1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
* Copyright (C) 2022 Christoph Hellwig.
*/
#include <linux/bio.h>
#include "bio.h"
#include "ctree.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
#include "dev-replace.h"
#include "zoned.h"
#include "file-item.h"
#include "raid-stripe-tree.h"
static struct bio_set btrfs_bioset;
static struct bio_set btrfs_clone_bioset;
static struct bio_set btrfs_repair_bioset;
static mempool_t btrfs_failed_bio_pool;
struct btrfs_failed_bio {
struct btrfs_bio *bbio;
int num_copies;
atomic_t repair_count;
};
/* Is this a data path I/O that needs storage layer checksum and repair? */
static inline bool is_data_bbio(struct btrfs_bio *bbio)
{
return bbio->inode && is_data_inode(bbio->inode);
}
static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
{
return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
}
/*
* Initialize a btrfs_bio structure. This skips the embedded bio itself as it
* is already initialized by the block layer.
*/
void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
btrfs_bio_end_io_t end_io, void *private)
{
memset(bbio, 0, offsetof(struct btrfs_bio, bio));
bbio->fs_info = fs_info;
bbio->end_io = end_io;
bbio->private = private;
atomic_set(&bbio->pending_ios, 1);
WRITE_ONCE(bbio->status, BLK_STS_OK);
}
/*
* Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
* btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
*
* Just like the underlying bio_alloc_bioset it will not fail as it is backed by
* a mempool.
*/
struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
struct btrfs_fs_info *fs_info,
btrfs_bio_end_io_t end_io, void *private)
{
struct btrfs_bio *bbio;
struct bio *bio;
bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio, fs_info, end_io, private);
return bbio;
}
static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
struct btrfs_bio *orig_bbio,
u64 map_length)
{
struct btrfs_bio *bbio;
struct bio *bio;
bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
&btrfs_clone_bioset);
if (IS_ERR(bio))
return ERR_CAST(bio);
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
bbio->inode = orig_bbio->inode;
bbio->file_offset = orig_bbio->file_offset;
orig_bbio->file_offset += map_length;
if (bbio_has_ordered_extent(bbio)) {
refcount_inc(&orig_bbio->ordered->refs);
bbio->ordered = orig_bbio->ordered;
}
atomic_inc(&orig_bbio->pending_ios);
return bbio;
}
void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
{
bbio->bio.bi_status = status;
if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
struct btrfs_bio *orig_bbio = bbio->private;
/* Free bio that was never submitted to the underlying device. */
if (bbio_has_ordered_extent(bbio))
btrfs_put_ordered_extent(bbio->ordered);
bio_put(&bbio->bio);
bbio = orig_bbio;
}
/*
* At this point, bbio always points to the original btrfs_bio. Save
* the first error in it.
*/
if (status != BLK_STS_OK)
cmpxchg(&bbio->status, BLK_STS_OK, status);
if (atomic_dec_and_test(&bbio->pending_ios)) {
/* Load split bio's error which might be set above. */
if (status == BLK_STS_OK)
bbio->bio.bi_status = READ_ONCE(bbio->status);
if (bbio_has_ordered_extent(bbio)) {
struct btrfs_ordered_extent *ordered = bbio->ordered;
bbio->end_io(bbio);
btrfs_put_ordered_extent(ordered);
} else {
bbio->end_io(bbio);
}
}
}
static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
if (cur_mirror == fbio->num_copies)
return cur_mirror + 1 - fbio->num_copies;
return cur_mirror + 1;
}
static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
if (cur_mirror == 1)
return fbio->num_copies;
return cur_mirror - 1;
}
static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
{
if (atomic_dec_and_test(&fbio->repair_count)) {
btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
mempool_free(fbio, &btrfs_failed_bio_pool);
}
}
static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
struct btrfs_device *dev)
{
struct btrfs_failed_bio *fbio = repair_bbio->private;
struct btrfs_inode *inode = repair_bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
int mirror = repair_bbio->mirror_num;
/*
* We can only trigger this for data bio, which doesn't support larger
* folios yet.
*/
ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
if (repair_bbio->bio.bi_status ||
!btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
mirror = next_repair_mirror(fbio, mirror);
if (mirror == fbio->bbio->mirror_num) {
btrfs_debug(fs_info, "no mirror left");
fbio->bbio->bio.bi_status = BLK_STS_IOERR;
goto done;
}
btrfs_submit_bbio(repair_bbio, mirror);
return;
}
do {
mirror = prev_repair_mirror(fbio, mirror);
btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
repair_bbio->file_offset, fs_info->sectorsize,
repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
bvec_phys(bv), mirror);
} while (mirror != fbio->bbio->mirror_num);
done:
btrfs_repair_done(fbio);
bio_put(&repair_bbio->bio);
}
/*
* Try to kick off a repair read to the next available mirror for a bad sector.
*
* This primarily tries to recover good data to serve the actual read request,
* but also tries to write the good data back to the bad mirror(s) when a
* read succeeded to restore the redundancy.
*/
static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
u32 bio_offset,
struct bio_vec *bv,
struct btrfs_failed_bio *fbio)
{
struct btrfs_inode *inode = failed_bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
const u32 sectorsize = fs_info->sectorsize;
const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
struct btrfs_bio *repair_bbio;
struct bio *repair_bio;
int num_copies;
int mirror;
btrfs_debug(fs_info, "repair read error: read error at %llu",
failed_bbio->file_offset + bio_offset);
num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
if (num_copies == 1) {
btrfs_debug(fs_info, "no copy to repair from");
failed_bbio->bio.bi_status = BLK_STS_IOERR;
return fbio;
}
if (!fbio) {
fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
fbio->bbio = failed_bbio;
fbio->num_copies = num_copies;
atomic_set(&fbio->repair_count, 1);
}
atomic_inc(&fbio->repair_count);
repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
&btrfs_repair_bioset);
repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
repair_bbio = btrfs_bio(repair_bio);
btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
repair_bbio->inode = failed_bbio->inode;
repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
btrfs_submit_bbio(repair_bbio, mirror);
return fbio;
}
static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
{
struct btrfs_inode *inode = bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
u32 sectorsize = fs_info->sectorsize;
struct bvec_iter *iter = &bbio->saved_iter;
blk_status_t status = bbio->bio.bi_status;
struct btrfs_failed_bio *fbio = NULL;
u32 offset = 0;
/* Read-repair requires the inode field to be set by the submitter. */
ASSERT(inode);
/*
* Hand off repair bios to the repair code as there is no upper level
* submitter for them.
*/
if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
btrfs_end_repair_bio(bbio, dev);
return;
}
/* Clear the I/O error. A failed repair will reset it. */
bbio->bio.bi_status = BLK_STS_OK;
while (iter->bi_size) {
struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
bv.bv_len = min(bv.bv_len, sectorsize);
if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
fbio = repair_one_sector(bbio, offset, &bv, fbio);
bio_advance_iter_single(&bbio->bio, iter, sectorsize);
offset += sectorsize;
}
if (bbio->csum != bbio->csum_inline)
kfree(bbio->csum);
if (fbio)
btrfs_repair_done(fbio);
else
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
}
static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
{
if (!dev || !dev->bdev)
return;
if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
return;
if (btrfs_op(bio) == BTRFS_MAP_WRITE)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
else if (!(bio->bi_opf & REQ_RAHEAD))
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
if (bio->bi_opf & REQ_PREFLUSH)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
}
static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
struct bio *bio)
{
if (bio->bi_opf & REQ_META)
return fs_info->endio_meta_workers;
return fs_info->endio_workers;
}
static void btrfs_end_bio_work(struct work_struct *work)
{
struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
/* Metadata reads are checked and repaired by the submitter. */
if (is_data_bbio(bbio))
btrfs_check_read_bio(bbio, bbio->bio.bi_private);
else
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
}
static void btrfs_simple_end_io(struct bio *bio)
{
struct btrfs_bio *bbio = btrfs_bio(bio);
struct btrfs_device *dev = bio->bi_private;
struct btrfs_fs_info *fs_info = bbio->fs_info;
btrfs_bio_counter_dec(fs_info);
if (bio->bi_status)
btrfs_log_dev_io_error(bio, dev);
if (bio_op(bio) == REQ_OP_READ) {
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
} else {
if (bio_is_zone_append(bio) && !bio->bi_status)
btrfs_record_physical_zoned(bbio);
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
}
}
static void btrfs_raid56_end_io(struct bio *bio)
{
struct btrfs_io_context *bioc = bio->bi_private;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(bioc->fs_info);
bbio->mirror_num = bioc->mirror_num;
if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
btrfs_check_read_bio(bbio, NULL);
else
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
btrfs_put_bioc(bioc);
}
static void btrfs_orig_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
struct btrfs_io_context *bioc = stripe->bioc;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(bioc->fs_info);
if (bio->bi_status) {
atomic_inc(&bioc->error);
btrfs_log_dev_io_error(bio, stripe->dev);
}
/*
* Only send an error to the higher layers if it is beyond the tolerance
* threshold.
*/
if (atomic_read(&bioc->error) > bioc->max_errors)
bio->bi_status = BLK_STS_IOERR;
else
bio->bi_status = BLK_STS_OK;
if (bio_is_zone_append(bio) && !bio->bi_status)
stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
btrfs_put_bioc(bioc);
}
static void btrfs_clone_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
if (bio->bi_status) {
atomic_inc(&stripe->bioc->error);
btrfs_log_dev_io_error(bio, stripe->dev);
} else if (bio_is_zone_append(bio)) {
stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
}
/* Pass on control to the original bio this one was cloned from */
bio_endio(stripe->bioc->orig_bio);
bio_put(bio);
}
static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
{
if (!dev || !dev->bdev ||
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
(btrfs_op(bio) == BTRFS_MAP_WRITE &&
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
bio_io_error(bio);
return;
}
bio_set_dev(bio, dev->bdev);
/*
* For zone append writing, bi_sector must point the beginning of the
* zone
*/
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
u64 zone_start = round_down(physical, dev->fs_info->zone_size);
ASSERT(btrfs_dev_is_sequential(dev, physical));
bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
}
btrfs_debug_in_rcu(dev->fs_info,
"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
dev->devid, bio->bi_iter.bi_size);
/*
* Track reads if tracking is enabled; ignore I/O operations before the
* filesystem is fully initialized.
*/
if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info)
percpu_counter_add(&dev->fs_info->stats_read_blocks,
bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits);
if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
blkcg_punt_bio_submit(bio);
else
submit_bio(bio);
}
static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
{
struct bio *orig_bio = bioc->orig_bio, *bio;
ASSERT(bio_op(orig_bio) != REQ_OP_READ);
/* Reuse the bio embedded into the btrfs_bio for the last mirror */
if (dev_nr == bioc->num_stripes - 1) {
bio = orig_bio;
bio->bi_end_io = btrfs_orig_write_end_io;
} else {
bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
bio_inc_remaining(orig_bio);
bio->bi_end_io = btrfs_clone_write_end_io;
}
bio->bi_private = &bioc->stripes[dev_nr];
bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
bioc->stripes[dev_nr].bioc = bioc;
bioc->size = bio->bi_iter.bi_size;
btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
}
static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap, int mirror_num)
{
if (!bioc) {
/* Single mirror read/write fast path. */
btrfs_bio(bio)->mirror_num = mirror_num;
bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
if (bio_op(bio) != REQ_OP_READ)
btrfs_bio(bio)->orig_physical = smap->physical;
bio->bi_private = smap->dev;
bio->bi_end_io = btrfs_simple_end_io;
btrfs_submit_dev_bio(smap->dev, bio);
} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
/* Parity RAID write or read recovery. */
bio->bi_private = bioc;
bio->bi_end_io = btrfs_raid56_end_io;
if (bio_op(bio) == REQ_OP_READ)
raid56_parity_recover(bio, bioc, mirror_num);
else
raid56_parity_write(bio, bioc);
} else {
/* Write to multiple mirrors. */
int total_devs = bioc->num_stripes;
bioc->orig_bio = bio;
for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
btrfs_submit_mirrored_bio(bioc, dev_nr);
}
}
static int btrfs_bio_csum(struct btrfs_bio *bbio)
{
if (bbio->bio.bi_opf & REQ_META)
return btree_csum_one_bio(bbio);
return btrfs_csum_one_bio(bbio);
}
/*
* Async submit bios are used to offload expensive checksumming onto the worker
* threads.
*/
struct async_submit_bio {
struct btrfs_bio *bbio;
struct btrfs_io_context *bioc;
struct btrfs_io_stripe smap;
int mirror_num;
struct btrfs_work work;
};
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the btree.
*/
static void run_one_async_start(struct btrfs_work *work)
{
struct async_submit_bio *async =
container_of(work, struct async_submit_bio, work);
int ret;
ret = btrfs_bio_csum(async->bbio);
if (ret)
async->bbio->bio.bi_status = errno_to_blk_status(ret);
}
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the tree.
*
* If called with @do_free == true, then it will free the work struct.
*/
static void run_one_async_done(struct btrfs_work *work, bool do_free)
{
struct async_submit_bio *async =
container_of(work, struct async_submit_bio, work);
struct bio *bio = &async->bbio->bio;
if (do_free) {
kfree(container_of(work, struct async_submit_bio, work));
return;
}
/* If an error occurred we just want to clean up the bio and move on. */
if (bio->bi_status) {
btrfs_bio_end_io(async->bbio, bio->bi_status);
return;
}
/*
* All of the bios that pass through here are from async helpers.
* Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
* context. This changes nothing when cgroups aren't in use.
*/
bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
}
static bool should_async_write(struct btrfs_bio *bbio)
{
bool auto_csum_mode = true;
#ifdef CONFIG_BTRFS_EXPERIMENTAL
struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
return false;
auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
#endif
/* Submit synchronously if the checksum implementation is fast. */
if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
return false;
/*
* Try to defer the submission to a workqueue to parallelize the
* checksum calculation unless the I/O is issued synchronously.
*/
if (op_is_sync(bbio->bio.bi_opf))
return false;
/* Zoned devices require I/O to be submitted in order. */
if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
return false;
return true;
}
/*
* Submit bio to an async queue.
*
* Return true if the work has been successfully submitted, else false.
*/
static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap, int mirror_num)
{
struct btrfs_fs_info *fs_info = bbio->fs_info;
struct async_submit_bio *async;
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return false;
async->bbio = bbio;
async->bioc = bioc;
async->smap = *smap;
async->mirror_num = mirror_num;
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
btrfs_queue_work(fs_info->workers, &async->work);
return true;
}
static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
{
unsigned int nr_segs;
int sector_offset;
map_length = min(map_length, bbio->fs_info->max_zone_append_size);
sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
&nr_segs, map_length);
if (sector_offset) {
/*
* bio_split_rw_at() could split at a size smaller than our
* sectorsize and thus cause unaligned I/Os. Fix that by
* always rounding down to the nearest boundary.
*/
return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize);
}
return map_length;
}
static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
{
struct btrfs_inode *inode = bbio->inode;
struct btrfs_fs_info *fs_info = bbio->fs_info;
struct bio *bio = &bbio->bio;
u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
u64 length = bio->bi_iter.bi_size;
u64 map_length = length;
bool use_append = btrfs_use_zone_append(bbio);
struct btrfs_io_context *bioc = NULL;
struct btrfs_io_stripe smap;
blk_status_t status;
int ret;
if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
smap.rst_search_commit_root = true;
else
smap.rst_search_commit_root = false;
btrfs_bio_counter_inc_blocked(fs_info);
ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
&bioc, &smap, &mirror_num);
if (ret) {
status = errno_to_blk_status(ret);
btrfs_bio_counter_dec(fs_info);
goto end_bbio;
}
map_length = min(map_length, length);
if (use_append)
map_length = btrfs_append_map_length(bbio, map_length);
if (map_length < length) {
struct btrfs_bio *split;
split = btrfs_split_bio(fs_info, bbio, map_length);
if (IS_ERR(split)) {
status = errno_to_blk_status(PTR_ERR(split));
btrfs_bio_counter_dec(fs_info);
goto end_bbio;
}
bbio = split;
bio = &bbio->bio;
}
/*
* Save the iter for the end_io handler and preload the checksums for
* data reads.
*/
if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
bbio->saved_iter = bio->bi_iter;
ret = btrfs_lookup_bio_sums(bbio);
status = errno_to_blk_status(ret);
if (status)
goto fail;
}
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
if (use_append) {
bio->bi_opf &= ~REQ_OP_WRITE;
bio->bi_opf |= REQ_OP_ZONE_APPEND;
}
if (is_data_bbio(bbio) && bioc && bioc->use_rst) {
/*
* No locking for the list update, as we only add to
* the list in the I/O submission path, and list
* iteration only happens in the completion path, which
* can't happen until after the last submission.
*/
btrfs_get_bioc(bioc);
list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
}
/*
* Csum items for reloc roots have already been cloned at this
* point, so they are handled as part of the no-checksum case.
*/
if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
!test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
!btrfs_is_data_reloc_root(inode->root)) {
if (should_async_write(bbio) &&
btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
goto done;
ret = btrfs_bio_csum(bbio);
status = errno_to_blk_status(ret);
if (status)
goto fail;
} else if (use_append ||
(btrfs_is_zoned(fs_info) && inode &&
inode->flags & BTRFS_INODE_NODATASUM)) {
ret = btrfs_alloc_dummy_sum(bbio);
status = errno_to_blk_status(ret);
if (status)
goto fail;
}
}
btrfs_submit_bio(bio, bioc, &smap, mirror_num);
done:
return map_length == length;
fail:
btrfs_bio_counter_dec(fs_info);
/*
* We have split the original bbio, now we have to end both the current
* @bbio and remaining one, as the remaining one will never be submitted.
*/
if (map_length < length) {
struct btrfs_bio *remaining = bbio->private;
ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
ASSERT(remaining);
btrfs_bio_end_io(remaining, status);
}
end_bbio:
btrfs_bio_end_io(bbio, status);
/* Do not submit another chunk */
return true;
}
void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
{
/* If bbio->inode is not populated, its file_offset must be 0. */
ASSERT(bbio->inode || bbio->file_offset == 0);
while (!btrfs_submit_chunk(bbio, mirror_num))
;
}
/*
* Submit a repair write.
*
* This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
* RAID setup. Here we only want to write the one bad copy, so we do the
* mapping ourselves and submit the bio directly.
*
* The I/O is issued synchronously to block the repair read completion from
* freeing the bio.
*/
int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
u64 length, u64 logical, phys_addr_t paddr, int mirror_num)
{
struct btrfs_io_stripe smap = { 0 };
struct bio_vec bvec;
struct bio bio;
int ret = 0;
ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
BUG_ON(!mirror_num);
if (btrfs_repair_one_zone(fs_info, logical))
return 0;
/*
* Avoid races with device replace and make sure our bioc has devices
* associated to its stripes that don't go away while we are doing the
* read repair operation.
*/
btrfs_bio_counter_inc_blocked(fs_info);
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
if (ret < 0)
goto out_counter_dec;
if (!smap.dev->bdev ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
ret = -EIO;
goto out_counter_dec;
}
bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
__bio_add_page(&bio, phys_to_page(paddr), length, offset_in_page(paddr));
ret = submit_bio_wait(&bio);
if (ret) {
/* try to remap that extent elsewhere? */
btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
goto out_bio_uninit;
}
btrfs_info_rl_in_rcu(fs_info,
"read error corrected: ino %llu off %llu (dev %s sector %llu)",
ino, start, btrfs_dev_name(smap.dev),
smap.physical >> SECTOR_SHIFT);
ret = 0;
out_bio_uninit:
bio_uninit(&bio);
out_counter_dec:
btrfs_bio_counter_dec(fs_info);
return ret;
}
/*
* Submit a btrfs_bio based repair write.
*
* If @dev_replace is true, the write would be submitted to dev-replace target.
*/
void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
{
struct btrfs_fs_info *fs_info = bbio->fs_info;
u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
u64 length = bbio->bio.bi_iter.bi_size;
struct btrfs_io_stripe smap = { 0 };
int ret;
ASSERT(fs_info);
ASSERT(mirror_num > 0);
ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
ASSERT(!bbio->inode);
btrfs_bio_counter_inc_blocked(fs_info);
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
if (ret < 0)
goto fail;
if (dev_replace) {
ASSERT(smap.dev == fs_info->dev_replace.srcdev);
smap.dev = fs_info->dev_replace.tgtdev;
}
btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
return;
fail:
btrfs_bio_counter_dec(fs_info);
btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
}
int __init btrfs_bioset_init(void)
{
if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
return -ENOMEM;
if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio), 0))
goto out;
if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
goto out;
if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
sizeof(struct btrfs_failed_bio)))
goto out;
return 0;
out:
btrfs_bioset_exit();
return -ENOMEM;
}
void __cold btrfs_bioset_exit(void)
{
mempool_exit(&btrfs_failed_bio_pool);
bioset_exit(&btrfs_repair_bioset);
bioset_exit(&btrfs_clone_bioset);
bioset_exit(&btrfs_bioset);
}
|