1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* kexec_handover.c - kexec handover metadata processing
* Copyright (C) 2023 Alexander Graf <graf@amazon.com>
* Copyright (C) 2025 Microsoft Corporation, Mike Rapoport <rppt@kernel.org>
* Copyright (C) 2025 Google LLC, Changyuan Lyu <changyuanl@google.com>
*/
#define pr_fmt(fmt) "KHO: " fmt
#include <linux/cma.h>
#include <linux/count_zeros.h>
#include <linux/debugfs.h>
#include <linux/kexec.h>
#include <linux/kexec_handover.h>
#include <linux/libfdt.h>
#include <linux/list.h>
#include <linux/memblock.h>
#include <linux/notifier.h>
#include <linux/page-isolation.h>
#include <asm/early_ioremap.h>
/*
* KHO is tightly coupled with mm init and needs access to some of mm
* internal APIs.
*/
#include "../mm/internal.h"
#include "kexec_internal.h"
#define KHO_FDT_COMPATIBLE "kho-v1"
#define PROP_PRESERVED_MEMORY_MAP "preserved-memory-map"
#define PROP_SUB_FDT "fdt"
static bool kho_enable __ro_after_init;
bool kho_is_enabled(void)
{
return kho_enable;
}
EXPORT_SYMBOL_GPL(kho_is_enabled);
static int __init kho_parse_enable(char *p)
{
return kstrtobool(p, &kho_enable);
}
early_param("kho", kho_parse_enable);
/*
* Keep track of memory that is to be preserved across KHO.
*
* The serializing side uses two levels of xarrays to manage chunks of per-order
* 512 byte bitmaps. For instance if PAGE_SIZE = 4096, the entire 1G order of a
* 1TB system would fit inside a single 512 byte bitmap. For order 0 allocations
* each bitmap will cover 16M of address space. Thus, for 16G of memory at most
* 512K of bitmap memory will be needed for order 0.
*
* This approach is fully incremental, as the serialization progresses folios
* can continue be aggregated to the tracker. The final step, immediately prior
* to kexec would serialize the xarray information into a linked list for the
* successor kernel to parse.
*/
#define PRESERVE_BITS (512 * 8)
struct kho_mem_phys_bits {
DECLARE_BITMAP(preserve, PRESERVE_BITS);
};
struct kho_mem_phys {
/*
* Points to kho_mem_phys_bits, a sparse bitmap array. Each bit is sized
* to order.
*/
struct xarray phys_bits;
};
struct kho_mem_track {
/* Points to kho_mem_phys, each order gets its own bitmap tree */
struct xarray orders;
};
struct khoser_mem_chunk;
struct kho_serialization {
struct page *fdt;
struct list_head fdt_list;
struct dentry *sub_fdt_dir;
struct kho_mem_track track;
/* First chunk of serialized preserved memory map */
struct khoser_mem_chunk *preserved_mem_map;
};
static void *xa_load_or_alloc(struct xarray *xa, unsigned long index, size_t sz)
{
void *elm, *res;
elm = xa_load(xa, index);
if (elm)
return elm;
elm = kzalloc(sz, GFP_KERNEL);
if (!elm)
return ERR_PTR(-ENOMEM);
res = xa_cmpxchg(xa, index, NULL, elm, GFP_KERNEL);
if (xa_is_err(res))
res = ERR_PTR(xa_err(res));
if (res) {
kfree(elm);
return res;
}
return elm;
}
static void __kho_unpreserve(struct kho_mem_track *track, unsigned long pfn,
unsigned long end_pfn)
{
struct kho_mem_phys_bits *bits;
struct kho_mem_phys *physxa;
while (pfn < end_pfn) {
const unsigned int order =
min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
const unsigned long pfn_high = pfn >> order;
physxa = xa_load(&track->orders, order);
if (!physxa)
continue;
bits = xa_load(&physxa->phys_bits, pfn_high / PRESERVE_BITS);
if (!bits)
continue;
clear_bit(pfn_high % PRESERVE_BITS, bits->preserve);
pfn += 1 << order;
}
}
static int __kho_preserve_order(struct kho_mem_track *track, unsigned long pfn,
unsigned int order)
{
struct kho_mem_phys_bits *bits;
struct kho_mem_phys *physxa;
const unsigned long pfn_high = pfn >> order;
might_sleep();
physxa = xa_load_or_alloc(&track->orders, order, sizeof(*physxa));
if (IS_ERR(physxa))
return PTR_ERR(physxa);
bits = xa_load_or_alloc(&physxa->phys_bits, pfn_high / PRESERVE_BITS,
sizeof(*bits));
if (IS_ERR(bits))
return PTR_ERR(bits);
set_bit(pfn_high % PRESERVE_BITS, bits->preserve);
return 0;
}
/* almost as free_reserved_page(), just don't free the page */
static void kho_restore_page(struct page *page, unsigned int order)
{
unsigned int nr_pages = (1 << order);
/* Head page gets refcount of 1. */
set_page_count(page, 1);
/* For higher order folios, tail pages get a page count of zero. */
for (unsigned int i = 1; i < nr_pages; i++)
set_page_count(page + i, 0);
if (order > 0)
prep_compound_page(page, order);
adjust_managed_page_count(page, nr_pages);
}
/**
* kho_restore_folio - recreates the folio from the preserved memory.
* @phys: physical address of the folio.
*
* Return: pointer to the struct folio on success, NULL on failure.
*/
struct folio *kho_restore_folio(phys_addr_t phys)
{
struct page *page = pfn_to_online_page(PHYS_PFN(phys));
unsigned long order;
if (!page)
return NULL;
order = page->private;
if (order > MAX_PAGE_ORDER)
return NULL;
kho_restore_page(page, order);
return page_folio(page);
}
EXPORT_SYMBOL_GPL(kho_restore_folio);
/* Serialize and deserialize struct kho_mem_phys across kexec
*
* Record all the bitmaps in a linked list of pages for the next kernel to
* process. Each chunk holds bitmaps of the same order and each block of bitmaps
* starts at a given physical address. This allows the bitmaps to be sparse. The
* xarray is used to store them in a tree while building up the data structure,
* but the KHO successor kernel only needs to process them once in order.
*
* All of this memory is normal kmalloc() memory and is not marked for
* preservation. The successor kernel will remain isolated to the scratch space
* until it completes processing this list. Once processed all the memory
* storing these ranges will be marked as free.
*/
struct khoser_mem_bitmap_ptr {
phys_addr_t phys_start;
DECLARE_KHOSER_PTR(bitmap, struct kho_mem_phys_bits *);
};
struct khoser_mem_chunk_hdr {
DECLARE_KHOSER_PTR(next, struct khoser_mem_chunk *);
unsigned int order;
unsigned int num_elms;
};
#define KHOSER_BITMAP_SIZE \
((PAGE_SIZE - sizeof(struct khoser_mem_chunk_hdr)) / \
sizeof(struct khoser_mem_bitmap_ptr))
struct khoser_mem_chunk {
struct khoser_mem_chunk_hdr hdr;
struct khoser_mem_bitmap_ptr bitmaps[KHOSER_BITMAP_SIZE];
};
static_assert(sizeof(struct khoser_mem_chunk) == PAGE_SIZE);
static struct khoser_mem_chunk *new_chunk(struct khoser_mem_chunk *cur_chunk,
unsigned long order)
{
struct khoser_mem_chunk *chunk;
chunk = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!chunk)
return NULL;
chunk->hdr.order = order;
if (cur_chunk)
KHOSER_STORE_PTR(cur_chunk->hdr.next, chunk);
return chunk;
}
static void kho_mem_ser_free(struct khoser_mem_chunk *first_chunk)
{
struct khoser_mem_chunk *chunk = first_chunk;
while (chunk) {
struct khoser_mem_chunk *tmp = chunk;
chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
kfree(tmp);
}
}
static int kho_mem_serialize(struct kho_serialization *ser)
{
struct khoser_mem_chunk *first_chunk = NULL;
struct khoser_mem_chunk *chunk = NULL;
struct kho_mem_phys *physxa;
unsigned long order;
xa_for_each(&ser->track.orders, order, physxa) {
struct kho_mem_phys_bits *bits;
unsigned long phys;
chunk = new_chunk(chunk, order);
if (!chunk)
goto err_free;
if (!first_chunk)
first_chunk = chunk;
xa_for_each(&physxa->phys_bits, phys, bits) {
struct khoser_mem_bitmap_ptr *elm;
if (chunk->hdr.num_elms == ARRAY_SIZE(chunk->bitmaps)) {
chunk = new_chunk(chunk, order);
if (!chunk)
goto err_free;
}
elm = &chunk->bitmaps[chunk->hdr.num_elms];
chunk->hdr.num_elms++;
elm->phys_start = (phys * PRESERVE_BITS)
<< (order + PAGE_SHIFT);
KHOSER_STORE_PTR(elm->bitmap, bits);
}
}
ser->preserved_mem_map = first_chunk;
return 0;
err_free:
kho_mem_ser_free(first_chunk);
return -ENOMEM;
}
static void deserialize_bitmap(unsigned int order,
struct khoser_mem_bitmap_ptr *elm)
{
struct kho_mem_phys_bits *bitmap = KHOSER_LOAD_PTR(elm->bitmap);
unsigned long bit;
for_each_set_bit(bit, bitmap->preserve, PRESERVE_BITS) {
int sz = 1 << (order + PAGE_SHIFT);
phys_addr_t phys =
elm->phys_start + (bit << (order + PAGE_SHIFT));
struct page *page = phys_to_page(phys);
memblock_reserve(phys, sz);
memblock_reserved_mark_noinit(phys, sz);
page->private = order;
}
}
static void __init kho_mem_deserialize(const void *fdt)
{
struct khoser_mem_chunk *chunk;
const phys_addr_t *mem;
int len;
mem = fdt_getprop(fdt, 0, PROP_PRESERVED_MEMORY_MAP, &len);
if (!mem || len != sizeof(*mem)) {
pr_err("failed to get preserved memory bitmaps\n");
return;
}
chunk = *mem ? phys_to_virt(*mem) : NULL;
while (chunk) {
unsigned int i;
for (i = 0; i != chunk->hdr.num_elms; i++)
deserialize_bitmap(chunk->hdr.order,
&chunk->bitmaps[i]);
chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
}
}
/*
* With KHO enabled, memory can become fragmented because KHO regions may
* be anywhere in physical address space. The scratch regions give us a
* safe zones that we will never see KHO allocations from. This is where we
* can later safely load our new kexec images into and then use the scratch
* area for early allocations that happen before page allocator is
* initialized.
*/
static struct kho_scratch *kho_scratch;
static unsigned int kho_scratch_cnt;
/*
* The scratch areas are scaled by default as percent of memory allocated from
* memblock. A user can override the scale with command line parameter:
*
* kho_scratch=N%
*
* It is also possible to explicitly define size for a lowmem, a global and
* per-node scratch areas:
*
* kho_scratch=l[KMG],n[KMG],m[KMG]
*
* The explicit size definition takes precedence over scale definition.
*/
static unsigned int scratch_scale __initdata = 200;
static phys_addr_t scratch_size_global __initdata;
static phys_addr_t scratch_size_pernode __initdata;
static phys_addr_t scratch_size_lowmem __initdata;
static int __init kho_parse_scratch_size(char *p)
{
size_t len;
unsigned long sizes[3];
int i;
if (!p)
return -EINVAL;
len = strlen(p);
if (!len)
return -EINVAL;
/* parse nn% */
if (p[len - 1] == '%') {
/* unsigned int max is 4,294,967,295, 10 chars */
char s_scale[11] = {};
int ret = 0;
if (len > ARRAY_SIZE(s_scale))
return -EINVAL;
memcpy(s_scale, p, len - 1);
ret = kstrtouint(s_scale, 10, &scratch_scale);
if (!ret)
pr_notice("scratch scale is %d%%\n", scratch_scale);
return ret;
}
/* parse ll[KMG],mm[KMG],nn[KMG] */
for (i = 0; i < ARRAY_SIZE(sizes); i++) {
char *endp = p;
if (i > 0) {
if (*p != ',')
return -EINVAL;
p += 1;
}
sizes[i] = memparse(p, &endp);
if (!sizes[i] || endp == p)
return -EINVAL;
p = endp;
}
scratch_size_lowmem = sizes[0];
scratch_size_global = sizes[1];
scratch_size_pernode = sizes[2];
scratch_scale = 0;
pr_notice("scratch areas: lowmem: %lluMiB global: %lluMiB pernode: %lldMiB\n",
(u64)(scratch_size_lowmem >> 20),
(u64)(scratch_size_global >> 20),
(u64)(scratch_size_pernode >> 20));
return 0;
}
early_param("kho_scratch", kho_parse_scratch_size);
static void __init scratch_size_update(void)
{
phys_addr_t size;
if (!scratch_scale)
return;
size = memblock_reserved_kern_size(ARCH_LOW_ADDRESS_LIMIT,
NUMA_NO_NODE);
size = size * scratch_scale / 100;
scratch_size_lowmem = round_up(size, CMA_MIN_ALIGNMENT_BYTES);
size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE,
NUMA_NO_NODE);
size = size * scratch_scale / 100 - scratch_size_lowmem;
scratch_size_global = round_up(size, CMA_MIN_ALIGNMENT_BYTES);
}
static phys_addr_t __init scratch_size_node(int nid)
{
phys_addr_t size;
if (scratch_scale) {
size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE,
nid);
size = size * scratch_scale / 100;
} else {
size = scratch_size_pernode;
}
return round_up(size, CMA_MIN_ALIGNMENT_BYTES);
}
/**
* kho_reserve_scratch - Reserve a contiguous chunk of memory for kexec
*
* With KHO we can preserve arbitrary pages in the system. To ensure we still
* have a large contiguous region of memory when we search the physical address
* space for target memory, let's make sure we always have a large CMA region
* active. This CMA region will only be used for movable pages which are not a
* problem for us during KHO because we can just move them somewhere else.
*/
static void __init kho_reserve_scratch(void)
{
phys_addr_t addr, size;
int nid, i = 0;
if (!kho_enable)
return;
scratch_size_update();
/* FIXME: deal with node hot-plug/remove */
kho_scratch_cnt = num_online_nodes() + 2;
size = kho_scratch_cnt * sizeof(*kho_scratch);
kho_scratch = memblock_alloc(size, PAGE_SIZE);
if (!kho_scratch)
goto err_disable_kho;
/*
* reserve scratch area in low memory for lowmem allocations in the
* next kernel
*/
size = scratch_size_lowmem;
addr = memblock_phys_alloc_range(size, CMA_MIN_ALIGNMENT_BYTES, 0,
ARCH_LOW_ADDRESS_LIMIT);
if (!addr)
goto err_free_scratch_desc;
kho_scratch[i].addr = addr;
kho_scratch[i].size = size;
i++;
/* reserve large contiguous area for allocations without nid */
size = scratch_size_global;
addr = memblock_phys_alloc(size, CMA_MIN_ALIGNMENT_BYTES);
if (!addr)
goto err_free_scratch_areas;
kho_scratch[i].addr = addr;
kho_scratch[i].size = size;
i++;
for_each_online_node(nid) {
size = scratch_size_node(nid);
addr = memblock_alloc_range_nid(size, CMA_MIN_ALIGNMENT_BYTES,
0, MEMBLOCK_ALLOC_ACCESSIBLE,
nid, true);
if (!addr)
goto err_free_scratch_areas;
kho_scratch[i].addr = addr;
kho_scratch[i].size = size;
i++;
}
return;
err_free_scratch_areas:
for (i--; i >= 0; i--)
memblock_phys_free(kho_scratch[i].addr, kho_scratch[i].size);
err_free_scratch_desc:
memblock_free(kho_scratch, kho_scratch_cnt * sizeof(*kho_scratch));
err_disable_kho:
kho_enable = false;
}
struct fdt_debugfs {
struct list_head list;
struct debugfs_blob_wrapper wrapper;
struct dentry *file;
};
static int kho_debugfs_fdt_add(struct list_head *list, struct dentry *dir,
const char *name, const void *fdt)
{
struct fdt_debugfs *f;
struct dentry *file;
f = kmalloc(sizeof(*f), GFP_KERNEL);
if (!f)
return -ENOMEM;
f->wrapper.data = (void *)fdt;
f->wrapper.size = fdt_totalsize(fdt);
file = debugfs_create_blob(name, 0400, dir, &f->wrapper);
if (IS_ERR(file)) {
kfree(f);
return PTR_ERR(file);
}
f->file = file;
list_add(&f->list, list);
return 0;
}
/**
* kho_add_subtree - record the physical address of a sub FDT in KHO root tree.
* @ser: serialization control object passed by KHO notifiers.
* @name: name of the sub tree.
* @fdt: the sub tree blob.
*
* Creates a new child node named @name in KHO root FDT and records
* the physical address of @fdt. The pages of @fdt must also be preserved
* by KHO for the new kernel to retrieve it after kexec.
*
* A debugfs blob entry is also created at
* ``/sys/kernel/debug/kho/out/sub_fdts/@name``.
*
* Return: 0 on success, error code on failure
*/
int kho_add_subtree(struct kho_serialization *ser, const char *name, void *fdt)
{
int err = 0;
u64 phys = (u64)virt_to_phys(fdt);
void *root = page_to_virt(ser->fdt);
err |= fdt_begin_node(root, name);
err |= fdt_property(root, PROP_SUB_FDT, &phys, sizeof(phys));
err |= fdt_end_node(root);
if (err)
return err;
return kho_debugfs_fdt_add(&ser->fdt_list, ser->sub_fdt_dir, name, fdt);
}
EXPORT_SYMBOL_GPL(kho_add_subtree);
struct kho_out {
struct blocking_notifier_head chain_head;
struct dentry *dir;
struct mutex lock; /* protects KHO FDT finalization */
struct kho_serialization ser;
bool finalized;
};
static struct kho_out kho_out = {
.chain_head = BLOCKING_NOTIFIER_INIT(kho_out.chain_head),
.lock = __MUTEX_INITIALIZER(kho_out.lock),
.ser = {
.fdt_list = LIST_HEAD_INIT(kho_out.ser.fdt_list),
.track = {
.orders = XARRAY_INIT(kho_out.ser.track.orders, 0),
},
},
.finalized = false,
};
int register_kho_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&kho_out.chain_head, nb);
}
EXPORT_SYMBOL_GPL(register_kho_notifier);
int unregister_kho_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&kho_out.chain_head, nb);
}
EXPORT_SYMBOL_GPL(unregister_kho_notifier);
/**
* kho_preserve_folio - preserve a folio across kexec.
* @folio: folio to preserve.
*
* Instructs KHO to preserve the whole folio across kexec. The order
* will be preserved as well.
*
* Return: 0 on success, error code on failure
*/
int kho_preserve_folio(struct folio *folio)
{
const unsigned long pfn = folio_pfn(folio);
const unsigned int order = folio_order(folio);
struct kho_mem_track *track = &kho_out.ser.track;
if (kho_out.finalized)
return -EBUSY;
return __kho_preserve_order(track, pfn, order);
}
EXPORT_SYMBOL_GPL(kho_preserve_folio);
/**
* kho_preserve_phys - preserve a physically contiguous range across kexec.
* @phys: physical address of the range.
* @size: size of the range.
*
* Instructs KHO to preserve the memory range from @phys to @phys + @size
* across kexec.
*
* Return: 0 on success, error code on failure
*/
int kho_preserve_phys(phys_addr_t phys, size_t size)
{
unsigned long pfn = PHYS_PFN(phys);
unsigned long failed_pfn = 0;
const unsigned long start_pfn = pfn;
const unsigned long end_pfn = PHYS_PFN(phys + size);
int err = 0;
struct kho_mem_track *track = &kho_out.ser.track;
if (kho_out.finalized)
return -EBUSY;
if (!PAGE_ALIGNED(phys) || !PAGE_ALIGNED(size))
return -EINVAL;
while (pfn < end_pfn) {
const unsigned int order =
min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
err = __kho_preserve_order(track, pfn, order);
if (err) {
failed_pfn = pfn;
break;
}
pfn += 1 << order;
}
if (err)
__kho_unpreserve(track, start_pfn, failed_pfn);
return err;
}
EXPORT_SYMBOL_GPL(kho_preserve_phys);
/* Handling for debug/kho/out */
static struct dentry *debugfs_root;
static int kho_out_update_debugfs_fdt(void)
{
int err = 0;
struct fdt_debugfs *ff, *tmp;
if (kho_out.finalized) {
err = kho_debugfs_fdt_add(&kho_out.ser.fdt_list, kho_out.dir,
"fdt", page_to_virt(kho_out.ser.fdt));
} else {
list_for_each_entry_safe(ff, tmp, &kho_out.ser.fdt_list, list) {
debugfs_remove(ff->file);
list_del(&ff->list);
kfree(ff);
}
}
return err;
}
static int kho_abort(void)
{
int err;
unsigned long order;
struct kho_mem_phys *physxa;
xa_for_each(&kho_out.ser.track.orders, order, physxa) {
struct kho_mem_phys_bits *bits;
unsigned long phys;
xa_for_each(&physxa->phys_bits, phys, bits)
kfree(bits);
xa_destroy(&physxa->phys_bits);
kfree(physxa);
}
xa_destroy(&kho_out.ser.track.orders);
if (kho_out.ser.preserved_mem_map) {
kho_mem_ser_free(kho_out.ser.preserved_mem_map);
kho_out.ser.preserved_mem_map = NULL;
}
err = blocking_notifier_call_chain(&kho_out.chain_head, KEXEC_KHO_ABORT,
NULL);
err = notifier_to_errno(err);
if (err)
pr_err("Failed to abort KHO finalization: %d\n", err);
return err;
}
static int kho_finalize(void)
{
int err = 0;
u64 *preserved_mem_map;
void *fdt = page_to_virt(kho_out.ser.fdt);
err |= fdt_create(fdt, PAGE_SIZE);
err |= fdt_finish_reservemap(fdt);
err |= fdt_begin_node(fdt, "");
err |= fdt_property_string(fdt, "compatible", KHO_FDT_COMPATIBLE);
/**
* Reserve the preserved-memory-map property in the root FDT, so
* that all property definitions will precede subnodes created by
* KHO callers.
*/
err |= fdt_property_placeholder(fdt, PROP_PRESERVED_MEMORY_MAP,
sizeof(*preserved_mem_map),
(void **)&preserved_mem_map);
if (err)
goto abort;
err = kho_preserve_folio(page_folio(kho_out.ser.fdt));
if (err)
goto abort;
err = blocking_notifier_call_chain(&kho_out.chain_head,
KEXEC_KHO_FINALIZE, &kho_out.ser);
err = notifier_to_errno(err);
if (err)
goto abort;
err = kho_mem_serialize(&kho_out.ser);
if (err)
goto abort;
*preserved_mem_map = (u64)virt_to_phys(kho_out.ser.preserved_mem_map);
err |= fdt_end_node(fdt);
err |= fdt_finish(fdt);
abort:
if (err) {
pr_err("Failed to convert KHO state tree: %d\n", err);
kho_abort();
}
return err;
}
static int kho_out_finalize_get(void *data, u64 *val)
{
mutex_lock(&kho_out.lock);
*val = kho_out.finalized;
mutex_unlock(&kho_out.lock);
return 0;
}
static int kho_out_finalize_set(void *data, u64 _val)
{
int ret = 0;
bool val = !!_val;
mutex_lock(&kho_out.lock);
if (val == kho_out.finalized) {
if (kho_out.finalized)
ret = -EEXIST;
else
ret = -ENOENT;
goto unlock;
}
if (val)
ret = kho_finalize();
else
ret = kho_abort();
if (ret)
goto unlock;
kho_out.finalized = val;
ret = kho_out_update_debugfs_fdt();
unlock:
mutex_unlock(&kho_out.lock);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_kho_out_finalize, kho_out_finalize_get,
kho_out_finalize_set, "%llu\n");
static int scratch_phys_show(struct seq_file *m, void *v)
{
for (int i = 0; i < kho_scratch_cnt; i++)
seq_printf(m, "0x%llx\n", kho_scratch[i].addr);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(scratch_phys);
static int scratch_len_show(struct seq_file *m, void *v)
{
for (int i = 0; i < kho_scratch_cnt; i++)
seq_printf(m, "0x%llx\n", kho_scratch[i].size);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(scratch_len);
static __init int kho_out_debugfs_init(void)
{
struct dentry *dir, *f, *sub_fdt_dir;
dir = debugfs_create_dir("out", debugfs_root);
if (IS_ERR(dir))
return -ENOMEM;
sub_fdt_dir = debugfs_create_dir("sub_fdts", dir);
if (IS_ERR(sub_fdt_dir))
goto err_rmdir;
f = debugfs_create_file("scratch_phys", 0400, dir, NULL,
&scratch_phys_fops);
if (IS_ERR(f))
goto err_rmdir;
f = debugfs_create_file("scratch_len", 0400, dir, NULL,
&scratch_len_fops);
if (IS_ERR(f))
goto err_rmdir;
f = debugfs_create_file("finalize", 0600, dir, NULL,
&fops_kho_out_finalize);
if (IS_ERR(f))
goto err_rmdir;
kho_out.dir = dir;
kho_out.ser.sub_fdt_dir = sub_fdt_dir;
return 0;
err_rmdir:
debugfs_remove_recursive(dir);
return -ENOENT;
}
struct kho_in {
struct dentry *dir;
phys_addr_t fdt_phys;
phys_addr_t scratch_phys;
struct list_head fdt_list;
};
static struct kho_in kho_in = {
.fdt_list = LIST_HEAD_INIT(kho_in.fdt_list),
};
static const void *kho_get_fdt(void)
{
return kho_in.fdt_phys ? phys_to_virt(kho_in.fdt_phys) : NULL;
}
/**
* kho_retrieve_subtree - retrieve a preserved sub FDT by its name.
* @name: the name of the sub FDT passed to kho_add_subtree().
* @phys: if found, the physical address of the sub FDT is stored in @phys.
*
* Retrieve a preserved sub FDT named @name and store its physical
* address in @phys.
*
* Return: 0 on success, error code on failure
*/
int kho_retrieve_subtree(const char *name, phys_addr_t *phys)
{
const void *fdt = kho_get_fdt();
const u64 *val;
int offset, len;
if (!fdt)
return -ENOENT;
if (!phys)
return -EINVAL;
offset = fdt_subnode_offset(fdt, 0, name);
if (offset < 0)
return -ENOENT;
val = fdt_getprop(fdt, offset, PROP_SUB_FDT, &len);
if (!val || len != sizeof(*val))
return -EINVAL;
*phys = (phys_addr_t)*val;
return 0;
}
EXPORT_SYMBOL_GPL(kho_retrieve_subtree);
/* Handling for debugfs/kho/in */
static __init int kho_in_debugfs_init(const void *fdt)
{
struct dentry *sub_fdt_dir;
int err, child;
kho_in.dir = debugfs_create_dir("in", debugfs_root);
if (IS_ERR(kho_in.dir))
return PTR_ERR(kho_in.dir);
sub_fdt_dir = debugfs_create_dir("sub_fdts", kho_in.dir);
if (IS_ERR(sub_fdt_dir)) {
err = PTR_ERR(sub_fdt_dir);
goto err_rmdir;
}
err = kho_debugfs_fdt_add(&kho_in.fdt_list, kho_in.dir, "fdt", fdt);
if (err)
goto err_rmdir;
fdt_for_each_subnode(child, fdt, 0) {
int len = 0;
const char *name = fdt_get_name(fdt, child, NULL);
const u64 *fdt_phys;
fdt_phys = fdt_getprop(fdt, child, "fdt", &len);
if (!fdt_phys)
continue;
if (len != sizeof(*fdt_phys)) {
pr_warn("node `%s`'s prop `fdt` has invalid length: %d\n",
name, len);
continue;
}
err = kho_debugfs_fdt_add(&kho_in.fdt_list, sub_fdt_dir, name,
phys_to_virt(*fdt_phys));
if (err) {
pr_warn("failed to add fdt `%s` to debugfs: %d\n", name,
err);
continue;
}
}
return 0;
err_rmdir:
debugfs_remove_recursive(kho_in.dir);
return err;
}
static __init int kho_init(void)
{
int err = 0;
const void *fdt = kho_get_fdt();
if (!kho_enable)
return 0;
kho_out.ser.fdt = alloc_page(GFP_KERNEL);
if (!kho_out.ser.fdt) {
err = -ENOMEM;
goto err_free_scratch;
}
debugfs_root = debugfs_create_dir("kho", NULL);
if (IS_ERR(debugfs_root)) {
err = -ENOENT;
goto err_free_fdt;
}
err = kho_out_debugfs_init();
if (err)
goto err_free_fdt;
if (fdt) {
err = kho_in_debugfs_init(fdt);
/*
* Failure to create /sys/kernel/debug/kho/in does not prevent
* reviving state from KHO and setting up KHO for the next
* kexec.
*/
if (err)
pr_err("failed exposing handover FDT in debugfs: %d\n",
err);
return 0;
}
for (int i = 0; i < kho_scratch_cnt; i++) {
unsigned long base_pfn = PHYS_PFN(kho_scratch[i].addr);
unsigned long count = kho_scratch[i].size >> PAGE_SHIFT;
unsigned long pfn;
for (pfn = base_pfn; pfn < base_pfn + count;
pfn += pageblock_nr_pages)
init_cma_reserved_pageblock(pfn_to_page(pfn));
}
return 0;
err_free_fdt:
put_page(kho_out.ser.fdt);
kho_out.ser.fdt = NULL;
err_free_scratch:
for (int i = 0; i < kho_scratch_cnt; i++) {
void *start = __va(kho_scratch[i].addr);
void *end = start + kho_scratch[i].size;
free_reserved_area(start, end, -1, "");
}
kho_enable = false;
return err;
}
late_initcall(kho_init);
static void __init kho_release_scratch(void)
{
phys_addr_t start, end;
u64 i;
memmap_init_kho_scratch_pages();
/*
* Mark scratch mem as CMA before we return it. That way we
* ensure that no kernel allocations happen on it. That means
* we can reuse it as scratch memory again later.
*/
__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
MEMBLOCK_KHO_SCRATCH, &start, &end, NULL) {
ulong start_pfn = pageblock_start_pfn(PFN_DOWN(start));
ulong end_pfn = pageblock_align(PFN_UP(end));
ulong pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages)
set_pageblock_migratetype(pfn_to_page(pfn),
MIGRATE_CMA);
}
}
void __init kho_memory_init(void)
{
struct folio *folio;
if (kho_in.scratch_phys) {
kho_scratch = phys_to_virt(kho_in.scratch_phys);
kho_release_scratch();
kho_mem_deserialize(kho_get_fdt());
folio = kho_restore_folio(kho_in.fdt_phys);
if (!folio)
pr_warn("failed to restore folio for KHO fdt\n");
} else {
kho_reserve_scratch();
}
}
void __init kho_populate(phys_addr_t fdt_phys, u64 fdt_len,
phys_addr_t scratch_phys, u64 scratch_len)
{
void *fdt = NULL;
struct kho_scratch *scratch = NULL;
int err = 0;
unsigned int scratch_cnt = scratch_len / sizeof(*kho_scratch);
/* Validate the input FDT */
fdt = early_memremap(fdt_phys, fdt_len);
if (!fdt) {
pr_warn("setup: failed to memremap FDT (0x%llx)\n", fdt_phys);
err = -EFAULT;
goto out;
}
err = fdt_check_header(fdt);
if (err) {
pr_warn("setup: handover FDT (0x%llx) is invalid: %d\n",
fdt_phys, err);
err = -EINVAL;
goto out;
}
err = fdt_node_check_compatible(fdt, 0, KHO_FDT_COMPATIBLE);
if (err) {
pr_warn("setup: handover FDT (0x%llx) is incompatible with '%s': %d\n",
fdt_phys, KHO_FDT_COMPATIBLE, err);
err = -EINVAL;
goto out;
}
scratch = early_memremap(scratch_phys, scratch_len);
if (!scratch) {
pr_warn("setup: failed to memremap scratch (phys=0x%llx, len=%lld)\n",
scratch_phys, scratch_len);
err = -EFAULT;
goto out;
}
/*
* We pass a safe contiguous blocks of memory to use for early boot
* purporses from the previous kernel so that we can resize the
* memblock array as needed.
*/
for (int i = 0; i < scratch_cnt; i++) {
struct kho_scratch *area = &scratch[i];
u64 size = area->size;
memblock_add(area->addr, size);
err = memblock_mark_kho_scratch(area->addr, size);
if (WARN_ON(err)) {
pr_warn("failed to mark the scratch region 0x%pa+0x%pa: %d",
&area->addr, &size, err);
goto out;
}
pr_debug("Marked 0x%pa+0x%pa as scratch", &area->addr, &size);
}
memblock_reserve(scratch_phys, scratch_len);
/*
* Now that we have a viable region of scratch memory, let's tell
* the memblocks allocator to only use that for any allocations.
* That way we ensure that nothing scribbles over in use data while
* we initialize the page tables which we will need to ingest all
* memory reservations from the previous kernel.
*/
memblock_set_kho_scratch_only();
kho_in.fdt_phys = fdt_phys;
kho_in.scratch_phys = scratch_phys;
kho_scratch_cnt = scratch_cnt;
pr_info("found kexec handover data. Will skip init for some devices\n");
out:
if (fdt)
early_memunmap(fdt, fdt_len);
if (scratch)
early_memunmap(scratch, scratch_len);
if (err)
pr_warn("disabling KHO revival: %d\n", err);
}
/* Helper functions for kexec_file_load */
int kho_fill_kimage(struct kimage *image)
{
ssize_t scratch_size;
int err = 0;
struct kexec_buf scratch;
if (!kho_enable)
return 0;
image->kho.fdt = page_to_phys(kho_out.ser.fdt);
scratch_size = sizeof(*kho_scratch) * kho_scratch_cnt;
scratch = (struct kexec_buf){
.image = image,
.buffer = kho_scratch,
.bufsz = scratch_size,
.mem = KEXEC_BUF_MEM_UNKNOWN,
.memsz = scratch_size,
.buf_align = SZ_64K, /* Makes it easier to map */
.buf_max = ULONG_MAX,
.top_down = true,
};
err = kexec_add_buffer(&scratch);
if (err)
return err;
image->kho.scratch = &image->segment[image->nr_segments - 1];
return 0;
}
static int kho_walk_scratch(struct kexec_buf *kbuf,
int (*func)(struct resource *, void *))
{
int ret = 0;
int i;
for (i = 0; i < kho_scratch_cnt; i++) {
struct resource res = {
.start = kho_scratch[i].addr,
.end = kho_scratch[i].addr + kho_scratch[i].size - 1,
};
/* Try to fit the kimage into our KHO scratch region */
ret = func(&res, kbuf);
if (ret)
break;
}
return ret;
}
int kho_locate_mem_hole(struct kexec_buf *kbuf,
int (*func)(struct resource *, void *))
{
int ret;
if (!kho_enable || kbuf->image->type == KEXEC_TYPE_CRASH)
return 1;
ret = kho_walk_scratch(kbuf, func);
return ret == 1 ? 0 : -EADDRNOTAVAIL;
}
|