1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* An I2C driver for the Intersil ISL 12022
*
* Author: Roman Fietze <roman.fietze@telemotive.de>
*
* Based on the Philips PCF8563 RTC
* by Alessandro Zummo <a.zummo@towertech.it>.
*/
#include <linux/bcd.h>
#include <linux/bitfield.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
/* RTC - Real time clock registers */
#define ISL12022_REG_SC 0x00
#define ISL12022_REG_MN 0x01
#define ISL12022_REG_HR 0x02
#define ISL12022_REG_DT 0x03
#define ISL12022_REG_MO 0x04
#define ISL12022_REG_YR 0x05
#define ISL12022_REG_DW 0x06
/* CSR - Control and status registers */
#define ISL12022_REG_SR 0x07
#define ISL12022_REG_INT 0x08
#define ISL12022_REG_PWR_VBAT 0x0a
#define ISL12022_REG_BETA 0x0d
/* ALARM - Alarm registers */
#define ISL12022_REG_SCA0 0x10
#define ISL12022_REG_MNA0 0x11
#define ISL12022_REG_HRA0 0x12
#define ISL12022_REG_DTA0 0x13
#define ISL12022_REG_MOA0 0x14
#define ISL12022_REG_DWA0 0x15
#define ISL12022_ALARM ISL12022_REG_SCA0
#define ISL12022_ALARM_LEN (ISL12022_REG_DWA0 - ISL12022_REG_SCA0 + 1)
/* TEMP - Temperature sensor registers */
#define ISL12022_REG_TEMP_L 0x28
/* ISL register bits */
#define ISL12022_HR_MIL (1 << 7) /* military or 24 hour time */
#define ISL12022_SR_ALM (1 << 4)
#define ISL12022_SR_LBAT85 (1 << 2)
#define ISL12022_SR_LBAT75 (1 << 1)
#define ISL12022_INT_ARST (1 << 7)
#define ISL12022_INT_WRTC (1 << 6)
#define ISL12022_INT_IM (1 << 5)
#define ISL12022_INT_FOBATB (1 << 4)
#define ISL12022_INT_FO_MASK GENMASK(3, 0)
#define ISL12022_INT_FO_OFF 0x0
#define ISL12022_INT_FO_32K 0x1
#define ISL12022_REG_VB85_MASK GENMASK(5, 3)
#define ISL12022_REG_VB75_MASK GENMASK(2, 0)
#define ISL12022_ALARM_ENABLE (1 << 7) /* for all ALARM registers */
#define ISL12022_BETA_TSE (1 << 7)
static struct i2c_driver isl12022_driver;
struct isl12022 {
struct rtc_device *rtc;
struct regmap *regmap;
int irq;
bool irq_enabled;
};
static umode_t isl12022_hwmon_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
if (type == hwmon_temp && attr == hwmon_temp_input)
return 0444;
return 0;
}
/*
* A user-initiated temperature conversion is not started by this function,
* so the temperature is updated once every ~60 seconds.
*/
static int isl12022_hwmon_read_temp(struct device *dev, long *mC)
{
struct regmap *regmap = dev_get_drvdata(dev);
int temp, ret;
__le16 buf;
ret = regmap_bulk_read(regmap, ISL12022_REG_TEMP_L, &buf, sizeof(buf));
if (ret)
return ret;
/*
* Temperature is represented as a 10-bit number, unit half-Kelvins.
*/
temp = le16_to_cpu(buf);
temp *= 500;
temp -= 273000;
*mC = temp;
return 0;
}
static int isl12022_hwmon_read(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
if (type == hwmon_temp && attr == hwmon_temp_input)
return isl12022_hwmon_read_temp(dev, val);
return -EOPNOTSUPP;
}
static const struct hwmon_channel_info * const isl12022_hwmon_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
NULL
};
static const struct hwmon_ops isl12022_hwmon_ops = {
.is_visible = isl12022_hwmon_is_visible,
.read = isl12022_hwmon_read,
};
static const struct hwmon_chip_info isl12022_hwmon_chip_info = {
.ops = &isl12022_hwmon_ops,
.info = isl12022_hwmon_info,
};
static void isl12022_hwmon_register(struct device *dev)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
struct device *hwmon;
int ret;
if (!IS_REACHABLE(CONFIG_HWMON))
return;
ret = regmap_update_bits(regmap, ISL12022_REG_BETA,
ISL12022_BETA_TSE, ISL12022_BETA_TSE);
if (ret) {
dev_warn(dev, "unable to enable temperature sensor\n");
return;
}
hwmon = devm_hwmon_device_register_with_info(dev, "isl12022", regmap,
&isl12022_hwmon_chip_info,
NULL);
if (IS_ERR(hwmon))
dev_warn(dev, "unable to register hwmon device: %pe\n", hwmon);
}
/*
* In the routines that deal directly with the isl12022 hardware, we use
* rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
*/
static int isl12022_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u8 buf[ISL12022_REG_INT + 1];
int ret;
ret = regmap_bulk_read(regmap, ISL12022_REG_SC, buf, sizeof(buf));
if (ret)
return ret;
dev_dbg(dev,
"raw data is sec=%02x, min=%02x, hr=%02x, mday=%02x, mon=%02x, year=%02x, wday=%02x, sr=%02x, int=%02x",
buf[ISL12022_REG_SC],
buf[ISL12022_REG_MN],
buf[ISL12022_REG_HR],
buf[ISL12022_REG_DT],
buf[ISL12022_REG_MO],
buf[ISL12022_REG_YR],
buf[ISL12022_REG_DW],
buf[ISL12022_REG_SR],
buf[ISL12022_REG_INT]);
tm->tm_sec = bcd2bin(buf[ISL12022_REG_SC] & 0x7F);
tm->tm_min = bcd2bin(buf[ISL12022_REG_MN] & 0x7F);
tm->tm_hour = bcd2bin(buf[ISL12022_REG_HR] & 0x3F);
tm->tm_mday = bcd2bin(buf[ISL12022_REG_DT] & 0x3F);
tm->tm_wday = buf[ISL12022_REG_DW] & 0x07;
tm->tm_mon = bcd2bin(buf[ISL12022_REG_MO] & 0x1F) - 1;
tm->tm_year = bcd2bin(buf[ISL12022_REG_YR]) + 100;
dev_dbg(dev, "%s: %ptR\n", __func__, tm);
return 0;
}
static int isl12022_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
int ret;
u8 buf[ISL12022_REG_DW + 1];
dev_dbg(dev, "%s: %ptR\n", __func__, tm);
/* Ensure the write enable bit is set. */
ret = regmap_update_bits(regmap, ISL12022_REG_INT,
ISL12022_INT_WRTC, ISL12022_INT_WRTC);
if (ret)
return ret;
/* hours, minutes and seconds */
buf[ISL12022_REG_SC] = bin2bcd(tm->tm_sec);
buf[ISL12022_REG_MN] = bin2bcd(tm->tm_min);
buf[ISL12022_REG_HR] = bin2bcd(tm->tm_hour) | ISL12022_HR_MIL;
buf[ISL12022_REG_DT] = bin2bcd(tm->tm_mday);
/* month, 1 - 12 */
buf[ISL12022_REG_MO] = bin2bcd(tm->tm_mon + 1);
/* year and century */
buf[ISL12022_REG_YR] = bin2bcd(tm->tm_year % 100);
buf[ISL12022_REG_DW] = tm->tm_wday & 0x07;
return regmap_bulk_write(regmap, ISL12022_REG_SC, buf, sizeof(buf));
}
static int isl12022_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct rtc_time *tm = &alarm->time;
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u8 buf[ISL12022_ALARM_LEN];
unsigned int i, yr;
int ret;
ret = regmap_bulk_read(regmap, ISL12022_ALARM, buf, sizeof(buf));
if (ret) {
dev_dbg(dev, "%s: reading ALARM registers failed\n",
__func__);
return ret;
}
/* The alarm doesn't store the year so get it from the rtc section */
ret = regmap_read(regmap, ISL12022_REG_YR, &yr);
if (ret) {
dev_dbg(dev, "%s: reading YR register failed\n", __func__);
return ret;
}
dev_dbg(dev,
"%s: sc=%02x, mn=%02x, hr=%02x, dt=%02x, mo=%02x, dw=%02x yr=%u\n",
__func__, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], yr);
tm->tm_sec = bcd2bin(buf[ISL12022_REG_SCA0 - ISL12022_ALARM] & 0x7F);
tm->tm_min = bcd2bin(buf[ISL12022_REG_MNA0 - ISL12022_ALARM] & 0x7F);
tm->tm_hour = bcd2bin(buf[ISL12022_REG_HRA0 - ISL12022_ALARM] & 0x3F);
tm->tm_mday = bcd2bin(buf[ISL12022_REG_DTA0 - ISL12022_ALARM] & 0x3F);
tm->tm_mon = bcd2bin(buf[ISL12022_REG_MOA0 - ISL12022_ALARM] & 0x1F) - 1;
tm->tm_wday = buf[ISL12022_REG_DWA0 - ISL12022_ALARM] & 0x07;
tm->tm_year = bcd2bin(yr) + 100;
for (i = 0; i < ISL12022_ALARM_LEN; i++) {
if (buf[i] & ISL12022_ALARM_ENABLE) {
alarm->enabled = 1;
break;
}
}
dev_dbg(dev, "%s: %ptR\n", __func__, tm);
return 0;
}
static int isl12022_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct rtc_time *alarm_tm = &alarm->time;
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u8 regs[ISL12022_ALARM_LEN] = { 0, };
struct rtc_time rtc_tm;
int ret, enable, dw;
ret = isl12022_rtc_read_time(dev, &rtc_tm);
if (ret)
return ret;
/* If the alarm time is before the current time disable the alarm */
if (!alarm->enabled || rtc_tm_sub(alarm_tm, &rtc_tm) <= 0)
enable = 0;
else
enable = ISL12022_ALARM_ENABLE;
/*
* Set non-matching day of the week to safeguard against early false
* matching while setting all the alarm registers (this rtc lacks a
* general alarm/irq enable/disable bit).
*/
ret = regmap_read(regmap, ISL12022_REG_DW, &dw);
if (ret) {
dev_dbg(dev, "%s: reading DW failed\n", __func__);
return ret;
}
/* ~4 days into the future should be enough to avoid match */
dw = ((dw + 4) % 7) | ISL12022_ALARM_ENABLE;
ret = regmap_write(regmap, ISL12022_REG_DWA0, dw);
if (ret) {
dev_dbg(dev, "%s: writing DWA0 failed\n", __func__);
return ret;
}
/* Program the alarm and enable it for each setting */
regs[ISL12022_REG_SCA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_sec) | enable;
regs[ISL12022_REG_MNA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_min) | enable;
regs[ISL12022_REG_HRA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_hour) | enable;
regs[ISL12022_REG_DTA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mday) | enable;
regs[ISL12022_REG_MOA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mon + 1) | enable;
regs[ISL12022_REG_DWA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_wday & 7) | enable;
/* write ALARM registers */
ret = regmap_bulk_write(regmap, ISL12022_ALARM, ®s, sizeof(regs));
if (ret) {
dev_dbg(dev, "%s: writing ALARM registers failed\n", __func__);
return ret;
}
return 0;
}
static irqreturn_t isl12022_rtc_interrupt(int irq, void *data)
{
struct isl12022 *isl12022 = data;
struct rtc_device *rtc = isl12022->rtc;
struct device *dev = &rtc->dev;
struct regmap *regmap = isl12022->regmap;
u32 val = 0;
unsigned long events = 0;
int ret;
ret = regmap_read(regmap, ISL12022_REG_SR, &val);
if (ret) {
dev_dbg(dev, "%s: reading SR failed\n", __func__);
return IRQ_HANDLED;
}
if (val & ISL12022_SR_ALM)
events |= RTC_IRQF | RTC_AF;
if (events & RTC_AF)
dev_dbg(dev, "alarm!\n");
if (!events)
return IRQ_NONE;
rtc_update_irq(rtc, 1, events);
return IRQ_HANDLED;
}
static int isl12022_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
/* Make sure enabled is 0 or 1 */
enabled = !!enabled;
if (isl12022->irq_enabled == enabled)
return 0;
if (enabled)
enable_irq(isl12022->irq);
else
disable_irq(isl12022->irq);
isl12022->irq_enabled = enabled;
return 0;
}
static int isl12022_setup_irq(struct device *dev, int irq)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
unsigned int reg_mask, reg_val;
u8 buf[ISL12022_ALARM_LEN] = { 0, };
int ret;
/* Clear and disable all alarm registers */
ret = regmap_bulk_write(regmap, ISL12022_ALARM, buf, sizeof(buf));
if (ret)
return ret;
/*
* Enable automatic reset of ALM bit and enable single event interrupt
* mode.
*/
reg_mask = ISL12022_INT_ARST | ISL12022_INT_IM | ISL12022_INT_FO_MASK;
reg_val = ISL12022_INT_ARST | ISL12022_INT_FO_OFF;
ret = regmap_write_bits(regmap, ISL12022_REG_INT,
reg_mask, reg_val);
if (ret)
return ret;
ret = devm_request_threaded_irq(dev, irq, NULL,
isl12022_rtc_interrupt,
IRQF_SHARED | IRQF_ONESHOT,
isl12022_driver.driver.name,
isl12022);
if (ret)
return dev_err_probe(dev, ret, "Unable to request irq %d\n", irq);
isl12022->irq = irq;
return 0;
}
static int isl12022_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u32 user, val;
int ret;
switch (cmd) {
case RTC_VL_READ:
ret = regmap_read(regmap, ISL12022_REG_SR, &val);
if (ret)
return ret;
user = 0;
if (val & ISL12022_SR_LBAT85)
user |= RTC_VL_BACKUP_LOW;
if (val & ISL12022_SR_LBAT75)
user |= RTC_VL_BACKUP_EMPTY;
return put_user(user, (u32 __user *)arg);
default:
return -ENOIOCTLCMD;
}
}
static const struct rtc_class_ops isl12022_rtc_ops = {
.ioctl = isl12022_rtc_ioctl,
.read_time = isl12022_rtc_read_time,
.set_time = isl12022_rtc_set_time,
.read_alarm = isl12022_rtc_read_alarm,
.set_alarm = isl12022_rtc_set_alarm,
.alarm_irq_enable = isl12022_rtc_alarm_irq_enable,
};
static const struct regmap_config regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.use_single_write = true,
};
static int isl12022_register_clock(struct device *dev)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
struct clk_hw *hw;
int ret;
if (!device_property_present(dev, "#clock-cells")) {
/*
* Disabling the F_OUT pin reduces the power
* consumption in battery mode by ~25%.
*/
regmap_update_bits(regmap, ISL12022_REG_INT, ISL12022_INT_FO_MASK,
ISL12022_INT_FO_OFF);
return 0;
}
if (!IS_ENABLED(CONFIG_COMMON_CLK))
return 0;
/*
* For now, only support a fixed clock of 32768Hz (the reset default).
*/
ret = regmap_update_bits(regmap, ISL12022_REG_INT,
ISL12022_INT_FO_MASK, ISL12022_INT_FO_32K);
if (ret)
return ret;
hw = devm_clk_hw_register_fixed_rate(dev, "isl12022", NULL, 0, 32768);
if (IS_ERR(hw))
return PTR_ERR(hw);
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
}
static const u32 trip_levels[2][7] = {
{ 2125000, 2295000, 2550000, 2805000, 3060000, 4250000, 4675000 },
{ 1875000, 2025000, 2250000, 2475000, 2700000, 3750000, 4125000 },
};
static void isl12022_set_trip_levels(struct device *dev)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u32 levels[2] = {0, 0};
int ret, i, j, x[2];
u8 val, mask;
device_property_read_u32_array(dev, "isil,battery-trip-levels-microvolt",
levels, 2);
for (i = 0; i < 2; i++) {
for (j = 0; j < ARRAY_SIZE(trip_levels[i]) - 1; j++) {
if (levels[i] <= trip_levels[i][j])
break;
}
x[i] = j;
}
val = FIELD_PREP(ISL12022_REG_VB85_MASK, x[0]) |
FIELD_PREP(ISL12022_REG_VB75_MASK, x[1]);
mask = ISL12022_REG_VB85_MASK | ISL12022_REG_VB75_MASK;
ret = regmap_update_bits(regmap, ISL12022_REG_PWR_VBAT, mask, val);
if (ret)
dev_warn(dev, "unable to set battery alarm levels: %d\n", ret);
/*
* Force a write of the TSE bit in the BETA register, in order
* to trigger an update of the LBAT75 and LBAT85 bits in the
* status register. In battery backup mode, those bits have
* another meaning, so without this, they may contain stale
* values for up to a minute after power-on.
*/
regmap_write_bits(regmap, ISL12022_REG_BETA,
ISL12022_BETA_TSE, ISL12022_BETA_TSE);
}
static int isl12022_probe(struct i2c_client *client)
{
struct isl12022 *isl12022;
struct rtc_device *rtc;
struct regmap *regmap;
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return -ENODEV;
/* Allocate driver state */
isl12022 = devm_kzalloc(&client->dev, sizeof(*isl12022), GFP_KERNEL);
if (!isl12022)
return -ENOMEM;
regmap = devm_regmap_init_i2c(client, ®map_config);
if (IS_ERR(regmap))
return dev_err_probe(&client->dev, PTR_ERR(regmap), "regmap allocation failed\n");
isl12022->regmap = regmap;
dev_set_drvdata(&client->dev, isl12022);
ret = isl12022_register_clock(&client->dev);
if (ret)
return ret;
isl12022_set_trip_levels(&client->dev);
isl12022_hwmon_register(&client->dev);
rtc = devm_rtc_allocate_device(&client->dev);
if (IS_ERR(rtc))
return PTR_ERR(rtc);
isl12022->rtc = rtc;
rtc->ops = &isl12022_rtc_ops;
rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
rtc->range_max = RTC_TIMESTAMP_END_2099;
if (client->irq > 0) {
ret = isl12022_setup_irq(&client->dev, client->irq);
if (ret)
return ret;
} else {
clear_bit(RTC_FEATURE_ALARM, rtc->features);
}
return devm_rtc_register_device(rtc);
}
static const struct of_device_id isl12022_dt_match[] = {
{ .compatible = "isl,isl12022" }, /* for backward compat., don't use */
{ .compatible = "isil,isl12022" },
{ },
};
MODULE_DEVICE_TABLE(of, isl12022_dt_match);
static const struct i2c_device_id isl12022_id[] = {
{ "isl12022" },
{ }
};
MODULE_DEVICE_TABLE(i2c, isl12022_id);
static struct i2c_driver isl12022_driver = {
.driver = {
.name = "rtc-isl12022",
.of_match_table = isl12022_dt_match,
},
.probe = isl12022_probe,
.id_table = isl12022_id,
};
module_i2c_driver(isl12022_driver);
MODULE_AUTHOR("roman.fietze@telemotive.de");
MODULE_DESCRIPTION("ISL 12022 RTC driver");
MODULE_LICENSE("GPL");
|