* @hw: pointer to the hw struct
* @pin: pin index
* @input: if request is done against input or output pin
*
* Return:
* * null terminated char array with name
* * NULL in case of failure
*/
const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
{
const struct ice_cgu_pin_desc *t;
int t_size;
t = ice_cgu_get_pin_desc(hw, input, &t_size);
if (!t)
return NULL;
if (pin >= t_size)
return NULL;
return t[pin].name;
}
/**
* ice_get_cgu_state - get the state of the DPLL
* @hw: pointer to the hw struct
* @dpll_idx: Index of internal DPLL unit
* @last_dpll_state: last known state of DPLL
* @pin: pointer to a buffer for returning currently active pin
* @ref_state: reference clock state
* @eec_mode: eec mode of the DPLL
* @phase_offset: pointer to a buffer for returning phase offset
* @dpll_state: state of the DPLL (output)
*
* This function will read the state of the DPLL(dpll_idx). Non-null
* 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
* retrieve currently active pin, state, mode and phase_offset respectively.
*
* Return: state of the DPLL
*/
int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
enum dpll_lock_status last_dpll_state, u8 *pin,
u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
enum dpll_lock_status *dpll_state)
{
u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
s64 hw_phase_offset;
int status;
status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
&hw_dpll_state, &hw_config,
&hw_phase_offset, &hw_eec_mode);
if (status)
return status;
if (pin)
/* current ref pin in dpll_state_refsel_status_X register */
*pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
if (phase_offset)
*phase_offset = hw_phase_offset;
if (ref_state)
*ref_state = hw_ref_state;
if (eec_mode)
*eec_mode = hw_eec_mode;
if (!dpll_state)
return 0;
/* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
* it would never return to FREERUN. This aligns to ITU-T G.781
* Recommendation. We cannot report HOLDOVER as HO memory is cleared
* while switching to another reference.
* Only for situations where previous state was either: "LOCKED without
* HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
*/
if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
*dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
else
*dpll_state = DPLL_LOCK_STATUS_LOCKED;
} else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
*dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
} else {
*dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
}
return 0;
}
/**
* ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
* @hw: pointer to the hw struct
* @base_idx: returns index of first recovered clock pin on device
* @pin_num: returns number of recovered clock pins available on device
*
* Based on hw provide caller info about recovery clock pins available on the
* board.
*
* Return:
* * 0 - success, information is valid
* * negative - failure, information is not valid
*/
int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
{
u8 phy_idx;
int ret;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_SFP:
case ICE_DEV_ID_E810C_QSFP:
ret = ice_get_pf_c827_idx(hw, &phy_idx);
if (ret)
return ret;
*base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
*pin_num = ICE_E810_RCLK_PINS_NUM;
ret = 0;
break;
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_SGMII:
*pin_num = ICE_E82X_RCLK_PINS_NUM;
ret = 0;
if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
*base_idx = ZL_REF1P;
else if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
*base_idx = SI_REF1P;
else
ret = -ENODEV;
break;
default:
ret = -ENODEV;
break;
}
return ret;
}
/**
* ice_cgu_get_output_pin_state_caps - get output pin state capabilities
* @hw: pointer to the hw struct
* @pin_id: id of a pin
* @caps: capabilities to modify
*
* Return:
* * 0 - success, state capabilities were modified
* * negative - failure, capabilities were not modified
*/
int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
unsigned long *caps)
{
bool can_change = true;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_SFP:
if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
can_change = false;
break;
case ICE_DEV_ID_E810C_QSFP:
if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
can_change = false;
break;
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_SGMII:
if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
pin_id == ZL_OUT2)
can_change = false;
else if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
pin_id == SI_OUT1)
can_change = false;
break;
default:
return -EINVAL;
}
if (can_change)
*caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
else
*caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
return 0;
}
|