1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#!/usr/bin/env python3
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Script that generates constants for computing the given CRC variant(s).
#
# Copyright 2025 Google LLC
#
# Author: Eric Biggers <ebiggers@google.com>
import sys
# XOR (add) an iterable of polynomials.
def xor(iterable):
res = 0
for val in iterable:
res ^= val
return res
# Multiply two polynomials.
def clmul(a, b):
return xor(a << i for i in range(b.bit_length()) if (b & (1 << i)) != 0)
# Polynomial division floor(a / b).
def div(a, b):
q = 0
while a.bit_length() >= b.bit_length():
q ^= 1 << (a.bit_length() - b.bit_length())
a ^= b << (a.bit_length() - b.bit_length())
return q
# Reduce the polynomial 'a' modulo the polynomial 'b'.
def reduce(a, b):
return a ^ clmul(div(a, b), b)
# Reflect the bits of a polynomial.
def bitreflect(poly, num_bits):
assert poly.bit_length() <= num_bits
return xor(((poly >> i) & 1) << (num_bits - 1 - i) for i in range(num_bits))
# Format a polynomial as hex. Bit-reflect it if the CRC is lsb-first.
def fmt_poly(variant, poly, num_bits):
if variant.lsb:
poly = bitreflect(poly, num_bits)
return f'0x{poly:0{2*num_bits//8}x}'
# Print a pair of 64-bit polynomial multipliers. They are always passed in the
# order [HI64_TERMS, LO64_TERMS] but will be printed in the appropriate order.
def print_mult_pair(variant, mults):
mults = list(mults if variant.lsb else reversed(mults))
terms = ['HI64_TERMS', 'LO64_TERMS'] if variant.lsb else ['LO64_TERMS', 'HI64_TERMS']
for i in range(2):
print(f'\t\t{fmt_poly(variant, mults[i]["val"], 64)},\t/* {terms[i]}: {mults[i]["desc"]} */')
# Pretty-print a polynomial.
def pprint_poly(prefix, poly):
terms = [f'x^{i}' for i in reversed(range(poly.bit_length()))
if (poly & (1 << i)) != 0]
j = 0
while j < len(terms):
s = prefix + terms[j] + (' +' if j < len(terms) - 1 else '')
j += 1
while j < len(terms) and len(s) < 73:
s += ' ' + terms[j] + (' +' if j < len(terms) - 1 else '')
j += 1
print(s)
prefix = ' * ' + (' ' * (len(prefix) - 3))
# Print a comment describing constants generated for the given CRC variant.
def print_header(variant, what):
print('/*')
s = f'{"least" if variant.lsb else "most"}-significant-bit-first CRC-{variant.bits}'
print(f' * {what} generated for {s} using')
pprint_poly(' * G(x) = ', variant.G)
print(' */')
class CrcVariant:
def __init__(self, bits, generator_poly, bit_order):
self.bits = bits
if bit_order not in ['lsb', 'msb']:
raise ValueError('Invalid value for bit_order')
self.lsb = bit_order == 'lsb'
self.name = f'crc{bits}_{bit_order}_0x{generator_poly:0{(2*bits+7)//8}x}'
if self.lsb:
generator_poly = bitreflect(generator_poly, bits)
self.G = generator_poly ^ (1 << bits)
# Generate tables for CRC computation using the "slice-by-N" method.
# N=1 corresponds to the traditional byte-at-a-time table.
def gen_slicebyN_tables(variants, n):
for v in variants:
print('')
print_header(v, f'Slice-by-{n} CRC table')
print(f'static const u{v.bits} __maybe_unused {v.name}_table[{256*n}] = {{')
s = ''
for i in range(256 * n):
# The i'th table entry is the CRC of the message consisting of byte
# i % 256 followed by i // 256 zero bytes.
poly = (bitreflect(i % 256, 8) if v.lsb else i % 256) << (v.bits + 8*(i//256))
next_entry = fmt_poly(v, reduce(poly, v.G), v.bits) + ','
if len(s + next_entry) > 71:
print(f'\t{s}')
s = ''
s += (' ' if s else '') + next_entry
if s:
print(f'\t{s}')
print('};')
def print_riscv_const(v, bits_per_long, name, val, desc):
print(f'\t.{name} = {fmt_poly(v, val, bits_per_long)}, /* {desc} */')
def do_gen_riscv_clmul_consts(v, bits_per_long):
(G, n, lsb) = (v.G, v.bits, v.lsb)
pow_of_x = 3 * bits_per_long - (1 if lsb else 0)
print_riscv_const(v, bits_per_long, 'fold_across_2_longs_const_hi',
reduce(1 << pow_of_x, G), f'x^{pow_of_x} mod G')
pow_of_x = 2 * bits_per_long - (1 if lsb else 0)
print_riscv_const(v, bits_per_long, 'fold_across_2_longs_const_lo',
reduce(1 << pow_of_x, G), f'x^{pow_of_x} mod G')
pow_of_x = bits_per_long - 1 + n
print_riscv_const(v, bits_per_long, 'barrett_reduction_const_1',
div(1 << pow_of_x, G), f'floor(x^{pow_of_x} / G)')
val = G - (1 << n)
desc = f'G - x^{n}'
if lsb:
val <<= bits_per_long - n
desc = f'({desc}) * x^{bits_per_long - n}'
print_riscv_const(v, bits_per_long, 'barrett_reduction_const_2', val, desc)
def gen_riscv_clmul_consts(variants):
print('')
print('struct crc_clmul_consts {');
print('\tunsigned long fold_across_2_longs_const_hi;');
print('\tunsigned long fold_across_2_longs_const_lo;');
print('\tunsigned long barrett_reduction_const_1;');
print('\tunsigned long barrett_reduction_const_2;');
print('};');
for v in variants:
print('');
if v.bits > 32:
print_header(v, 'Constants')
print('#ifdef CONFIG_64BIT')
print(f'static const struct crc_clmul_consts {v.name}_consts __maybe_unused = {{')
do_gen_riscv_clmul_consts(v, 64)
print('};')
print('#endif')
else:
print_header(v, 'Constants')
print(f'static const struct crc_clmul_consts {v.name}_consts __maybe_unused = {{')
print('#ifdef CONFIG_64BIT')
do_gen_riscv_clmul_consts(v, 64)
print('#else')
do_gen_riscv_clmul_consts(v, 32)
print('#endif')
print('};')
# Generate constants for carryless multiplication based CRC computation.
def gen_x86_pclmul_consts(variants):
# These are the distances, in bits, to generate folding constants for.
FOLD_DISTANCES = [2048, 1024, 512, 256, 128]
for v in variants:
(G, n, lsb) = (v.G, v.bits, v.lsb)
print('')
print_header(v, 'CRC folding constants')
print('static const struct {')
if not lsb:
print('\tu8 bswap_mask[16];')
for i in FOLD_DISTANCES:
print(f'\tu64 fold_across_{i}_bits_consts[2];')
print('\tu8 shuf_table[48];')
print('\tu64 barrett_reduction_consts[2];')
print(f'}} {v.name}_consts ____cacheline_aligned __maybe_unused = {{')
# Byte-reflection mask, needed for msb-first CRCs
if not lsb:
print('\t.bswap_mask = {' + ', '.join(str(i) for i in reversed(range(16))) + '},')
# Fold constants for all distances down to 128 bits
for i in FOLD_DISTANCES:
print(f'\t.fold_across_{i}_bits_consts = {{')
# Given 64x64 => 128 bit carryless multiplication instructions, two
# 64-bit fold constants are needed per "fold distance" i: one for
# HI64_TERMS that is basically x^(i+64) mod G and one for LO64_TERMS
# that is basically x^i mod G. The exact values however undergo a
# couple adjustments, described below.
mults = []
for j in [64, 0]:
pow_of_x = i + j
if lsb:
# Each 64x64 => 128 bit carryless multiplication instruction
# actually generates a 127-bit product in physical bits 0
# through 126, which in the lsb-first case represent the
# coefficients of x^1 through x^127, not x^0 through x^126.
# Thus in the lsb-first case, each such instruction
# implicitly adds an extra factor of x. The below removes a
# factor of x from each constant to compensate for this.
# For n < 64 the x could be removed from either the reduced
# part or unreduced part, but for n == 64 the reduced part
# is the only option. Just always use the reduced part.
pow_of_x -= 1
# Make a factor of x^(64-n) be applied unreduced rather than
# reduced, to cause the product to use only the x^(64-n) and
# higher terms and always be zero in the lower terms. Usually
# this makes no difference as it does not affect the product's
# congruence class mod G and the constant remains 64-bit, but
# part of the final reduction from 128 bits does rely on this
# property when it reuses one of the constants.
pow_of_x -= 64 - n
mults.append({ 'val': reduce(1 << pow_of_x, G) << (64 - n),
'desc': f'(x^{pow_of_x} mod G) * x^{64-n}' })
print_mult_pair(v, mults)
print('\t},')
# Shuffle table for handling 1..15 bytes at end
print('\t.shuf_table = {')
print('\t\t' + (16*'-1, ').rstrip())
print('\t\t' + ''.join(f'{i:2}, ' for i in range(16)).rstrip())
print('\t\t' + (16*'-1, ').rstrip())
print('\t},')
# Barrett reduction constants for reducing 128 bits to the final CRC
print('\t.barrett_reduction_consts = {')
mults = []
val = div(1 << (63+n), G)
desc = f'floor(x^{63+n} / G)'
if not lsb:
val = (val << 1) - (1 << 64)
desc = f'({desc} * x) - x^64'
mults.append({ 'val': val, 'desc': desc })
val = G - (1 << n)
desc = f'G - x^{n}'
if lsb and n == 64:
assert (val & 1) != 0 # The x^0 term should always be nonzero.
val >>= 1
desc = f'({desc} - x^0) / x'
else:
pow_of_x = 64 - n - (1 if lsb else 0)
val <<= pow_of_x
desc = f'({desc}) * x^{pow_of_x}'
mults.append({ 'val': val, 'desc': desc })
print_mult_pair(v, mults)
print('\t},')
print('};')
def parse_crc_variants(vars_string):
variants = []
for var_string in vars_string.split(','):
bits, bit_order, generator_poly = var_string.split('_')
assert bits.startswith('crc')
bits = int(bits.removeprefix('crc'))
assert generator_poly.startswith('0x')
generator_poly = generator_poly.removeprefix('0x')
assert len(generator_poly) % 2 == 0
generator_poly = int(generator_poly, 16)
variants.append(CrcVariant(bits, generator_poly, bit_order))
return variants
if len(sys.argv) != 3:
sys.stderr.write(f'Usage: {sys.argv[0]} CONSTS_TYPE[,CONSTS_TYPE]... CRC_VARIANT[,CRC_VARIANT]...\n')
sys.stderr.write(' CONSTS_TYPE can be sliceby[1-8], riscv_clmul, or x86_pclmul\n')
sys.stderr.write(' CRC_VARIANT is crc${num_bits}_${bit_order}_${generator_poly_as_hex}\n')
sys.stderr.write(' E.g. crc16_msb_0x8bb7 or crc32_lsb_0xedb88320\n')
sys.stderr.write(' Polynomial must use the given bit_order and exclude x^{num_bits}\n')
sys.exit(1)
print('/* SPDX-License-Identifier: GPL-2.0-or-later */')
print('/*')
print(' * CRC constants generated by:')
print(' *')
print(f' *\t{sys.argv[0]} {" ".join(sys.argv[1:])}')
print(' *')
print(' * Do not edit manually.')
print(' */')
consts_types = sys.argv[1].split(',')
variants = parse_crc_variants(sys.argv[2])
for consts_type in consts_types:
if consts_type.startswith('sliceby'):
gen_slicebyN_tables(variants, int(consts_type.removeprefix('sliceby')))
elif consts_type == 'riscv_clmul':
gen_riscv_clmul_consts(variants)
elif consts_type == 'x86_pclmul':
gen_x86_pclmul_consts(variants)
else:
raise ValueError(f'Unknown consts_type: {consts_type}')
|