1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Generic pwmlib implementation
*
* Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
* Copyright (C) 2011-2012 Avionic Design GmbH
*/
#define DEFAULT_SYMBOL_NAMESPACE "PWM"
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/idr.h>
#include <linux/of.h>
#include <linux/pwm.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <dt-bindings/pwm/pwm.h>
#define CREATE_TRACE_POINTS
#include <trace/events/pwm.h>
/* protects access to pwm_chips */
static DEFINE_MUTEX(pwm_lock);
static DEFINE_IDR(pwm_chips);
static void pwmchip_lock(struct pwm_chip *chip)
{
if (chip->atomic)
spin_lock(&chip->atomic_lock);
else
mutex_lock(&chip->nonatomic_lock);
}
static void pwmchip_unlock(struct pwm_chip *chip)
{
if (chip->atomic)
spin_unlock(&chip->atomic_lock);
else
mutex_unlock(&chip->nonatomic_lock);
}
DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
static bool pwm_wf_valid(const struct pwm_waveform *wf)
{
/*
* For now restrict waveforms to period_length_ns <= S64_MAX to provide
* some space for future extensions. One possibility is to simplify
* representing waveforms with inverted polarity using negative values
* somehow.
*/
if (wf->period_length_ns > S64_MAX)
return false;
if (wf->duty_length_ns > wf->period_length_ns)
return false;
/*
* .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
* from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
*/
if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
return false;
return true;
}
static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
{
if (wf->period_length_ns) {
if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
*state = (struct pwm_state){
.enabled = true,
.polarity = PWM_POLARITY_NORMAL,
.period = wf->period_length_ns,
.duty_cycle = wf->duty_length_ns,
};
else
*state = (struct pwm_state){
.enabled = true,
.polarity = PWM_POLARITY_INVERSED,
.period = wf->period_length_ns,
.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
};
} else {
*state = (struct pwm_state){
.enabled = false,
};
}
}
static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
{
if (state->enabled) {
if (state->polarity == PWM_POLARITY_NORMAL)
*wf = (struct pwm_waveform){
.period_length_ns = state->period,
.duty_length_ns = state->duty_cycle,
.duty_offset_ns = 0,
};
else
*wf = (struct pwm_waveform){
.period_length_ns = state->period,
.duty_length_ns = state->period - state->duty_cycle,
.duty_offset_ns = state->duty_cycle,
};
} else {
*wf = (struct pwm_waveform){
.period_length_ns = 0,
};
}
}
static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
{
if (a->period_length_ns > b->period_length_ns)
return 1;
if (a->period_length_ns < b->period_length_ns)
return -1;
if (a->duty_length_ns > b->duty_length_ns)
return 1;
if (a->duty_length_ns < b->duty_length_ns)
return -1;
if (a->duty_offset_ns > b->duty_offset_ns)
return 1;
if (a->duty_offset_ns < b->duty_offset_ns)
return -1;
return 0;
}
static bool pwm_check_rounding(const struct pwm_waveform *wf,
const struct pwm_waveform *wf_rounded)
{
if (!wf->period_length_ns)
return true;
if (wf->period_length_ns < wf_rounded->period_length_ns)
return false;
if (wf->duty_length_ns < wf_rounded->duty_length_ns)
return false;
if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
return false;
return true;
}
static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_waveform *wf, void *wfhw)
{
const struct pwm_ops *ops = chip->ops;
int ret;
ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
return ret;
}
static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
const void *wfhw, struct pwm_waveform *wf)
{
const struct pwm_ops *ops = chip->ops;
int ret;
ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
return ret;
}
static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
{
const struct pwm_ops *ops = chip->ops;
int ret;
ret = ops->read_waveform(chip, pwm, wfhw);
trace_pwm_read_waveform(pwm, wfhw, ret);
return ret;
}
static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
{
const struct pwm_ops *ops = chip->ops;
int ret;
ret = ops->write_waveform(chip, pwm, wfhw);
trace_pwm_write_waveform(pwm, wfhw, ret);
return ret;
}
#define WFHWSIZE 20
/**
* pwm_round_waveform_might_sleep - Query hardware capabilities
* Cannot be used in atomic context.
* @pwm: PWM device
* @wf: waveform to round and output parameter
*
* Typically a given waveform cannot be implemented exactly by hardware, e.g.
* because hardware only supports coarse period resolution or no duty_offset.
* This function returns the actually implemented waveform if you pass @wf to
* pwm_set_waveform_might_sleep() now.
*
* Note however that the world doesn't stop turning when you call it, so when
* doing::
*
* pwm_round_waveform_might_sleep(mypwm, &wf);
* pwm_set_waveform_might_sleep(mypwm, &wf, true);
*
* the latter might fail, e.g. because an input clock changed its rate between
* these two calls and the waveform determined by
* pwm_round_waveform_might_sleep() cannot be implemented any more.
*
* Usually all values passed in @wf are rounded down to the nearest possible
* value (in the order period_length_ns, duty_length_ns and then
* duty_offset_ns). Only if this isn't possible, a value might grow. See the
* documentation for pwm_set_waveform_might_sleep() for a more formal
* description.
*
* Returns: 0 on success, 1 if at least one value had to be rounded up or a
* negative errno.
* Context: May sleep.
*/
int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
struct pwm_waveform wf_req = *wf;
char wfhw[WFHWSIZE];
int ret_tohw, ret_fromhw;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
if (!pwmchip_supports_waveform(chip))
return -EOPNOTSUPP;
if (!pwm_wf_valid(wf))
return -EINVAL;
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
if (ret_tohw < 0)
return ret_tohw;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
if (ret_fromhw < 0)
return ret_fromhw;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
(ret_tohw == 0) != pwm_check_rounding(&wf_req, wf))
dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw);
return ret_tohw;
}
EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
/**
* pwm_get_waveform_might_sleep - Query hardware about current configuration
* Cannot be used in atomic context.
* @pwm: PWM device
* @wf: output parameter
*
* Stores the current configuration of the PWM in @wf. Note this is the
* equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
*
* Returns: 0 on success or a negative errno
* Context: May sleep.
*/
int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
char wfhw[WFHWSIZE];
int err;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
return -EOPNOTSUPP;
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
err = __pwm_read_waveform(chip, pwm, &wfhw);
if (err)
return err;
return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
}
EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
/* Called with the pwmchip lock held */
static int __pwm_set_waveform(struct pwm_device *pwm,
const struct pwm_waveform *wf,
bool exact)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
char wfhw[WFHWSIZE];
struct pwm_waveform wf_rounded;
int err, ret_tohw;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
if (!pwmchip_supports_waveform(chip))
return -EOPNOTSUPP;
if (!pwm_wf_valid(wf))
return -EINVAL;
ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
if (ret_tohw < 0)
return ret_tohw;
if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
if (err)
return err;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded))
dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw);
if (exact && pwmwfcmp(wf, &wf_rounded)) {
dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
return 1;
}
}
err = __pwm_write_waveform(chip, pwm, &wfhw);
if (err)
return err;
/* update .state */
pwm_wf2state(wf, &pwm->state);
if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
struct pwm_waveform wf_set;
err = __pwm_read_waveform(chip, pwm, &wfhw);
if (err)
/* maybe ignore? */
return err;
err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
if (err)
/* maybe ignore? */
return err;
if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
dev_err(&chip->dev,
"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
}
return ret_tohw;
}
/**
* pwm_set_waveform_might_sleep - Apply a new waveform
* Cannot be used in atomic context.
* @pwm: PWM device
* @wf: The waveform to apply
* @exact: If true no rounding is allowed
*
* Typically a requested waveform cannot be implemented exactly, e.g. because
* you requested .period_length_ns = 100 ns, but the hardware can only set
* periods that are a multiple of 8.5 ns. With that hardware passing @exact =
* true results in pwm_set_waveform_might_sleep() failing and returning -EDOM.
* If @exact = false you get a period of 93.5 ns (i.e. the biggest period not
* bigger than the requested value).
* Note that even with @exact = true, some rounding by less than 1 ns is
* possible/needed. In the above example requesting .period_length_ns = 94 and
* @exact = true, you get the hardware configured with period = 93.5 ns.
*
* Let C be the set of possible hardware configurations for a given PWM device,
* consisting of tuples (p, d, o) where p is the period length, d is the duty
* length and o the duty offset.
*
* The following algorithm is implemented to pick the hardware setting
* (p, d, o) ∈ C for a given request (p', d', o') with @exact = false::
*
* p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) })
* d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) })
* o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) })
*
* In words: The chosen period length is the maximal possible period length not
* bigger than the requested period length and if that doesn't exist, the
* minimal period length. The chosen duty length is the maximal possible duty
* length that is compatible with the chosen period length and isn't bigger than
* the requested duty length. Again if such a value doesn't exist, the minimal
* duty length compatible with the chosen period is picked. After that the duty
* offset compatible with the chosen period and duty length is chosen in the
* same way.
*
* Returns: 0 on success, -EDOM if setting failed due to the exact waveform not
* being possible (if @exact), or a different negative errno on failure.
* Context: May sleep.
*/
int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
const struct pwm_waveform *wf, bool exact)
{
struct pwm_chip *chip = pwm->chip;
int err;
might_sleep();
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
/*
* Catch any drivers that have been marked as atomic but
* that will sleep anyway.
*/
non_block_start();
err = __pwm_set_waveform(pwm, wf, exact);
non_block_end();
} else {
err = __pwm_set_waveform(pwm, wf, exact);
}
/*
* map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also
* make sure that -EDOM is only returned in exactly that case. Note that
* __pwm_set_waveform() should never return -EDOM which justifies the
* unlikely().
*/
if (unlikely(err == -EDOM))
err = -EINVAL;
else if (exact && err == 1)
err = -EDOM;
else if (err == 1)
err = 0;
return err;
}
EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
static void pwm_apply_debug(struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pwm_state *last = &pwm->last;
struct pwm_chip *chip = pwm->chip;
struct pwm_state s1 = { 0 }, s2 = { 0 };
int err;
if (!IS_ENABLED(CONFIG_PWM_DEBUG))
return;
/* No reasonable diagnosis possible without .get_state() */
if (!chip->ops->get_state)
return;
/*
* *state was just applied. Read out the hardware state and do some
* checks.
*/
err = chip->ops->get_state(chip, pwm, &s1);
trace_pwm_get(pwm, &s1, err);
if (err)
/* If that failed there isn't much to debug */
return;
/*
* The lowlevel driver either ignored .polarity (which is a bug) or as
* best effort inverted .polarity and fixed .duty_cycle respectively.
* Undo this inversion and fixup for further tests.
*/
if (s1.enabled && s1.polarity != state->polarity) {
s2.polarity = state->polarity;
s2.duty_cycle = s1.period - s1.duty_cycle;
s2.period = s1.period;
s2.enabled = s1.enabled;
} else {
s2 = s1;
}
if (s2.polarity != state->polarity &&
state->duty_cycle < state->period)
dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
if (state->enabled && s2.enabled &&
last->polarity == state->polarity &&
last->period > s2.period &&
last->period <= state->period)
dev_warn(pwmchip_parent(chip),
".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
state->period, s2.period, last->period);
/*
* Rounding period up is fine only if duty_cycle is 0 then, because a
* flat line doesn't have a characteristic period.
*/
if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
dev_warn(pwmchip_parent(chip),
".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
state->period, s2.period);
if (state->enabled &&
last->polarity == state->polarity &&
last->period == s2.period &&
last->duty_cycle > s2.duty_cycle &&
last->duty_cycle <= state->duty_cycle)
dev_warn(pwmchip_parent(chip),
".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
state->duty_cycle, state->period,
s2.duty_cycle, s2.period,
last->duty_cycle, last->period);
if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
dev_warn(pwmchip_parent(chip),
".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
state->duty_cycle, state->period,
s2.duty_cycle, s2.period);
if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
dev_warn(pwmchip_parent(chip),
"requested disabled, but yielded enabled with duty > 0\n");
/* reapply the state that the driver reported being configured. */
err = chip->ops->apply(chip, pwm, &s1);
trace_pwm_apply(pwm, &s1, err);
if (err) {
*last = s1;
dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
return;
}
*last = (struct pwm_state){ 0 };
err = chip->ops->get_state(chip, pwm, last);
trace_pwm_get(pwm, last, err);
if (err)
return;
/* reapplication of the current state should give an exact match */
if (s1.enabled != last->enabled ||
s1.polarity != last->polarity ||
(s1.enabled && s1.period != last->period) ||
(s1.enabled && s1.duty_cycle != last->duty_cycle)) {
dev_err(pwmchip_parent(chip),
".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
last->enabled, last->polarity, last->duty_cycle,
last->period);
}
}
static bool pwm_state_valid(const struct pwm_state *state)
{
/*
* For a disabled state all other state description is irrelevant and
* and supposed to be ignored. So also ignore any strange values and
* consider the state ok.
*/
if (!state->enabled)
return true;
if (!state->period)
return false;
if (state->duty_cycle > state->period)
return false;
return true;
}
static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
{
struct pwm_chip *chip;
const struct pwm_ops *ops;
int err;
if (!pwm || !state)
return -EINVAL;
if (!pwm_state_valid(state)) {
/*
* Allow to transition from one invalid state to another.
* This ensures that you can e.g. change the polarity while
* the period is zero. (This happens on stm32 when the hardware
* is in its poweron default state.) This greatly simplifies
* working with the sysfs API where you can only change one
* parameter at a time.
*/
if (!pwm_state_valid(&pwm->state)) {
pwm->state = *state;
return 0;
}
return -EINVAL;
}
chip = pwm->chip;
ops = chip->ops;
if (state->period == pwm->state.period &&
state->duty_cycle == pwm->state.duty_cycle &&
state->polarity == pwm->state.polarity &&
state->enabled == pwm->state.enabled &&
state->usage_power == pwm->state.usage_power)
return 0;
if (pwmchip_supports_waveform(chip)) {
struct pwm_waveform wf;
char wfhw[WFHWSIZE];
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
pwm_state2wf(state, &wf);
/*
* The rounding is wrong here for states with inverted polarity.
* While .apply() rounds down duty_cycle (which represents the
* time from the start of the period to the inner edge),
* .round_waveform_tohw() rounds down the time the PWM is high.
* Can be fixed if the need arises, until reported otherwise
* let's assume that consumers don't care.
*/
err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
if (err) {
if (err > 0)
/*
* This signals an invalid request, typically
* the requested period (or duty_offset) is
* smaller than possible with the hardware.
*/
return -EINVAL;
return err;
}
if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
struct pwm_waveform wf_rounded;
err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
if (err)
return err;
if (!pwm_check_rounding(&wf, &wf_rounded))
dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
}
err = __pwm_write_waveform(chip, pwm, &wfhw);
if (err)
return err;
pwm->state = *state;
} else {
err = ops->apply(chip, pwm, state);
trace_pwm_apply(pwm, state, err);
if (err)
return err;
pwm->state = *state;
/*
* only do this after pwm->state was applied as some
* implementations of .get_state() depend on this
*/
pwm_apply_debug(pwm, state);
}
return 0;
}
/**
* pwm_apply_might_sleep() - atomically apply a new state to a PWM device
* Cannot be used in atomic context.
* @pwm: PWM device
* @state: new state to apply
*
* Returns: 0 on success, or a negative errno
* Context: May sleep.
*/
int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
{
int err;
struct pwm_chip *chip = pwm->chip;
/*
* Some lowlevel driver's implementations of .apply() make use of
* mutexes, also with some drivers only returning when the new
* configuration is active calling pwm_apply_might_sleep() from atomic context
* is a bad idea. So make it explicit that calling this function might
* sleep.
*/
might_sleep();
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
/*
* Catch any drivers that have been marked as atomic but
* that will sleep anyway.
*/
non_block_start();
err = __pwm_apply(pwm, state);
non_block_end();
} else {
err = __pwm_apply(pwm, state);
}
return err;
}
EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
/**
* pwm_apply_atomic() - apply a new state to a PWM device from atomic context
* Not all PWM devices support this function, check with pwm_might_sleep().
* @pwm: PWM device
* @state: new state to apply
*
* Returns: 0 on success, or a negative errno
* Context: Any
*/
int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
{
struct pwm_chip *chip = pwm->chip;
WARN_ONCE(!chip->atomic,
"sleeping PWM driver used in atomic context\n");
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
return __pwm_apply(pwm, state);
}
EXPORT_SYMBOL_GPL(pwm_apply_atomic);
/**
* pwm_get_state_hw() - get the current PWM state from hardware
* @pwm: PWM device
* @state: state to fill with the current PWM state
*
* Similar to pwm_get_state() but reads the current PWM state from hardware
* instead of the requested state.
*
* Returns: 0 on success or a negative error code on failure.
* Context: May sleep.
*/
int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
int ret = -EOPNOTSUPP;
might_sleep();
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
char wfhw[WFHWSIZE];
struct pwm_waveform wf;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
ret = __pwm_read_waveform(chip, pwm, &wfhw);
if (ret)
return ret;
ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
if (ret)
return ret;
pwm_wf2state(&wf, state);
} else if (ops->get_state) {
ret = ops->get_state(chip, pwm, state);
trace_pwm_get(pwm, state, ret);
}
return ret;
}
EXPORT_SYMBOL_GPL(pwm_get_state_hw);
/**
* pwm_adjust_config() - adjust the current PWM config to the PWM arguments
* @pwm: PWM device
*
* This function will adjust the PWM config to the PWM arguments provided
* by the DT or PWM lookup table. This is particularly useful to adapt
* the bootloader config to the Linux one.
*
* Returns: 0 on success or a negative error code on failure.
* Context: May sleep.
*/
int pwm_adjust_config(struct pwm_device *pwm)
{
struct pwm_state state;
struct pwm_args pargs;
pwm_get_args(pwm, &pargs);
pwm_get_state(pwm, &state);
/*
* If the current period is zero it means that either the PWM driver
* does not support initial state retrieval or the PWM has not yet
* been configured.
*
* In either case, we setup the new period and polarity, and assign a
* duty cycle of 0.
*/
if (!state.period) {
state.duty_cycle = 0;
state.period = pargs.period;
state.polarity = pargs.polarity;
return pwm_apply_might_sleep(pwm, &state);
}
/*
* Adjust the PWM duty cycle/period based on the period value provided
* in PWM args.
*/
if (pargs.period != state.period) {
u64 dutycycle = (u64)state.duty_cycle * pargs.period;
do_div(dutycycle, state.period);
state.duty_cycle = dutycycle;
state.period = pargs.period;
}
/*
* If the polarity changed, we should also change the duty cycle.
*/
if (pargs.polarity != state.polarity) {
state.polarity = pargs.polarity;
state.duty_cycle = state.period - state.duty_cycle;
}
return pwm_apply_might_sleep(pwm, &state);
}
EXPORT_SYMBOL_GPL(pwm_adjust_config);
/**
* pwm_capture() - capture and report a PWM signal
* @pwm: PWM device
* @result: structure to fill with capture result
* @timeout: time to wait, in milliseconds, before giving up on capture
*
* Returns: 0 on success or a negative error code on failure.
*/
static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
unsigned long timeout)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
if (!ops->capture)
return -ENOSYS;
/*
* Holding the pwm_lock is probably not needed. If you use pwm_capture()
* and you're interested to speed it up, please convince yourself it's
* really not needed, test and then suggest a patch on the mailing list.
*/
guard(mutex)(&pwm_lock);
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
return ops->capture(chip, pwm, result, timeout);
}
static struct pwm_chip *pwmchip_find_by_name(const char *name)
{
struct pwm_chip *chip;
unsigned long id, tmp;
if (!name)
return NULL;
guard(mutex)(&pwm_lock);
idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
if (device_match_name(pwmchip_parent(chip), name))
return chip;
}
return NULL;
}
static int pwm_device_request(struct pwm_device *pwm, const char *label)
{
int err;
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
if (test_bit(PWMF_REQUESTED, &pwm->flags))
return -EBUSY;
/*
* This function is called while holding pwm_lock. As .operational only
* changes while holding this lock, checking it here without holding the
* chip lock is fine.
*/
if (!chip->operational)
return -ENODEV;
if (!try_module_get(chip->owner))
return -ENODEV;
if (!get_device(&chip->dev)) {
err = -ENODEV;
goto err_get_device;
}
if (ops->request) {
err = ops->request(chip, pwm);
if (err) {
put_device(&chip->dev);
err_get_device:
module_put(chip->owner);
return err;
}
}
if (ops->read_waveform || ops->get_state) {
/*
* Zero-initialize state because most drivers are unaware of
* .usage_power. The other members of state are supposed to be
* set by lowlevel drivers. We still initialize the whole
* structure for simplicity even though this might paper over
* faulty implementations of .get_state().
*/
struct pwm_state state = { 0, };
err = pwm_get_state_hw(pwm, &state);
if (!err)
pwm->state = state;
if (IS_ENABLED(CONFIG_PWM_DEBUG))
pwm->last = pwm->state;
}
set_bit(PWMF_REQUESTED, &pwm->flags);
pwm->label = label;
return 0;
}
/**
* pwm_request_from_chip() - request a PWM device relative to a PWM chip
* @chip: PWM chip
* @index: per-chip index of the PWM to request
* @label: a literal description string of this PWM
*
* Returns: A pointer to the PWM device at the given index of the given PWM
* chip. A negative error code is returned if the index is not valid for the
* specified PWM chip or if the PWM device cannot be requested.
*/
static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
unsigned int index,
const char *label)
{
struct pwm_device *pwm;
int err;
if (!chip || index >= chip->npwm)
return ERR_PTR(-EINVAL);
guard(mutex)(&pwm_lock);
pwm = &chip->pwms[index];
err = pwm_device_request(pwm, label);
if (err < 0)
return ERR_PTR(err);
return pwm;
}
struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
{
struct pwm_device *pwm;
/* period in the second cell and flags in the third cell are optional */
if (args->args_count < 1)
return ERR_PTR(-EINVAL);
pwm = pwm_request_from_chip(chip, args->args[0], NULL);
if (IS_ERR(pwm))
return pwm;
if (args->args_count > 1)
pwm->args.period = args->args[1];
pwm->args.polarity = PWM_POLARITY_NORMAL;
if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
pwm->args.polarity = PWM_POLARITY_INVERSED;
return pwm;
}
EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
/*
* This callback is used for PXA PWM chips that only have a single PWM line.
* For such chips you could argue that passing the line number (i.e. the first
* parameter in the common case) is useless as it's always zero. So compared to
* the default xlate function of_pwm_xlate_with_flags() the first parameter is
* the default period and the second are flags.
*
* Note that if #pwm-cells = <3>, the semantic is the same as for
* of_pwm_xlate_with_flags() to allow converting the affected driver to
* #pwm-cells = <3> without breaking the legacy binding.
*
* Don't use for new drivers.
*/
struct pwm_device *
of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
{
struct pwm_device *pwm;
if (args->args_count >= 3)
return of_pwm_xlate_with_flags(chip, args);
pwm = pwm_request_from_chip(chip, 0, NULL);
if (IS_ERR(pwm))
return pwm;
if (args->args_count > 0)
pwm->args.period = args->args[0];
pwm->args.polarity = PWM_POLARITY_NORMAL;
if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
pwm->args.polarity = PWM_POLARITY_INVERSED;
return pwm;
}
EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
struct pwm_export {
struct device pwm_dev;
struct pwm_device *pwm;
struct mutex lock;
struct pwm_state suspend;
};
static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
{
return container_of(pwmchip_dev, struct pwm_chip, dev);
}
static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
{
return container_of(pwm_dev, struct pwm_export, pwm_dev);
}
static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
{
struct pwm_export *export = pwmexport_from_dev(pwm_dev);
return export->pwm;
}
static ssize_t period_show(struct device *pwm_dev,
struct device_attribute *attr,
char *buf)
{
const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
struct pwm_state state;
pwm_get_state(pwm, &state);
return sysfs_emit(buf, "%llu\n", state.period);
}
static ssize_t period_store(struct device *pwm_dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct pwm_export *export = pwmexport_from_dev(pwm_dev);
struct pwm_device *pwm = export->pwm;
struct pwm_state state;
u64 val;
int ret;
ret = kstrtou64(buf, 0, &val);
if (ret)
return ret;
guard(mutex)(&export->lock);
pwm_get_state(pwm, &state);
state.period = val;
ret = pwm_apply_might_sleep(pwm, &state);
return ret ? : size;
}
static ssize_t duty_cycle_show(struct device *pwm_dev,
struct device_attribute *attr,
char *buf)
{
const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
struct pwm_state state;
pwm_get_state(pwm, &state);
return sysfs_emit(buf, "%llu\n", state.duty_cycle);
}
static ssize_t duty_cycle_store(struct device *pwm_dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct pwm_export *export = pwmexport_from_dev(pwm_dev);
struct pwm_device *pwm = export->pwm;
struct pwm_state state;
u64 val;
int ret;
ret = kstrtou64(buf, 0, &val);
if (ret)
return ret;
guard(mutex)(&export->lock);
pwm_get_state(pwm, &state);
state.duty_cycle = val;
ret = pwm_apply_might_sleep(pwm, &state);
return ret ? : size;
}
static ssize_t enable_show(struct device *pwm_dev,
struct device_attribute *attr,
char *buf)
{
const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
struct pwm_state state;
pwm_get_state(pwm, &state);
return sysfs_emit(buf, "%d\n", state.enabled);
}
static ssize_t enable_store(struct device *pwm_dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct pwm_export *export = pwmexport_from_dev(pwm_dev);
struct pwm_device *pwm = export->pwm;
struct pwm_state state;
int val, ret;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
guard(mutex)(&export->lock);
pwm_get_state(pwm, &state);
switch (val) {
case 0:
state.enabled = false;
break;
case 1:
state.enabled = true;
break;
default:
return -EINVAL;
}
ret = pwm_apply_might_sleep(pwm, &state);
return ret ? : size;
}
static ssize_t polarity_show(struct device *pwm_dev,
struct device_attribute *attr,
char *buf)
{
const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
const char *polarity = "unknown";
struct pwm_state state;
pwm_get_state(pwm, &state);
switch (state.polarity) {
case PWM_POLARITY_NORMAL:
polarity = "normal";
break;
case PWM_POLARITY_INVERSED:
polarity = "inversed";
break;
}
return sysfs_emit(buf, "%s\n", polarity);
}
static ssize_t polarity_store(struct device *pwm_dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct pwm_export *export = pwmexport_from_dev(pwm_dev);
struct pwm_device *pwm = export->pwm;
enum pwm_polarity polarity;
struct pwm_state state;
int ret;
if (sysfs_streq(buf, "normal"))
polarity = PWM_POLARITY_NORMAL;
else if (sysfs_streq(buf, "inversed"))
polarity = PWM_POLARITY_INVERSED;
else
return -EINVAL;
guard(mutex)(&export->lock);
pwm_get_state(pwm, &state);
state.polarity = polarity;
ret = pwm_apply_might_sleep(pwm, &state);
return ret ? : size;
}
static ssize_t capture_show(struct device *pwm_dev,
struct device_attribute *attr,
char *buf)
{
struct pwm_device *pwm = pwm_from_dev(pwm_dev);
struct pwm_capture result;
int ret;
ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
if (ret)
return ret;
return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
}
static DEVICE_ATTR_RW(period);
static DEVICE_ATTR_RW(duty_cycle);
static DEVICE_ATTR_RW(enable);
static DEVICE_ATTR_RW(polarity);
static DEVICE_ATTR_RO(capture);
static struct attribute *pwm_attrs[] = {
&dev_attr_period.attr,
&dev_attr_duty_cycle.attr,
&dev_attr_enable.attr,
&dev_attr_polarity.attr,
&dev_attr_capture.attr,
NULL
};
ATTRIBUTE_GROUPS(pwm);
static void pwm_export_release(struct device *pwm_dev)
{
struct pwm_export *export = pwmexport_from_dev(pwm_dev);
kfree(export);
}
static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
{
struct pwm_export *export;
char *pwm_prop[2];
int ret;
if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
return -EBUSY;
export = kzalloc(sizeof(*export), GFP_KERNEL);
if (!export) {
clear_bit(PWMF_EXPORTED, &pwm->flags);
return -ENOMEM;
}
export->pwm = pwm;
mutex_init(&export->lock);
export->pwm_dev.release = pwm_export_release;
export->pwm_dev.parent = pwmchip_dev;
export->pwm_dev.devt = MKDEV(0, 0);
export->pwm_dev.groups = pwm_groups;
dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
ret = device_register(&export->pwm_dev);
if (ret) {
clear_bit(PWMF_EXPORTED, &pwm->flags);
put_device(&export->pwm_dev);
export = NULL;
return ret;
}
pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
pwm_prop[1] = NULL;
kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
kfree(pwm_prop[0]);
return 0;
}
static int pwm_unexport_match(struct device *pwm_dev, const void *data)
{
return pwm_from_dev(pwm_dev) == data;
}
static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
{
struct device *pwm_dev;
char *pwm_prop[2];
if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
return -ENODEV;
pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
if (!pwm_dev)
return -ENODEV;
pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
pwm_prop[1] = NULL;
kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
kfree(pwm_prop[0]);
/* for device_find_child() */
put_device(pwm_dev);
device_unregister(pwm_dev);
pwm_put(pwm);
return 0;
}
static ssize_t export_store(struct device *pwmchip_dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
struct pwm_device *pwm;
unsigned int hwpwm;
int ret;
ret = kstrtouint(buf, 0, &hwpwm);
if (ret < 0)
return ret;
if (hwpwm >= chip->npwm)
return -ENODEV;
pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
if (IS_ERR(pwm))
return PTR_ERR(pwm);
ret = pwm_export_child(pwmchip_dev, pwm);
if (ret < 0)
pwm_put(pwm);
return ret ? : len;
}
static DEVICE_ATTR_WO(export);
static ssize_t unexport_store(struct device *pwmchip_dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
unsigned int hwpwm;
int ret;
ret = kstrtouint(buf, 0, &hwpwm);
if (ret < 0)
return ret;
if (hwpwm >= chip->npwm)
return -ENODEV;
ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
return ret ? : len;
}
static DEVICE_ATTR_WO(unexport);
static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
char *buf)
{
const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
return sysfs_emit(buf, "%u\n", chip->npwm);
}
static DEVICE_ATTR_RO(npwm);
static struct attribute *pwm_chip_attrs[] = {
&dev_attr_export.attr,
&dev_attr_unexport.attr,
&dev_attr_npwm.attr,
NULL,
};
ATTRIBUTE_GROUPS(pwm_chip);
/* takes export->lock on success */
static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
struct pwm_device *pwm,
struct pwm_state *state)
{
struct device *pwm_dev;
struct pwm_export *export;
if (!test_bit(PWMF_EXPORTED, &pwm->flags))
return NULL;
pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
if (!pwm_dev)
return NULL;
export = pwmexport_from_dev(pwm_dev);
put_device(pwm_dev); /* for device_find_child() */
mutex_lock(&export->lock);
pwm_get_state(pwm, state);
return export;
}
static int pwm_class_apply_state(struct pwm_export *export,
struct pwm_device *pwm,
struct pwm_state *state)
{
int ret = pwm_apply_might_sleep(pwm, state);
/* release lock taken in pwm_class_get_state */
mutex_unlock(&export->lock);
return ret;
}
static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
{
struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
unsigned int i;
int ret = 0;
for (i = 0; i < npwm; i++) {
struct pwm_device *pwm = &chip->pwms[i];
struct pwm_state state;
struct pwm_export *export;
export = pwm_class_get_state(pwmchip_dev, pwm, &state);
if (!export)
continue;
/* If pwmchip was not enabled before suspend, do nothing. */
if (!export->suspend.enabled) {
/* release lock taken in pwm_class_get_state */
mutex_unlock(&export->lock);
continue;
}
state.enabled = export->suspend.enabled;
ret = pwm_class_apply_state(export, pwm, &state);
if (ret < 0)
break;
}
return ret;
}
static int pwm_class_suspend(struct device *pwmchip_dev)
{
struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
unsigned int i;
int ret = 0;
for (i = 0; i < chip->npwm; i++) {
struct pwm_device *pwm = &chip->pwms[i];
struct pwm_state state;
struct pwm_export *export;
export = pwm_class_get_state(pwmchip_dev, pwm, &state);
if (!export)
continue;
/*
* If pwmchip was not enabled before suspend, save
* state for resume time and do nothing else.
*/
export->suspend = state;
if (!state.enabled) {
/* release lock taken in pwm_class_get_state */
mutex_unlock(&export->lock);
continue;
}
state.enabled = false;
ret = pwm_class_apply_state(export, pwm, &state);
if (ret < 0) {
/*
* roll back the PWM devices that were disabled by
* this suspend function.
*/
pwm_class_resume_npwm(pwmchip_dev, i);
break;
}
}
return ret;
}
static int pwm_class_resume(struct device *pwmchip_dev)
{
struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
}
static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
static struct class pwm_class = {
.name = "pwm",
.dev_groups = pwm_chip_groups,
.pm = pm_sleep_ptr(&pwm_class_pm_ops),
};
static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
{
unsigned int i;
for (i = 0; i < chip->npwm; i++) {
struct pwm_device *pwm = &chip->pwms[i];
if (test_bit(PWMF_EXPORTED, &pwm->flags))
pwm_unexport_child(&chip->dev, pwm);
}
}
#define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
static void *pwmchip_priv(struct pwm_chip *chip)
{
return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
}
/* This is the counterpart to pwmchip_alloc() */
void pwmchip_put(struct pwm_chip *chip)
{
put_device(&chip->dev);
}
EXPORT_SYMBOL_GPL(pwmchip_put);
static void pwmchip_release(struct device *pwmchip_dev)
{
struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
kfree(chip);
}
struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
{
struct pwm_chip *chip;
struct device *pwmchip_dev;
size_t alloc_size;
unsigned int i;
alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
sizeof_priv);
chip = kzalloc(alloc_size, GFP_KERNEL);
if (!chip)
return ERR_PTR(-ENOMEM);
chip->npwm = npwm;
chip->uses_pwmchip_alloc = true;
chip->operational = false;
pwmchip_dev = &chip->dev;
device_initialize(pwmchip_dev);
pwmchip_dev->class = &pwm_class;
pwmchip_dev->parent = parent;
pwmchip_dev->release = pwmchip_release;
pwmchip_set_drvdata(chip, pwmchip_priv(chip));
for (i = 0; i < chip->npwm; i++) {
struct pwm_device *pwm = &chip->pwms[i];
pwm->chip = chip;
pwm->hwpwm = i;
}
return chip;
}
EXPORT_SYMBOL_GPL(pwmchip_alloc);
static void devm_pwmchip_put(void *data)
{
struct pwm_chip *chip = data;
pwmchip_put(chip);
}
struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
{
struct pwm_chip *chip;
int ret;
chip = pwmchip_alloc(parent, npwm, sizeof_priv);
if (IS_ERR(chip))
return chip;
ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
if (ret)
return ERR_PTR(ret);
return chip;
}
EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
static void of_pwmchip_add(struct pwm_chip *chip)
{
if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
return;
if (!chip->of_xlate)
chip->of_xlate = of_pwm_xlate_with_flags;
of_node_get(pwmchip_parent(chip)->of_node);
}
static void of_pwmchip_remove(struct pwm_chip *chip)
{
if (pwmchip_parent(chip))
of_node_put(pwmchip_parent(chip)->of_node);
}
static bool pwm_ops_check(const struct pwm_chip *chip)
{
const struct pwm_ops *ops = chip->ops;
if (ops->write_waveform) {
if (!ops->round_waveform_tohw ||
!ops->round_waveform_fromhw ||
!ops->write_waveform)
return false;
if (WFHWSIZE < ops->sizeof_wfhw) {
dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
return false;
}
} else {
if (!ops->apply)
return false;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
dev_warn(pwmchip_parent(chip),
"Please implement the .get_state() callback\n");
}
return true;
}
static struct device_link *pwm_device_link_add(struct device *dev,
struct pwm_device *pwm)
{
struct device_link *dl;
if (!dev) {
/*
* No device for the PWM consumer has been provided. It may
* impact the PM sequence ordering: the PWM supplier may get
* suspended before the consumer.
*/
dev_warn(pwmchip_parent(pwm->chip),
"No consumer device specified to create a link to\n");
return NULL;
}
dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
if (!dl) {
dev_err(dev, "failed to create device link to %s\n",
dev_name(pwmchip_parent(pwm->chip)));
return ERR_PTR(-EINVAL);
}
return dl;
}
static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
{
struct pwm_chip *chip;
unsigned long id, tmp;
guard(mutex)(&pwm_lock);
idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
return chip;
return ERR_PTR(-EPROBE_DEFER);
}
/**
* of_pwm_get() - request a PWM via the PWM framework
* @dev: device for PWM consumer
* @np: device node to get the PWM from
* @con_id: consumer name
*
* Returns the PWM device parsed from the phandle and index specified in the
* "pwms" property of a device tree node or a negative error-code on failure.
* Values parsed from the device tree are stored in the returned PWM device
* object.
*
* If con_id is NULL, the first PWM device listed in the "pwms" property will
* be requested. Otherwise the "pwm-names" property is used to do a reverse
* lookup of the PWM index. This also means that the "pwm-names" property
* becomes mandatory for devices that look up the PWM device via the con_id
* parameter.
*
* Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
* error code on failure.
*/
static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
const char *con_id)
{
struct pwm_device *pwm = NULL;
struct of_phandle_args args;
struct device_link *dl;
struct pwm_chip *chip;
int index = 0;
int err;
if (con_id) {
index = of_property_match_string(np, "pwm-names", con_id);
if (index < 0)
return ERR_PTR(index);
}
err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args);
if (err) {
pr_err("%s(): can't parse \"pwms\" property\n", __func__);
return ERR_PTR(err);
}
chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
if (IS_ERR(chip)) {
if (PTR_ERR(chip) != -EPROBE_DEFER)
pr_err("%s(): PWM chip not found\n", __func__);
pwm = ERR_CAST(chip);
goto put;
}
pwm = chip->of_xlate(chip, &args);
if (IS_ERR(pwm))
goto put;
dl = pwm_device_link_add(dev, pwm);
if (IS_ERR(dl)) {
/* of_xlate ended up calling pwm_request_from_chip() */
pwm_put(pwm);
pwm = ERR_CAST(dl);
goto put;
}
/*
* If a consumer name was not given, try to look it up from the
* "pwm-names" property if it exists. Otherwise use the name of
* the user device node.
*/
if (!con_id) {
err = of_property_read_string_index(np, "pwm-names", index,
&con_id);
if (err < 0)
con_id = np->name;
}
pwm->label = con_id;
put:
of_node_put(args.np);
return pwm;
}
/**
* acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
* @fwnode: firmware node to get the "pwms" property from
*
* Returns the PWM device parsed from the fwnode and index specified in the
* "pwms" property or a negative error-code on failure.
* Values parsed from the device tree are stored in the returned PWM device
* object.
*
* This is analogous to of_pwm_get() except con_id is not yet supported.
* ACPI entries must look like
* Package () {"pwms", Package ()
* { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
*
* Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
* error code on failure.
*/
static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
{
struct pwm_device *pwm;
struct fwnode_reference_args args;
struct pwm_chip *chip;
int ret;
memset(&args, 0, sizeof(args));
ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
if (ret < 0)
return ERR_PTR(ret);
if (args.nargs < 2)
return ERR_PTR(-EPROTO);
chip = fwnode_to_pwmchip(args.fwnode);
if (IS_ERR(chip))
return ERR_CAST(chip);
pwm = pwm_request_from_chip(chip, args.args[0], NULL);
if (IS_ERR(pwm))
return pwm;
pwm->args.period = args.args[1];
pwm->args.polarity = PWM_POLARITY_NORMAL;
if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
pwm->args.polarity = PWM_POLARITY_INVERSED;
return pwm;
}
static DEFINE_MUTEX(pwm_lookup_lock);
static LIST_HEAD(pwm_lookup_list);
/**
* pwm_get() - look up and request a PWM device
* @dev: device for PWM consumer
* @con_id: consumer name
*
* Lookup is first attempted using DT. If the device was not instantiated from
* a device tree, a PWM chip and a relative index is looked up via a table
* supplied by board setup code (see pwm_add_table()).
*
* Once a PWM chip has been found the specified PWM device will be requested
* and is ready to be used.
*
* Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
* error code on failure.
*/
struct pwm_device *pwm_get(struct device *dev, const char *con_id)
{
const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
const char *dev_id = dev ? dev_name(dev) : NULL;
struct pwm_device *pwm;
struct pwm_chip *chip;
struct device_link *dl;
unsigned int best = 0;
struct pwm_lookup *p, *chosen = NULL;
unsigned int match;
int err;
/* look up via DT first */
if (is_of_node(fwnode))
return of_pwm_get(dev, to_of_node(fwnode), con_id);
/* then lookup via ACPI */
if (is_acpi_node(fwnode)) {
pwm = acpi_pwm_get(fwnode);
if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
return pwm;
}
/*
* We look up the provider in the static table typically provided by
* board setup code. We first try to lookup the consumer device by
* name. If the consumer device was passed in as NULL or if no match
* was found, we try to find the consumer by directly looking it up
* by name.
*
* If a match is found, the provider PWM chip is looked up by name
* and a PWM device is requested using the PWM device per-chip index.
*
* The lookup algorithm was shamelessly taken from the clock
* framework:
*
* We do slightly fuzzy matching here:
* An entry with a NULL ID is assumed to be a wildcard.
* If an entry has a device ID, it must match
* If an entry has a connection ID, it must match
* Then we take the most specific entry - with the following order
* of precedence: dev+con > dev only > con only.
*/
scoped_guard(mutex, &pwm_lookup_lock)
list_for_each_entry(p, &pwm_lookup_list, list) {
match = 0;
if (p->dev_id) {
if (!dev_id || strcmp(p->dev_id, dev_id))
continue;
match += 2;
}
if (p->con_id) {
if (!con_id || strcmp(p->con_id, con_id))
continue;
match += 1;
}
if (match > best) {
chosen = p;
if (match != 3)
best = match;
else
break;
}
}
if (!chosen)
return ERR_PTR(-ENODEV);
chip = pwmchip_find_by_name(chosen->provider);
/*
* If the lookup entry specifies a module, load the module and retry
* the PWM chip lookup. This can be used to work around driver load
* ordering issues if driver's can't be made to properly support the
* deferred probe mechanism.
*/
if (!chip && chosen->module) {
err = request_module(chosen->module);
if (err == 0)
chip = pwmchip_find_by_name(chosen->provider);
}
if (!chip)
return ERR_PTR(-EPROBE_DEFER);
pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
if (IS_ERR(pwm))
return pwm;
dl = pwm_device_link_add(dev, pwm);
if (IS_ERR(dl)) {
pwm_put(pwm);
return ERR_CAST(dl);
}
pwm->args.period = chosen->period;
pwm->args.polarity = chosen->polarity;
return pwm;
}
EXPORT_SYMBOL_GPL(pwm_get);
/**
* pwm_put() - release a PWM device
* @pwm: PWM device
*/
void pwm_put(struct pwm_device *pwm)
{
struct pwm_chip *chip;
if (!pwm)
return;
chip = pwm->chip;
guard(mutex)(&pwm_lock);
/*
* Trigger a warning if a consumer called pwm_put() twice.
* If the chip isn't operational, PWMF_REQUESTED was already cleared in
* pwmchip_remove(). So don't warn in this case.
*/
if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
pr_warn("PWM device already freed\n");
return;
}
if (chip->operational && chip->ops->free)
pwm->chip->ops->free(pwm->chip, pwm);
pwm->label = NULL;
put_device(&chip->dev);
module_put(chip->owner);
}
EXPORT_SYMBOL_GPL(pwm_put);
static void devm_pwm_release(void *pwm)
{
pwm_put(pwm);
}
/**
* devm_pwm_get() - resource managed pwm_get()
* @dev: device for PWM consumer
* @con_id: consumer name
*
* This function performs like pwm_get() but the acquired PWM device will
* automatically be released on driver detach.
*
* Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
* error code on failure.
*/
struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
{
struct pwm_device *pwm;
int ret;
pwm = pwm_get(dev, con_id);
if (IS_ERR(pwm))
return pwm;
ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
if (ret)
return ERR_PTR(ret);
return pwm;
}
EXPORT_SYMBOL_GPL(devm_pwm_get);
/**
* devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
* @dev: device for PWM consumer
* @fwnode: firmware node to get the PWM from
* @con_id: consumer name
*
* Returns the PWM device parsed from the firmware node. See of_pwm_get() and
* acpi_pwm_get() for a detailed description.
*
* Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
* error code on failure.
*/
struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
struct fwnode_handle *fwnode,
const char *con_id)
{
struct pwm_device *pwm = ERR_PTR(-ENODEV);
int ret;
if (is_of_node(fwnode))
pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
else if (is_acpi_node(fwnode))
pwm = acpi_pwm_get(fwnode);
if (IS_ERR(pwm))
return pwm;
ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
if (ret)
return ERR_PTR(ret);
return pwm;
}
EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
/**
* __pwmchip_add() - register a new PWM chip
* @chip: the PWM chip to add
* @owner: reference to the module providing the chip.
*
* Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
* pwmchip_add wrapper to do this right.
*
* Returns: 0 on success or a negative error code on failure.
*/
int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
{
int ret;
if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
return -EINVAL;
/*
* a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
* otherwise the embedded struct device might disappear too early
* resulting in memory corruption.
* Catch drivers that were not converted appropriately.
*/
if (!chip->uses_pwmchip_alloc)
return -EINVAL;
if (!pwm_ops_check(chip))
return -EINVAL;
chip->owner = owner;
if (chip->atomic)
spin_lock_init(&chip->atomic_lock);
else
mutex_init(&chip->nonatomic_lock);
guard(mutex)(&pwm_lock);
ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
if (ret < 0)
return ret;
chip->id = ret;
dev_set_name(&chip->dev, "pwmchip%u", chip->id);
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_add(chip);
scoped_guard(pwmchip, chip)
chip->operational = true;
ret = device_add(&chip->dev);
if (ret)
goto err_device_add;
return 0;
err_device_add:
scoped_guard(pwmchip, chip)
chip->operational = false;
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_remove(chip);
idr_remove(&pwm_chips, chip->id);
return ret;
}
EXPORT_SYMBOL_GPL(__pwmchip_add);
/**
* pwmchip_remove() - remove a PWM chip
* @chip: the PWM chip to remove
*
* Removes a PWM chip.
*/
void pwmchip_remove(struct pwm_chip *chip)
{
pwmchip_sysfs_unexport(chip);
scoped_guard(mutex, &pwm_lock) {
unsigned int i;
scoped_guard(pwmchip, chip)
chip->operational = false;
for (i = 0; i < chip->npwm; ++i) {
struct pwm_device *pwm = &chip->pwms[i];
if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
if (pwm->chip->ops->free)
pwm->chip->ops->free(pwm->chip, pwm);
}
}
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_remove(chip);
idr_remove(&pwm_chips, chip->id);
}
device_del(&chip->dev);
}
EXPORT_SYMBOL_GPL(pwmchip_remove);
static void devm_pwmchip_remove(void *data)
{
struct pwm_chip *chip = data;
pwmchip_remove(chip);
}
int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
{
int ret;
ret = __pwmchip_add(chip, owner);
if (ret)
return ret;
return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
}
EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
/**
* pwm_add_table() - register PWM device consumers
* @table: array of consumers to register
* @num: number of consumers in table
*/
void pwm_add_table(struct pwm_lookup *table, size_t num)
{
guard(mutex)(&pwm_lookup_lock);
while (num--) {
list_add_tail(&table->list, &pwm_lookup_list);
table++;
}
}
/**
* pwm_remove_table() - unregister PWM device consumers
* @table: array of consumers to unregister
* @num: number of consumers in table
*/
void pwm_remove_table(struct pwm_lookup *table, size_t num)
{
guard(mutex)(&pwm_lookup_lock);
while (num--) {
list_del(&table->list);
table++;
}
}
static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
{
unsigned int i;
for (i = 0; i < chip->npwm; i++) {
struct pwm_device *pwm = &chip->pwms[i];
struct pwm_state state, hwstate;
pwm_get_state(pwm, &state);
pwm_get_state_hw(pwm, &hwstate);
seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
if (test_bit(PWMF_REQUESTED, &pwm->flags))
seq_puts(s, " requested");
seq_puts(s, "\n");
seq_printf(s, " requested configuration: %3sabled, %llu/%llu ns, %s polarity",
state.enabled ? "en" : "dis", state.duty_cycle, state.period,
state.polarity ? "inverse" : "normal");
if (state.usage_power)
seq_puts(s, ", usage_power");
seq_puts(s, "\n");
seq_printf(s, " actual configuration: %3sabled, %llu/%llu ns, %s polarity",
hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period,
hwstate.polarity ? "inverse" : "normal");
seq_puts(s, "\n");
}
}
static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
{
unsigned long id = *pos;
void *ret;
mutex_lock(&pwm_lock);
s->private = "";
ret = idr_get_next_ul(&pwm_chips, &id);
*pos = id;
return ret;
}
static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
unsigned long id = *pos + 1;
void *ret;
s->private = "\n";
ret = idr_get_next_ul(&pwm_chips, &id);
*pos = id;
return ret;
}
static void pwm_seq_stop(struct seq_file *s, void *v)
{
mutex_unlock(&pwm_lock);
}
static int pwm_seq_show(struct seq_file *s, void *v)
{
struct pwm_chip *chip = v;
seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
(char *)s->private, chip->id,
pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
dev_name(pwmchip_parent(chip)), chip->npwm,
(chip->npwm != 1) ? "s" : "");
pwm_dbg_show(chip, s);
return 0;
}
static const struct seq_operations pwm_debugfs_sops = {
.start = pwm_seq_start,
.next = pwm_seq_next,
.stop = pwm_seq_stop,
.show = pwm_seq_show,
};
DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
static int __init pwm_init(void)
{
int ret;
ret = class_register(&pwm_class);
if (ret) {
pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
return ret;
}
if (IS_ENABLED(CONFIG_DEBUG_FS))
debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
return 0;
}
subsys_initcall(pwm_init);
|