1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
// SPDX-License-Identifier: GPL-2.0
/* OpenVPN data channel offload
*
* Copyright (C) 2020-2025 OpenVPN, Inc.
*
* Author: James Yonan <james@openvpn.net>
* Antonio Quartulli <antonio@openvpn.net>
*/
#include <crypto/aead.h>
#include <linux/skbuff.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/udp.h>
#include "ovpnpriv.h"
#include "main.h"
#include "io.h"
#include "pktid.h"
#include "crypto_aead.h"
#include "crypto.h"
#include "peer.h"
#include "proto.h"
#include "skb.h"
#define OVPN_AUTH_TAG_SIZE 16
#define OVPN_AAD_SIZE (OVPN_OPCODE_SIZE + OVPN_NONCE_WIRE_SIZE)
#define ALG_NAME_AES "gcm(aes)"
#define ALG_NAME_CHACHAPOLY "rfc7539(chacha20,poly1305)"
static int ovpn_aead_encap_overhead(const struct ovpn_crypto_key_slot *ks)
{
return OVPN_OPCODE_SIZE + /* OP header size */
sizeof(u32) + /* Packet ID */
crypto_aead_authsize(ks->encrypt); /* Auth Tag */
}
int ovpn_aead_encrypt(struct ovpn_peer *peer, struct ovpn_crypto_key_slot *ks,
struct sk_buff *skb)
{
const unsigned int tag_size = crypto_aead_authsize(ks->encrypt);
struct aead_request *req;
struct sk_buff *trailer;
struct scatterlist *sg;
int nfrags, ret;
u32 pktid, op;
u8 *iv;
ovpn_skb_cb(skb)->peer = peer;
ovpn_skb_cb(skb)->ks = ks;
/* Sample AEAD header format:
* 48000001 00000005 7e7046bd 444a7e28 cc6387b1 64a4d6c1 380275a...
* [ OP32 ] [seq # ] [ auth tag ] [ payload ... ]
* [4-byte
* IV head]
*/
/* check that there's enough headroom in the skb for packet
* encapsulation
*/
if (unlikely(skb_cow_head(skb, OVPN_HEAD_ROOM)))
return -ENOBUFS;
/* get number of skb frags and ensure that packet data is writable */
nfrags = skb_cow_data(skb, 0, &trailer);
if (unlikely(nfrags < 0))
return nfrags;
if (unlikely(nfrags + 2 > (MAX_SKB_FRAGS + 2)))
return -ENOSPC;
/* sg may be required by async crypto */
ovpn_skb_cb(skb)->sg = kmalloc(sizeof(*ovpn_skb_cb(skb)->sg) *
(nfrags + 2), GFP_ATOMIC);
if (unlikely(!ovpn_skb_cb(skb)->sg))
return -ENOMEM;
sg = ovpn_skb_cb(skb)->sg;
/* sg table:
* 0: op, wire nonce (AD, len=OVPN_OP_SIZE_V2+OVPN_NONCE_WIRE_SIZE),
* 1, 2, 3, ..., n: payload,
* n+1: auth_tag (len=tag_size)
*/
sg_init_table(sg, nfrags + 2);
/* build scatterlist to encrypt packet payload */
ret = skb_to_sgvec_nomark(skb, sg + 1, 0, skb->len);
if (unlikely(ret < 0)) {
netdev_err(peer->ovpn->dev,
"encrypt: cannot map skb to sg: %d\n", ret);
return ret;
}
/* append auth_tag onto scatterlist */
__skb_push(skb, tag_size);
sg_set_buf(sg + ret + 1, skb->data, tag_size);
/* obtain packet ID, which is used both as a first
* 4 bytes of nonce and last 4 bytes of associated data.
*/
ret = ovpn_pktid_xmit_next(&ks->pid_xmit, &pktid);
if (unlikely(ret < 0))
return ret;
/* iv may be required by async crypto */
ovpn_skb_cb(skb)->iv = kmalloc(OVPN_NONCE_SIZE, GFP_ATOMIC);
if (unlikely(!ovpn_skb_cb(skb)->iv))
return -ENOMEM;
iv = ovpn_skb_cb(skb)->iv;
/* concat 4 bytes packet id and 8 bytes nonce tail into 12 bytes
* nonce
*/
ovpn_pktid_aead_write(pktid, ks->nonce_tail_xmit, iv);
/* make space for packet id and push it to the front */
__skb_push(skb, OVPN_NONCE_WIRE_SIZE);
memcpy(skb->data, iv, OVPN_NONCE_WIRE_SIZE);
/* add packet op as head of additional data */
op = ovpn_opcode_compose(OVPN_DATA_V2, ks->key_id, peer->id);
__skb_push(skb, OVPN_OPCODE_SIZE);
BUILD_BUG_ON(sizeof(op) != OVPN_OPCODE_SIZE);
*((__force __be32 *)skb->data) = htonl(op);
/* AEAD Additional data */
sg_set_buf(sg, skb->data, OVPN_AAD_SIZE);
req = aead_request_alloc(ks->encrypt, GFP_ATOMIC);
if (unlikely(!req))
return -ENOMEM;
ovpn_skb_cb(skb)->req = req;
/* setup async crypto operation */
aead_request_set_tfm(req, ks->encrypt);
aead_request_set_callback(req, 0, ovpn_encrypt_post, skb);
aead_request_set_crypt(req, sg, sg,
skb->len - ovpn_aead_encap_overhead(ks), iv);
aead_request_set_ad(req, OVPN_AAD_SIZE);
/* encrypt it */
return crypto_aead_encrypt(req);
}
int ovpn_aead_decrypt(struct ovpn_peer *peer, struct ovpn_crypto_key_slot *ks,
struct sk_buff *skb)
{
const unsigned int tag_size = crypto_aead_authsize(ks->decrypt);
int ret, payload_len, nfrags;
unsigned int payload_offset;
struct aead_request *req;
struct sk_buff *trailer;
struct scatterlist *sg;
u8 *iv;
payload_offset = OVPN_AAD_SIZE + tag_size;
payload_len = skb->len - payload_offset;
ovpn_skb_cb(skb)->payload_offset = payload_offset;
ovpn_skb_cb(skb)->peer = peer;
ovpn_skb_cb(skb)->ks = ks;
/* sanity check on packet size, payload size must be >= 0 */
if (unlikely(payload_len < 0))
return -EINVAL;
/* Prepare the skb data buffer to be accessed up until the auth tag.
* This is required because this area is directly mapped into the sg
* list.
*/
if (unlikely(!pskb_may_pull(skb, payload_offset)))
return -ENODATA;
/* get number of skb frags and ensure that packet data is writable */
nfrags = skb_cow_data(skb, 0, &trailer);
if (unlikely(nfrags < 0))
return nfrags;
if (unlikely(nfrags + 2 > (MAX_SKB_FRAGS + 2)))
return -ENOSPC;
/* sg may be required by async crypto */
ovpn_skb_cb(skb)->sg = kmalloc(sizeof(*ovpn_skb_cb(skb)->sg) *
(nfrags + 2), GFP_ATOMIC);
if (unlikely(!ovpn_skb_cb(skb)->sg))
return -ENOMEM;
sg = ovpn_skb_cb(skb)->sg;
/* sg table:
* 0: op, wire nonce (AD, len=OVPN_OPCODE_SIZE+OVPN_NONCE_WIRE_SIZE),
* 1, 2, 3, ..., n: payload,
* n+1: auth_tag (len=tag_size)
*/
sg_init_table(sg, nfrags + 2);
/* packet op is head of additional data */
sg_set_buf(sg, skb->data, OVPN_AAD_SIZE);
/* build scatterlist to decrypt packet payload */
ret = skb_to_sgvec_nomark(skb, sg + 1, payload_offset, payload_len);
if (unlikely(ret < 0)) {
netdev_err(peer->ovpn->dev,
"decrypt: cannot map skb to sg: %d\n", ret);
return ret;
}
/* append auth_tag onto scatterlist */
sg_set_buf(sg + ret + 1, skb->data + OVPN_AAD_SIZE, tag_size);
/* iv may be required by async crypto */
ovpn_skb_cb(skb)->iv = kmalloc(OVPN_NONCE_SIZE, GFP_ATOMIC);
if (unlikely(!ovpn_skb_cb(skb)->iv))
return -ENOMEM;
iv = ovpn_skb_cb(skb)->iv;
/* copy nonce into IV buffer */
memcpy(iv, skb->data + OVPN_OPCODE_SIZE, OVPN_NONCE_WIRE_SIZE);
memcpy(iv + OVPN_NONCE_WIRE_SIZE, ks->nonce_tail_recv,
OVPN_NONCE_TAIL_SIZE);
req = aead_request_alloc(ks->decrypt, GFP_ATOMIC);
if (unlikely(!req))
return -ENOMEM;
ovpn_skb_cb(skb)->req = req;
/* setup async crypto operation */
aead_request_set_tfm(req, ks->decrypt);
aead_request_set_callback(req, 0, ovpn_decrypt_post, skb);
aead_request_set_crypt(req, sg, sg, payload_len + tag_size, iv);
aead_request_set_ad(req, OVPN_AAD_SIZE);
/* decrypt it */
return crypto_aead_decrypt(req);
}
/* Initialize a struct crypto_aead object */
static struct crypto_aead *ovpn_aead_init(const char *title,
const char *alg_name,
const unsigned char *key,
unsigned int keylen)
{
struct crypto_aead *aead;
int ret;
aead = crypto_alloc_aead(alg_name, 0, 0);
if (IS_ERR(aead)) {
ret = PTR_ERR(aead);
pr_err("%s crypto_alloc_aead failed, err=%d\n", title, ret);
aead = NULL;
goto error;
}
ret = crypto_aead_setkey(aead, key, keylen);
if (ret) {
pr_err("%s crypto_aead_setkey size=%u failed, err=%d\n", title,
keylen, ret);
goto error;
}
ret = crypto_aead_setauthsize(aead, OVPN_AUTH_TAG_SIZE);
if (ret) {
pr_err("%s crypto_aead_setauthsize failed, err=%d\n", title,
ret);
goto error;
}
/* basic AEAD assumption */
if (crypto_aead_ivsize(aead) != OVPN_NONCE_SIZE) {
pr_err("%s IV size must be %d\n", title, OVPN_NONCE_SIZE);
ret = -EINVAL;
goto error;
}
pr_debug("********* Cipher %s (%s)\n", alg_name, title);
pr_debug("*** IV size=%u\n", crypto_aead_ivsize(aead));
pr_debug("*** req size=%u\n", crypto_aead_reqsize(aead));
pr_debug("*** block size=%u\n", crypto_aead_blocksize(aead));
pr_debug("*** auth size=%u\n", crypto_aead_authsize(aead));
pr_debug("*** alignmask=0x%x\n", crypto_aead_alignmask(aead));
return aead;
error:
crypto_free_aead(aead);
return ERR_PTR(ret);
}
void ovpn_aead_crypto_key_slot_destroy(struct ovpn_crypto_key_slot *ks)
{
if (!ks)
return;
crypto_free_aead(ks->encrypt);
crypto_free_aead(ks->decrypt);
kfree(ks);
}
struct ovpn_crypto_key_slot *
ovpn_aead_crypto_key_slot_new(const struct ovpn_key_config *kc)
{
struct ovpn_crypto_key_slot *ks = NULL;
const char *alg_name;
int ret;
/* validate crypto alg */
switch (kc->cipher_alg) {
case OVPN_CIPHER_ALG_AES_GCM:
alg_name = ALG_NAME_AES;
break;
case OVPN_CIPHER_ALG_CHACHA20_POLY1305:
alg_name = ALG_NAME_CHACHAPOLY;
break;
default:
return ERR_PTR(-EOPNOTSUPP);
}
if (kc->encrypt.nonce_tail_size != OVPN_NONCE_TAIL_SIZE ||
kc->decrypt.nonce_tail_size != OVPN_NONCE_TAIL_SIZE)
return ERR_PTR(-EINVAL);
/* build the key slot */
ks = kmalloc(sizeof(*ks), GFP_KERNEL);
if (!ks)
return ERR_PTR(-ENOMEM);
ks->encrypt = NULL;
ks->decrypt = NULL;
kref_init(&ks->refcount);
ks->key_id = kc->key_id;
ks->encrypt = ovpn_aead_init("encrypt", alg_name,
kc->encrypt.cipher_key,
kc->encrypt.cipher_key_size);
if (IS_ERR(ks->encrypt)) {
ret = PTR_ERR(ks->encrypt);
ks->encrypt = NULL;
goto destroy_ks;
}
ks->decrypt = ovpn_aead_init("decrypt", alg_name,
kc->decrypt.cipher_key,
kc->decrypt.cipher_key_size);
if (IS_ERR(ks->decrypt)) {
ret = PTR_ERR(ks->decrypt);
ks->decrypt = NULL;
goto destroy_ks;
}
memcpy(ks->nonce_tail_xmit, kc->encrypt.nonce_tail,
OVPN_NONCE_TAIL_SIZE);
memcpy(ks->nonce_tail_recv, kc->decrypt.nonce_tail,
OVPN_NONCE_TAIL_SIZE);
/* init packet ID generation/validation */
ovpn_pktid_xmit_init(&ks->pid_xmit);
ovpn_pktid_recv_init(&ks->pid_recv);
return ks;
destroy_ks:
ovpn_aead_crypto_key_slot_destroy(ks);
return ERR_PTR(ret);
}
enum ovpn_cipher_alg ovpn_aead_crypto_alg(struct ovpn_crypto_key_slot *ks)
{
const char *alg_name;
if (!ks->encrypt)
return OVPN_CIPHER_ALG_NONE;
alg_name = crypto_tfm_alg_name(crypto_aead_tfm(ks->encrypt));
if (!strcmp(alg_name, ALG_NAME_AES))
return OVPN_CIPHER_ALG_AES_GCM;
else if (!strcmp(alg_name, ALG_NAME_CHACHAPOLY))
return OVPN_CIPHER_ALG_CHACHA20_POLY1305;
else
return OVPN_CIPHER_ALG_NONE;
}
|