1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
// SPDX-License-Identifier: GPL-2.0
/*
* Kernel internal schedule timeout and sleeping functions
*/
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/timer.h>
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include "tick-internal.h"
/*
* Since schedule_timeout()'s timer is defined on the stack, it must store
* the target task on the stack as well.
*/
struct process_timer {
struct timer_list timer;
struct task_struct *task;
};
static void process_timeout(struct timer_list *t)
{
struct process_timer *timeout = timer_container_of(timeout, t, timer);
wake_up_process(timeout->task);
}
/**
* schedule_timeout - sleep until timeout
* @timeout: timeout value in jiffies
*
* Make the current task sleep until @timeout jiffies have elapsed.
* The function behavior depends on the current task state
* (see also set_current_state() description):
*
* %TASK_RUNNING - the scheduler is called, but the task does not sleep
* at all. That happens because sched_submit_work() does nothing for
* tasks in %TASK_RUNNING state.
*
* %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
* pass before the routine returns unless the current task is explicitly
* woken up, (e.g. by wake_up_process()).
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task or the current task is explicitly woken
* up.
*
* The current task state is guaranteed to be %TASK_RUNNING when this
* routine returns.
*
* Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
* the CPU away without a bound on the timeout. In this case the return
* value will be %MAX_SCHEDULE_TIMEOUT.
*
* Returns: 0 when the timer has expired otherwise the remaining time in
* jiffies will be returned. In all cases the return value is guaranteed
* to be non-negative.
*/
signed long __sched schedule_timeout(signed long timeout)
{
struct process_timer timer;
unsigned long expire;
switch (timeout) {
case MAX_SCHEDULE_TIMEOUT:
/*
* These two special cases are useful to be comfortable
* in the caller. Nothing more. We could take
* MAX_SCHEDULE_TIMEOUT from one of the negative value
* but I' d like to return a valid offset (>=0) to allow
* the caller to do everything it want with the retval.
*/
schedule();
goto out;
default:
/*
* Another bit of PARANOID. Note that the retval will be
* 0 since no piece of kernel is supposed to do a check
* for a negative retval of schedule_timeout() (since it
* should never happens anyway). You just have the printk()
* that will tell you if something is gone wrong and where.
*/
if (timeout < 0) {
pr_err("%s: wrong timeout value %lx\n", __func__, timeout);
dump_stack();
__set_current_state(TASK_RUNNING);
goto out;
}
}
expire = timeout + jiffies;
timer.task = current;
timer_setup_on_stack(&timer.timer, process_timeout, 0);
timer.timer.expires = expire;
add_timer(&timer.timer);
schedule();
timer_delete_sync(&timer.timer);
/* Remove the timer from the object tracker */
timer_destroy_on_stack(&timer.timer);
timeout = expire - jiffies;
out:
return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);
/*
* __set_current_state() can be used in schedule_timeout_*() functions, because
* schedule_timeout() calls schedule() unconditionally.
*/
/**
* schedule_timeout_interruptible - sleep until timeout (interruptible)
* @timeout: timeout value in jiffies
*
* See schedule_timeout() for details.
*
* Task state is set to TASK_INTERRUPTIBLE before starting the timeout.
*/
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
__set_current_state(TASK_INTERRUPTIBLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_interruptible);
/**
* schedule_timeout_killable - sleep until timeout (killable)
* @timeout: timeout value in jiffies
*
* See schedule_timeout() for details.
*
* Task state is set to TASK_KILLABLE before starting the timeout.
*/
signed long __sched schedule_timeout_killable(signed long timeout)
{
__set_current_state(TASK_KILLABLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);
/**
* schedule_timeout_uninterruptible - sleep until timeout (uninterruptible)
* @timeout: timeout value in jiffies
*
* See schedule_timeout() for details.
*
* Task state is set to TASK_UNINTERRUPTIBLE before starting the timeout.
*/
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
__set_current_state(TASK_UNINTERRUPTIBLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);
/**
* schedule_timeout_idle - sleep until timeout (idle)
* @timeout: timeout value in jiffies
*
* See schedule_timeout() for details.
*
* Task state is set to TASK_IDLE before starting the timeout. It is similar to
* schedule_timeout_uninterruptible(), except this task will not contribute to
* load average.
*/
signed long __sched schedule_timeout_idle(signed long timeout)
{
__set_current_state(TASK_IDLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);
/**
* schedule_hrtimeout_range_clock - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
* @mode: timer mode
* @clock_id: timer clock to be used
*
* Details are explained in schedule_hrtimeout_range() function description as
* this function is commonly used.
*/
int __sched schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
const enum hrtimer_mode mode, clockid_t clock_id)
{
struct hrtimer_sleeper t;
/*
* Optimize when a zero timeout value is given. It does not
* matter whether this is an absolute or a relative time.
*/
if (expires && *expires == 0) {
__set_current_state(TASK_RUNNING);
return 0;
}
/*
* A NULL parameter means "infinite"
*/
if (!expires) {
schedule();
return -EINTR;
}
hrtimer_setup_sleeper_on_stack(&t, clock_id, mode);
hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
hrtimer_sleeper_start_expires(&t, mode);
if (likely(t.task))
schedule();
hrtimer_cancel(&t.timer);
destroy_hrtimer_on_stack(&t.timer);
__set_current_state(TASK_RUNNING);
return !t.task ? 0 : -EINTR;
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
/**
* schedule_hrtimeout_range - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
* @mode: timer mode
*
* Make the current task sleep until the given expiry time has
* elapsed. The routine will return immediately unless
* the current task state has been set (see set_current_state()).
*
* The @delta argument gives the kernel the freedom to schedule the
* actual wakeup to a time that is both power and performance friendly
* for regular (non RT/DL) tasks.
* The kernel give the normal best effort behavior for "@expires+@delta",
* but may decide to fire the timer earlier, but no earlier than @expires.
*
* You can set the task state as follows -
*
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
* pass before the routine returns unless the current task is explicitly
* woken up, (e.g. by wake_up_process()).
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task or the current task is explicitly woken
* up.
*
* The current task state is guaranteed to be TASK_RUNNING when this
* routine returns.
*
* Returns: 0 when the timer has expired. If the task was woken before the
* timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
* by an explicit wakeup, it returns -EINTR.
*/
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
const enum hrtimer_mode mode)
{
return schedule_hrtimeout_range_clock(expires, delta, mode,
CLOCK_MONOTONIC);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
/**
* schedule_hrtimeout - sleep until timeout
* @expires: timeout value (ktime_t)
* @mode: timer mode
*
* See schedule_hrtimeout_range() for details. @delta argument of
* schedule_hrtimeout_range() is set to 0 and has therefore no impact.
*/
int __sched schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode)
{
return schedule_hrtimeout_range(expires, 0, mode);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout);
/**
* msleep - sleep safely even with waitqueue interruptions
* @msecs: Requested sleep duration in milliseconds
*
* msleep() uses jiffy based timeouts for the sleep duration. Because of the
* design of the timer wheel, the maximum additional percentage delay (slack) is
* 12.5%. This is only valid for timers which will end up in level 1 or a higher
* level of the timer wheel. For explanation of those 12.5% please check the
* detailed description about the basics of the timer wheel.
*
* The slack of timers which will end up in level 0 depends on sleep duration
* (msecs) and HZ configuration and can be calculated in the following way (with
* the timer wheel design restriction that the slack is not less than 12.5%):
*
* ``slack = MSECS_PER_TICK / msecs``
*
* When the allowed slack of the callsite is known, the calculation could be
* turned around to find the minimal allowed sleep duration to meet the
* constraints. For example:
*
* * ``HZ=1000`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 1 / (1/4) = 4``:
* all sleep durations greater or equal 4ms will meet the constraints.
* * ``HZ=1000`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 1 / (1/8) = 8``:
* all sleep durations greater or equal 8ms will meet the constraints.
* * ``HZ=250`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 4 / (1/4) = 16``:
* all sleep durations greater or equal 16ms will meet the constraints.
* * ``HZ=250`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 4 / (1/8) = 32``:
* all sleep durations greater or equal 32ms will meet the constraints.
*
* See also the signal aware variant msleep_interruptible().
*/
void msleep(unsigned int msecs)
{
unsigned long timeout = msecs_to_jiffies(msecs);
while (timeout)
timeout = schedule_timeout_uninterruptible(timeout);
}
EXPORT_SYMBOL(msleep);
/**
* msleep_interruptible - sleep waiting for signals
* @msecs: Requested sleep duration in milliseconds
*
* See msleep() for some basic information.
*
* The difference between msleep() and msleep_interruptible() is that the sleep
* could be interrupted by a signal delivery and then returns early.
*
* Returns: The remaining time of the sleep duration transformed to msecs (see
* schedule_timeout() for details).
*/
unsigned long msleep_interruptible(unsigned int msecs)
{
unsigned long timeout = msecs_to_jiffies(msecs);
while (timeout && !signal_pending(current))
timeout = schedule_timeout_interruptible(timeout);
return jiffies_to_msecs(timeout);
}
EXPORT_SYMBOL(msleep_interruptible);
/**
* usleep_range_state - Sleep for an approximate time in a given state
* @min: Minimum time in usecs to sleep
* @max: Maximum time in usecs to sleep
* @state: State of the current task that will be while sleeping
*
* usleep_range_state() sleeps at least for the minimum specified time but not
* longer than the maximum specified amount of time. The range might reduce
* power usage by allowing hrtimers to coalesce an already scheduled interrupt
* with this hrtimer. In the worst case, an interrupt is scheduled for the upper
* bound.
*
* The sleeping task is set to the specified state before starting the sleep.
*
* In non-atomic context where the exact wakeup time is flexible, use
* usleep_range() or its variants instead of udelay(). The sleep improves
* responsiveness by avoiding the CPU-hogging busy-wait of udelay().
*/
void __sched usleep_range_state(unsigned long min, unsigned long max, unsigned int state)
{
ktime_t exp = ktime_add_us(ktime_get(), min);
u64 delta = (u64)(max - min) * NSEC_PER_USEC;
if (WARN_ON_ONCE(max < min))
delta = 0;
for (;;) {
__set_current_state(state);
/* Do not return before the requested sleep time has elapsed */
if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
break;
}
}
EXPORT_SYMBOL(usleep_range_state);
|