1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021 Facebook */
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>
#include <sched.h>
#include <pthread.h>
#include <sys/syscall.h> /* For SYS_xxx definitions */
#include <sys/types.h>
#include <sys/eventfd.h>
#include <sys/mman.h>
#include <test_progs.h>
#include <bpf/btf.h>
#include "task_local_storage_helpers.h"
#include "task_local_storage.skel.h"
#include "task_local_storage_exit_creds.skel.h"
#include "task_ls_recursion.skel.h"
#include "task_storage_nodeadlock.skel.h"
#include "uptr_test_common.h"
#include "task_ls_uptr.skel.h"
#include "uptr_update_failure.skel.h"
#include "uptr_failure.skel.h"
#include "uptr_map_failure.skel.h"
static void test_sys_enter_exit(void)
{
struct task_local_storage *skel;
int err;
skel = task_local_storage__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
return;
skel->bss->target_pid = sys_gettid();
err = task_local_storage__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
sys_gettid();
sys_gettid();
/* 3x syscalls: 1x attach and 2x gettid */
ASSERT_EQ(skel->bss->enter_cnt, 3, "enter_cnt");
ASSERT_EQ(skel->bss->exit_cnt, 3, "exit_cnt");
ASSERT_EQ(skel->bss->mismatch_cnt, 0, "mismatch_cnt");
out:
task_local_storage__destroy(skel);
}
static void test_exit_creds(void)
{
struct task_local_storage_exit_creds *skel;
int err, run_count, sync_rcu_calls = 0;
const int MAX_SYNC_RCU_CALLS = 1000;
skel = task_local_storage_exit_creds__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
return;
err = task_local_storage_exit_creds__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
/* trigger at least one exit_creds() */
if (CHECK_FAIL(system("ls > /dev/null")))
goto out;
/* kern_sync_rcu is not enough on its own as the read section we want
* to wait for may start after we enter synchronize_rcu, so our call
* won't wait for the section to finish. Loop on the run counter
* as well to ensure the program has run.
*/
do {
kern_sync_rcu();
run_count = __atomic_load_n(&skel->bss->run_count, __ATOMIC_SEQ_CST);
} while (run_count == 0 && ++sync_rcu_calls < MAX_SYNC_RCU_CALLS);
ASSERT_NEQ(sync_rcu_calls, MAX_SYNC_RCU_CALLS,
"sync_rcu count too high");
ASSERT_NEQ(run_count, 0, "run_count");
ASSERT_EQ(skel->bss->valid_ptr_count, 0, "valid_ptr_count");
ASSERT_NEQ(skel->bss->null_ptr_count, 0, "null_ptr_count");
out:
task_local_storage_exit_creds__destroy(skel);
}
static void test_recursion(void)
{
int err, map_fd, prog_fd, task_fd;
struct task_ls_recursion *skel;
struct bpf_prog_info info;
__u32 info_len = sizeof(info);
long value;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_NEQ(task_fd, -1, "sys_pidfd_open"))
return;
skel = task_ls_recursion__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
err = task_ls_recursion__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
/* trigger sys_enter, make sure it does not cause deadlock */
skel->bss->test_pid = getpid();
sys_gettid();
skel->bss->test_pid = 0;
task_ls_recursion__detach(skel);
/* Refer to the comment in BPF_PROG(on_update) for
* the explanation on the value 201 and 100.
*/
map_fd = bpf_map__fd(skel->maps.map_a);
err = bpf_map_lookup_elem(map_fd, &task_fd, &value);
ASSERT_OK(err, "lookup map_a");
ASSERT_EQ(value, 201, "map_a value");
ASSERT_EQ(skel->bss->nr_del_errs, 1, "bpf_task_storage_delete busy");
map_fd = bpf_map__fd(skel->maps.map_b);
err = bpf_map_lookup_elem(map_fd, &task_fd, &value);
ASSERT_OK(err, "lookup map_b");
ASSERT_EQ(value, 100, "map_b value");
prog_fd = bpf_program__fd(skel->progs.on_update);
memset(&info, 0, sizeof(info));
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "on_update prog recursion");
prog_fd = bpf_program__fd(skel->progs.on_enter);
memset(&info, 0, sizeof(info));
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "on_enter prog recursion");
out:
close(task_fd);
task_ls_recursion__destroy(skel);
}
static bool stop;
static void waitall(const pthread_t *tids, int nr)
{
int i;
stop = true;
for (i = 0; i < nr; i++)
pthread_join(tids[i], NULL);
}
static void *sock_create_loop(void *arg)
{
struct task_storage_nodeadlock *skel = arg;
int fd;
while (!stop) {
fd = socket(AF_INET, SOCK_STREAM, 0);
close(fd);
if (skel->bss->nr_get_errs || skel->bss->nr_del_errs)
stop = true;
}
return NULL;
}
static void test_nodeadlock(void)
{
struct task_storage_nodeadlock *skel;
struct bpf_prog_info info = {};
__u32 info_len = sizeof(info);
const int nr_threads = 32;
pthread_t tids[nr_threads];
int i, prog_fd, err;
cpu_set_t old, new;
/* Pin all threads to one cpu to increase the chance of preemption
* in a sleepable bpf prog.
*/
CPU_ZERO(&new);
CPU_SET(0, &new);
err = sched_getaffinity(getpid(), sizeof(old), &old);
if (!ASSERT_OK(err, "getaffinity"))
return;
err = sched_setaffinity(getpid(), sizeof(new), &new);
if (!ASSERT_OK(err, "setaffinity"))
return;
skel = task_storage_nodeadlock__open_and_load();
if (!ASSERT_OK_PTR(skel, "open_and_load"))
goto done;
/* Unnecessary recursion and deadlock detection are reproducible
* in the preemptible kernel.
*/
if (!skel->kconfig->CONFIG_PREEMPTION) {
test__skip();
goto done;
}
err = task_storage_nodeadlock__attach(skel);
ASSERT_OK(err, "attach prog");
for (i = 0; i < nr_threads; i++) {
err = pthread_create(&tids[i], NULL, sock_create_loop, skel);
if (err) {
/* Only assert once here to avoid excessive
* PASS printing during test failure.
*/
ASSERT_OK(err, "pthread_create");
waitall(tids, i);
goto done;
}
}
/* With 32 threads, 1s is enough to reproduce the issue */
sleep(1);
waitall(tids, nr_threads);
info_len = sizeof(info);
prog_fd = bpf_program__fd(skel->progs.socket_post_create);
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "prog recursion");
ASSERT_EQ(skel->bss->nr_get_errs, 0, "bpf_task_storage_get busy");
ASSERT_EQ(skel->bss->nr_del_errs, 0, "bpf_task_storage_delete busy");
done:
task_storage_nodeadlock__destroy(skel);
sched_setaffinity(getpid(), sizeof(old), &old);
}
static struct user_data udata __attribute__((aligned(16))) = {
.a = 1,
.b = 2,
};
static struct user_data udata2 __attribute__((aligned(16))) = {
.a = 3,
.b = 4,
};
static void check_udata2(int expected)
{
udata2.result = udata2.nested_result = 0;
usleep(1);
ASSERT_EQ(udata2.result, expected, "udata2.result");
ASSERT_EQ(udata2.nested_result, expected, "udata2.nested_result");
}
static void test_uptr_basic(void)
{
int map_fd, parent_task_fd, ev_fd;
struct value_type value = {};
struct task_ls_uptr *skel;
pid_t child_pid, my_tid;
__u64 ev_dummy_data = 1;
int err;
my_tid = sys_gettid();
parent_task_fd = sys_pidfd_open(my_tid, 0);
if (!ASSERT_OK_FD(parent_task_fd, "parent_task_fd"))
return;
ev_fd = eventfd(0, 0);
if (!ASSERT_OK_FD(ev_fd, "ev_fd")) {
close(parent_task_fd);
return;
}
skel = task_ls_uptr__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = &udata;
value.nested.udata = &udata;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_NOEXIST);
if (!ASSERT_OK(err, "update_elem(udata)"))
goto out;
err = task_ls_uptr__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
child_pid = fork();
if (!ASSERT_NEQ(child_pid, -1, "fork"))
goto out;
/* Call syscall in the child process, but access the map value of
* the parent process in the BPF program to check if the user kptr
* is translated/mapped correctly.
*/
if (child_pid == 0) {
/* child */
/* Overwrite the user_data in the child process to check if
* the BPF program accesses the user_data of the parent.
*/
udata.a = 0;
udata.b = 0;
/* Wait for the parent to set child_pid */
read(ev_fd, &ev_dummy_data, sizeof(ev_dummy_data));
exit(0);
}
skel->bss->parent_pid = my_tid;
skel->bss->target_pid = child_pid;
write(ev_fd, &ev_dummy_data, sizeof(ev_dummy_data));
err = waitpid(child_pid, NULL, 0);
ASSERT_EQ(err, child_pid, "waitpid");
ASSERT_EQ(udata.result, MAGIC_VALUE + udata.a + udata.b, "udata.result");
ASSERT_EQ(udata.nested_result, MAGIC_VALUE + udata.a + udata.b, "udata.nested_result");
skel->bss->target_pid = my_tid;
/* update_elem: uptr changes from udata1 to udata2 */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(MAGIC_VALUE + udata2.a + udata2.b);
/* update_elem: uptr changes from udata2 uptr to NULL */
memset(&value, 0, sizeof(value));
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(0);
/* update_elem: uptr changes from NULL to udata2 */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(MAGIC_VALUE + udata2.a + udata2.b);
/* Check if user programs can access the value of user kptrs
* through bpf_map_lookup_elem(). Make sure the kernel value is not
* leaked.
*/
err = bpf_map_lookup_elem(map_fd, &parent_task_fd, &value);
if (!ASSERT_OK(err, "bpf_map_lookup_elem"))
goto out;
ASSERT_EQ(value.udata, NULL, "value.udata");
ASSERT_EQ(value.nested.udata, NULL, "value.nested.udata");
/* delete_elem */
err = bpf_map_delete_elem(map_fd, &parent_task_fd);
ASSERT_OK(err, "delete_elem(udata2)");
check_udata2(0);
/* update_elem: add uptr back to test map_free */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_NOEXIST);
ASSERT_OK(err, "update_elem(udata2)");
out:
task_ls_uptr__destroy(skel);
close(ev_fd);
close(parent_task_fd);
}
static void test_uptr_across_pages(void)
{
int page_size = getpagesize();
struct value_type value = {};
struct task_ls_uptr *skel;
int err, task_fd, map_fd;
void *mem;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_OK_FD(task_fd, "task_fd"))
return;
mem = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (!ASSERT_OK_PTR(mem, "mmap(page_size * 2)")) {
close(task_fd);
return;
}
skel = task_ls_uptr__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = mem + page_size - offsetof(struct user_data, b);
err = bpf_map_update_elem(map_fd, &task_fd, &value, 0);
if (!ASSERT_ERR(err, "update_elem(udata)"))
goto out;
ASSERT_EQ(errno, EOPNOTSUPP, "errno");
value.udata = mem + page_size - sizeof(struct user_data);
err = bpf_map_update_elem(map_fd, &task_fd, &value, 0);
ASSERT_OK(err, "update_elem(udata)");
out:
task_ls_uptr__destroy(skel);
close(task_fd);
munmap(mem, page_size * 2);
}
static void test_uptr_update_failure(void)
{
struct value_lock_type value = {};
struct uptr_update_failure *skel;
int err, task_fd, map_fd;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_OK_FD(task_fd, "task_fd"))
return;
skel = uptr_update_failure__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = &udata;
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_F_LOCK);
if (!ASSERT_ERR(err, "update_elem(udata, BPF_F_LOCK)"))
goto out;
ASSERT_EQ(errno, EOPNOTSUPP, "errno");
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_EXIST);
if (!ASSERT_ERR(err, "update_elem(udata, BPF_EXIST)"))
goto out;
ASSERT_EQ(errno, ENOENT, "errno");
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_NOEXIST);
if (!ASSERT_OK(err, "update_elem(udata, BPF_NOEXIST)"))
goto out;
value.udata = &udata2;
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_NOEXIST);
if (!ASSERT_ERR(err, "update_elem(udata2, BPF_NOEXIST)"))
goto out;
ASSERT_EQ(errno, EEXIST, "errno");
out:
uptr_update_failure__destroy(skel);
close(task_fd);
}
static void test_uptr_map_failure(const char *map_name, int expected_errno)
{
LIBBPF_OPTS(bpf_map_create_opts, create_attr);
struct uptr_map_failure *skel;
struct bpf_map *map;
struct btf *btf;
int map_fd, err;
skel = uptr_map_failure__open();
if (!ASSERT_OK_PTR(skel, "uptr_map_failure__open"))
return;
map = bpf_object__find_map_by_name(skel->obj, map_name);
btf = bpf_object__btf(skel->obj);
err = btf__load_into_kernel(btf);
if (!ASSERT_OK(err, "btf__load_into_kernel"))
goto done;
create_attr.map_flags = bpf_map__map_flags(map);
create_attr.btf_fd = btf__fd(btf);
create_attr.btf_key_type_id = bpf_map__btf_key_type_id(map);
create_attr.btf_value_type_id = bpf_map__btf_value_type_id(map);
map_fd = bpf_map_create(bpf_map__type(map), map_name,
bpf_map__key_size(map), bpf_map__value_size(map),
0, &create_attr);
if (ASSERT_ERR_FD(map_fd, "map_create"))
ASSERT_EQ(errno, expected_errno, "errno");
else
close(map_fd);
done:
uptr_map_failure__destroy(skel);
}
void test_task_local_storage(void)
{
if (test__start_subtest("sys_enter_exit"))
test_sys_enter_exit();
if (test__start_subtest("exit_creds"))
test_exit_creds();
if (test__start_subtest("recursion"))
test_recursion();
if (test__start_subtest("nodeadlock"))
test_nodeadlock();
if (test__start_subtest("uptr_basic"))
test_uptr_basic();
if (test__start_subtest("uptr_across_pages"))
test_uptr_across_pages();
if (test__start_subtest("uptr_update_failure"))
test_uptr_update_failure();
if (test__start_subtest("uptr_map_failure_e2big")) {
if (getpagesize() == PAGE_SIZE)
test_uptr_map_failure("large_uptr_map", E2BIG);
else
test__skip();
}
if (test__start_subtest("uptr_map_failure_size0"))
test_uptr_map_failure("empty_uptr_map", EINVAL);
if (test__start_subtest("uptr_map_failure_kstruct"))
test_uptr_map_failure("kstruct_uptr_map", EINVAL);
RUN_TESTS(uptr_failure);
}
|