1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024 Liebherr-Electronics and Drives GmbH
*
* Reference Manual : https://www.nxp.com/docs/en/data-sheet/MC33XS2410.pdf
*
* Limitations:
* - Supports frequencies between 0.5Hz and 2048Hz with following steps:
* - 0.5 Hz steps from 0.5 Hz to 32 Hz
* - 2 Hz steps from 2 Hz to 128 Hz
* - 8 Hz steps from 8 Hz to 512 Hz
* - 32 Hz steps from 32 Hz to 2048 Hz
* - Cannot generate a 0 % duty cycle.
* - Always produces low output if disabled.
* - Configuration isn't atomic. When changing polarity, duty cycle or period
* the data is taken immediately, counters not being affected, resulting in a
* behavior of the output pin that is neither the old nor the new state,
* rather something in between.
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pwm.h>
#include <linux/spi/spi.h>
#define MC33XS2410_GLB_CTRL 0x00
#define MC33XS2410_GLB_CTRL_MODE GENMASK(7, 6)
#define MC33XS2410_GLB_CTRL_MODE_NORMAL FIELD_PREP(MC33XS2410_GLB_CTRL_MODE, 1)
#define MC33XS2410_PWM_CTRL1 0x05
/* chan in { 1 ... 4 } */
#define MC33XS2410_PWM_CTRL1_POL_INV(chan) BIT((chan) + 1)
#define MC33XS2410_PWM_CTRL3 0x07
/* chan in { 1 ... 4 } */
#define MC33XS2410_PWM_CTRL3_EN(chan) BIT(4 + (chan) - 1)
/* chan in { 1 ... 4 } */
#define MC33XS2410_PWM_FREQ(chan) (0x08 + (chan) - 1)
#define MC33XS2410_PWM_FREQ_STEP GENMASK(7, 6)
#define MC33XS2410_PWM_FREQ_COUNT GENMASK(5, 0)
/* chan in { 1 ... 4 } */
#define MC33XS2410_PWM_DC(chan) (0x0c + (chan) - 1)
#define MC33XS2410_WDT 0x14
#define MC33XS2410_PWM_MIN_PERIOD 488282
/* step in { 0 ... 3 } */
#define MC33XS2410_PWM_MAX_PERIOD(step) (2000000000 >> (2 * (step)))
#define MC33XS2410_FRAME_IN_ADDR GENMASK(15, 8)
#define MC33XS2410_FRAME_IN_DATA GENMASK(7, 0)
#define MC33XS2410_FRAME_IN_ADDR_WR BIT(7)
#define MC33XS2410_FRAME_IN_DATA_RD BIT(7)
#define MC33XS2410_FRAME_OUT_DATA GENMASK(13, 0)
#define MC33XS2410_MAX_TRANSFERS 5
static int mc33xs2410_write_regs(struct spi_device *spi, u8 *reg, u8 *val,
unsigned int len)
{
u16 tx[MC33XS2410_MAX_TRANSFERS];
int i;
if (len > MC33XS2410_MAX_TRANSFERS)
return -EINVAL;
for (i = 0; i < len; i++)
tx[i] = FIELD_PREP(MC33XS2410_FRAME_IN_DATA, val[i]) |
FIELD_PREP(MC33XS2410_FRAME_IN_ADDR,
MC33XS2410_FRAME_IN_ADDR_WR | reg[i]);
return spi_write(spi, tx, len * 2);
}
static int mc33xs2410_read_regs(struct spi_device *spi, u8 *reg, u8 flag,
u16 *val, unsigned int len)
{
u16 tx[MC33XS2410_MAX_TRANSFERS];
u16 rx[MC33XS2410_MAX_TRANSFERS];
struct spi_transfer t = {
.tx_buf = tx,
.rx_buf = rx,
};
int i, ret;
len++;
if (len > MC33XS2410_MAX_TRANSFERS)
return -EINVAL;
t.len = len * 2;
for (i = 0; i < len - 1; i++)
tx[i] = FIELD_PREP(MC33XS2410_FRAME_IN_DATA, flag) |
FIELD_PREP(MC33XS2410_FRAME_IN_ADDR, reg[i]);
ret = spi_sync_transfer(spi, &t, 1);
if (ret < 0)
return ret;
for (i = 1; i < len; i++)
val[i - 1] = FIELD_GET(MC33XS2410_FRAME_OUT_DATA, rx[i]);
return 0;
}
static int mc33xs2410_write_reg(struct spi_device *spi, u8 reg, u8 val)
{
return mc33xs2410_write_regs(spi, ®, &val, 1);
}
static int mc33xs2410_read_reg(struct spi_device *spi, u8 reg, u16 *val, u8 flag)
{
return mc33xs2410_read_regs(spi, ®, flag, val, 1);
}
static int mc33xs2410_read_reg_ctrl(struct spi_device *spi, u8 reg, u16 *val)
{
return mc33xs2410_read_reg(spi, reg, val, MC33XS2410_FRAME_IN_DATA_RD);
}
static int mc33xs2410_modify_reg(struct spi_device *spi, u8 reg, u8 mask, u8 val)
{
u16 tmp;
int ret;
ret = mc33xs2410_read_reg_ctrl(spi, reg, &tmp);
if (ret < 0)
return ret;
tmp &= ~mask;
tmp |= val & mask;
return mc33xs2410_write_reg(spi, reg, tmp);
}
static u8 mc33xs2410_pwm_get_freq(u64 period)
{
u8 step, count;
/*
* Check which step [0 .. 3] is appropriate for the given period. The
* period ranges for the different step values overlap. Prefer big step
* values as these allow more finegrained period and duty cycle
* selection.
*/
switch (period) {
case MC33XS2410_PWM_MIN_PERIOD ... MC33XS2410_PWM_MAX_PERIOD(3):
step = 3;
break;
case MC33XS2410_PWM_MAX_PERIOD(3) + 1 ... MC33XS2410_PWM_MAX_PERIOD(2):
step = 2;
break;
case MC33XS2410_PWM_MAX_PERIOD(2) + 1 ... MC33XS2410_PWM_MAX_PERIOD(1):
step = 1;
break;
case MC33XS2410_PWM_MAX_PERIOD(1) + 1 ... MC33XS2410_PWM_MAX_PERIOD(0):
step = 0;
break;
}
/*
* Round up here because a higher count results in a higher frequency
* and so a smaller period.
*/
count = DIV_ROUND_UP((u32)MC33XS2410_PWM_MAX_PERIOD(step), (u32)period);
return FIELD_PREP(MC33XS2410_PWM_FREQ_STEP, step) |
FIELD_PREP(MC33XS2410_PWM_FREQ_COUNT, count - 1);
}
static u64 mc33xs2410_pwm_get_period(u8 reg)
{
u32 doubled_freq, code, doubled_steps;
/*
* steps:
* - 0 = 0.5Hz
* - 1 = 2Hz
* - 2 = 8Hz
* - 3 = 32Hz
* frequency = (code + 1) x steps.
*
* To avoid losing precision in case steps value is zero, scale the
* steps value for now by two and keep it in mind when calculating the
* period that the frequency had been doubled.
*/
doubled_steps = 1 << (FIELD_GET(MC33XS2410_PWM_FREQ_STEP, reg) * 2);
code = FIELD_GET(MC33XS2410_PWM_FREQ_COUNT, reg);
doubled_freq = (code + 1) * doubled_steps;
/* Convert frequency to period, considering the doubled frequency. */
return DIV_ROUND_UP(2 * NSEC_PER_SEC, doubled_freq);
}
/*
* The hardware cannot generate a 0% relative duty cycle for normal and inversed
* polarity. For normal polarity, the channel must be disabled, the device then
* emits a constant low signal.
* For inverted polarity, the channel must be enabled, the polarity must be set
* to normal and the relative duty cylce must be set to 100%. The device then
* emits a constant high signal.
*/
static int mc33xs2410_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct spi_device *spi = pwmchip_get_drvdata(chip);
u8 reg[4] = {
MC33XS2410_PWM_FREQ(pwm->hwpwm + 1),
MC33XS2410_PWM_DC(pwm->hwpwm + 1),
MC33XS2410_PWM_CTRL1,
MC33XS2410_PWM_CTRL3
};
u64 period, duty_cycle;
int ret, rel_dc;
u16 rd_val[2];
u8 wr_val[4];
u8 mask;
period = min(state->period, MC33XS2410_PWM_MAX_PERIOD(0));
if (period < MC33XS2410_PWM_MIN_PERIOD)
return -EINVAL;
ret = mc33xs2410_read_regs(spi, ®[2], MC33XS2410_FRAME_IN_DATA_RD, rd_val, 2);
if (ret < 0)
return ret;
/* Frequency */
wr_val[0] = mc33xs2410_pwm_get_freq(period);
/* Continue calculations with the possibly truncated period */
period = mc33xs2410_pwm_get_period(wr_val[0]);
/* Duty cycle */
duty_cycle = min(period, state->duty_cycle);
rel_dc = div64_u64(duty_cycle * 256, period) - 1;
if (rel_dc >= 0)
wr_val[1] = rel_dc;
else if (state->polarity == PWM_POLARITY_NORMAL)
wr_val[1] = 0;
else
wr_val[1] = 255;
/* Polarity */
mask = MC33XS2410_PWM_CTRL1_POL_INV(pwm->hwpwm + 1);
if (state->polarity == PWM_POLARITY_INVERSED && rel_dc >= 0)
wr_val[2] = rd_val[0] | mask;
else
wr_val[2] = rd_val[0] & ~mask;
/* Enable */
mask = MC33XS2410_PWM_CTRL3_EN(pwm->hwpwm + 1);
if (state->enabled &&
!(state->polarity == PWM_POLARITY_NORMAL && rel_dc < 0))
wr_val[3] = rd_val[1] | mask;
else
wr_val[3] = rd_val[1] & ~mask;
return mc33xs2410_write_regs(spi, reg, wr_val, 4);
}
static int mc33xs2410_pwm_get_state(struct pwm_chip *chip,
struct pwm_device *pwm,
struct pwm_state *state)
{
struct spi_device *spi = pwmchip_get_drvdata(chip);
u8 reg[4] = {
MC33XS2410_PWM_FREQ(pwm->hwpwm + 1),
MC33XS2410_PWM_DC(pwm->hwpwm + 1),
MC33XS2410_PWM_CTRL1,
MC33XS2410_PWM_CTRL3,
};
u16 val[4];
int ret;
ret = mc33xs2410_read_regs(spi, reg, MC33XS2410_FRAME_IN_DATA_RD, val,
ARRAY_SIZE(reg));
if (ret < 0)
return ret;
state->period = mc33xs2410_pwm_get_period(val[0]);
state->polarity = (val[2] & MC33XS2410_PWM_CTRL1_POL_INV(pwm->hwpwm + 1)) ?
PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
state->enabled = !!(val[3] & MC33XS2410_PWM_CTRL3_EN(pwm->hwpwm + 1));
state->duty_cycle = DIV_ROUND_UP_ULL((val[1] + 1) * state->period, 256);
return 0;
}
static const struct pwm_ops mc33xs2410_pwm_ops = {
.apply = mc33xs2410_pwm_apply,
.get_state = mc33xs2410_pwm_get_state,
};
static int mc33xs2410_reset(struct device *dev)
{
struct gpio_desc *reset_gpio;
reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR_OR_NULL(reset_gpio))
return PTR_ERR_OR_ZERO(reset_gpio);
/* Wake-up time */
fsleep(10000);
return 0;
}
static int mc33xs2410_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct pwm_chip *chip;
int ret;
chip = devm_pwmchip_alloc(dev, 4, 0);
if (IS_ERR(chip))
return PTR_ERR(chip);
spi->bits_per_word = 16;
spi->mode |= SPI_CS_WORD;
ret = spi_setup(spi);
if (ret < 0)
return ret;
pwmchip_set_drvdata(chip, spi);
chip->ops = &mc33xs2410_pwm_ops;
/*
* Deasserts the reset of the device. Shouldn't change the output signal
* if the device was setup prior to probing.
*/
ret = mc33xs2410_reset(dev);
if (ret)
return ret;
/*
* Disable watchdog and keep in mind that the watchdog won't trigger a
* reset of the machine when running into an timeout, instead the
* control over the outputs is handed over to the INx input logic
* signals of the device. Disabling it here just deactivates this
* feature until a proper solution is found.
*/
ret = mc33xs2410_write_reg(spi, MC33XS2410_WDT, 0x0);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to disable watchdog\n");
/* Transition to normal mode */
ret = mc33xs2410_modify_reg(spi, MC33XS2410_GLB_CTRL,
MC33XS2410_GLB_CTRL_MODE,
MC33XS2410_GLB_CTRL_MODE_NORMAL);
if (ret < 0)
return dev_err_probe(dev, ret,
"Failed to transition to normal mode\n");
ret = devm_pwmchip_add(dev, chip);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to add pwm chip\n");
return 0;
}
static const struct spi_device_id mc33xs2410_spi_id[] = {
{ "mc33xs2410" },
{ }
};
MODULE_DEVICE_TABLE(spi, mc33xs2410_spi_id);
static const struct of_device_id mc33xs2410_of_match[] = {
{ .compatible = "nxp,mc33xs2410" },
{ }
};
MODULE_DEVICE_TABLE(of, mc33xs2410_of_match);
static struct spi_driver mc33xs2410_driver = {
.driver = {
.name = "mc33xs2410-pwm",
.of_match_table = mc33xs2410_of_match,
},
.probe = mc33xs2410_probe,
.id_table = mc33xs2410_spi_id,
};
module_spi_driver(mc33xs2410_driver);
MODULE_DESCRIPTION("NXP MC33XS2410 high-side switch driver");
MODULE_AUTHOR("Dimitri Fedrau <dimitri.fedrau@liebherr.com>");
MODULE_LICENSE("GPL");
|