| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 
 | /*
 * Copyright 2023 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include "umc_v12_0.h"
#include "amdgpu_ras.h"
#include "amdgpu_umc.h"
#include "amdgpu.h"
#include "umc/umc_12_0_0_offset.h"
#include "umc/umc_12_0_0_sh_mask.h"
#include "mp/mp_13_0_6_sh_mask.h"
#define MAX_ECC_NUM_PER_RETIREMENT  32
#define DELAYED_TIME_FOR_GPU_RESET  1000  //ms
static inline uint64_t get_umc_v12_0_reg_offset(struct amdgpu_device *adev,
					    uint32_t node_inst,
					    uint32_t umc_inst,
					    uint32_t ch_inst)
{
	uint32_t index = umc_inst * adev->umc.channel_inst_num + ch_inst;
	uint64_t cross_node_offset = (node_inst == 0) ? 0 : UMC_V12_0_CROSS_NODE_OFFSET;
	umc_inst = index / 4;
	ch_inst = index % 4;
	return adev->umc.channel_offs * ch_inst + UMC_V12_0_INST_DIST * umc_inst +
		UMC_V12_0_NODE_DIST * node_inst + cross_node_offset;
}
static int umc_v12_0_reset_error_count_per_channel(struct amdgpu_device *adev,
					uint32_t node_inst, uint32_t umc_inst,
					uint32_t ch_inst, void *data)
{
	uint64_t odecc_err_cnt_addr;
	uint64_t umc_reg_offset =
		get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst);
	odecc_err_cnt_addr =
		SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccErrCnt);
	/* clear error count */
	WREG32_PCIE_EXT((odecc_err_cnt_addr + umc_reg_offset) * 4,
			UMC_V12_0_CE_CNT_INIT);
	return 0;
}
static void umc_v12_0_reset_error_count(struct amdgpu_device *adev)
{
	amdgpu_umc_loop_channels(adev,
		umc_v12_0_reset_error_count_per_channel, NULL);
}
bool umc_v12_0_is_deferred_error(struct amdgpu_device *adev, uint64_t mc_umc_status)
{
	dev_dbg(adev->dev,
		"MCA_UMC_STATUS(0x%llx): Val:%llu, Poison:%llu, Deferred:%llu, PCC:%llu, UC:%llu, TCC:%llu\n",
		mc_umc_status,
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val),
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Poison),
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Deferred),
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, PCC),
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC),
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, TCC)
	);
	return (amdgpu_ras_is_poison_mode_supported(adev) &&
		(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1) &&
		((REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Deferred) == 1) ||
		(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Poison) == 1)));
}
bool umc_v12_0_is_uncorrectable_error(struct amdgpu_device *adev, uint64_t mc_umc_status)
{
	if (umc_v12_0_is_deferred_error(adev, mc_umc_status))
		return false;
	return ((REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1) &&
		(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, PCC) == 1 ||
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC) == 1 ||
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, TCC) == 1));
}
bool umc_v12_0_is_correctable_error(struct amdgpu_device *adev, uint64_t mc_umc_status)
{
	if (umc_v12_0_is_deferred_error(adev, mc_umc_status))
		return false;
	return (REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1 &&
		(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, CECC) == 1 ||
		(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UECC) == 1 &&
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC) == 0) ||
		/* Identify data parity error in replay mode */
		((REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, ErrorCodeExt) == 0x5 ||
		REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, ErrorCodeExt) == 0xb) &&
		!(umc_v12_0_is_uncorrectable_error(adev, mc_umc_status)))));
}
static void umc_v12_0_query_error_count_per_type(struct amdgpu_device *adev,
						   uint64_t umc_reg_offset,
						   unsigned long *error_count,
						   check_error_type_func error_type_func)
{
	uint64_t mc_umc_status;
	uint64_t mc_umc_status_addr;
	mc_umc_status_addr =
		SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_STATUST0);
	/* Check MCUMC_STATUS */
	mc_umc_status =
		RREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4);
	if (error_type_func(adev, mc_umc_status))
		*error_count += 1;
}
static int umc_v12_0_query_error_count(struct amdgpu_device *adev,
					uint32_t node_inst, uint32_t umc_inst,
					uint32_t ch_inst, void *data)
{
	struct ras_err_data *err_data = (struct ras_err_data *)data;
	unsigned long ue_count = 0, ce_count = 0, de_count = 0;
	/* NOTE: node_inst is converted by adev->umc.active_mask and the range is [0-3],
	 * which can be used as die ID directly */
	struct amdgpu_smuio_mcm_config_info mcm_info = {
		.socket_id = adev->smuio.funcs->get_socket_id(adev),
		.die_id = node_inst,
	};
	uint64_t umc_reg_offset =
		get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst);
	umc_v12_0_query_error_count_per_type(adev, umc_reg_offset,
					    &ce_count, umc_v12_0_is_correctable_error);
	umc_v12_0_query_error_count_per_type(adev, umc_reg_offset,
					    &ue_count, umc_v12_0_is_uncorrectable_error);
	umc_v12_0_query_error_count_per_type(adev, umc_reg_offset,
					    &de_count, umc_v12_0_is_deferred_error);
	amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, ue_count);
	amdgpu_ras_error_statistic_ce_count(err_data, &mcm_info, ce_count);
	amdgpu_ras_error_statistic_de_count(err_data, &mcm_info, de_count);
	return 0;
}
static void umc_v12_0_query_ras_error_count(struct amdgpu_device *adev,
					   void *ras_error_status)
{
	amdgpu_umc_loop_channels(adev,
		umc_v12_0_query_error_count, ras_error_status);
	umc_v12_0_reset_error_count(adev);
}
static void umc_v12_0_get_retire_flip_bits(struct amdgpu_device *adev)
{
	enum amdgpu_memory_partition nps = AMDGPU_NPS1_PARTITION_MODE;
	uint32_t vram_type = adev->gmc.vram_type;
	struct amdgpu_umc_flip_bits *flip_bits = &(adev->umc.flip_bits);
	if (adev->gmc.gmc_funcs->query_mem_partition_mode)
		nps = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
	/* default setting */
	flip_bits->flip_bits_in_pa[0] = UMC_V12_0_PA_C2_BIT;
	flip_bits->flip_bits_in_pa[1] = UMC_V12_0_PA_C3_BIT;
	flip_bits->flip_bits_in_pa[2] = UMC_V12_0_PA_C4_BIT;
	flip_bits->flip_bits_in_pa[3] = UMC_V12_0_PA_R13_BIT;
	flip_bits->flip_row_bit = 13;
	flip_bits->bit_num = 4;
	flip_bits->r13_in_pa = UMC_V12_0_PA_R13_BIT;
	if (nps == AMDGPU_NPS2_PARTITION_MODE) {
		flip_bits->flip_bits_in_pa[0] = UMC_V12_0_PA_CH5_BIT;
		flip_bits->flip_bits_in_pa[1] = UMC_V12_0_PA_C2_BIT;
		flip_bits->flip_bits_in_pa[2] = UMC_V12_0_PA_B1_BIT;
		flip_bits->r13_in_pa = UMC_V12_0_PA_R12_BIT;
	} else if (nps == AMDGPU_NPS4_PARTITION_MODE) {
		flip_bits->flip_bits_in_pa[0] = UMC_V12_0_PA_CH4_BIT;
		flip_bits->flip_bits_in_pa[1] = UMC_V12_0_PA_CH5_BIT;
		flip_bits->flip_bits_in_pa[2] = UMC_V12_0_PA_B0_BIT;
		flip_bits->r13_in_pa = UMC_V12_0_PA_R11_BIT;
	}
	switch (vram_type) {
	case AMDGPU_VRAM_TYPE_HBM:
		/* other nps modes are taken as nps1 */
		if (nps == AMDGPU_NPS2_PARTITION_MODE)
			flip_bits->flip_bits_in_pa[3] = UMC_V12_0_PA_R12_BIT;
		else if (nps == AMDGPU_NPS4_PARTITION_MODE)
			flip_bits->flip_bits_in_pa[3] = UMC_V12_0_PA_R11_BIT;
		break;
	case AMDGPU_VRAM_TYPE_HBM3E:
		flip_bits->flip_bits_in_pa[3] = UMC_V12_0_PA_R12_BIT;
		flip_bits->flip_row_bit = 12;
		if (nps == AMDGPU_NPS2_PARTITION_MODE)
			flip_bits->flip_bits_in_pa[3] = UMC_V12_0_PA_R11_BIT;
		else if (nps == AMDGPU_NPS4_PARTITION_MODE)
			flip_bits->flip_bits_in_pa[3] = UMC_V12_0_PA_R10_BIT;
		break;
	default:
		dev_warn(adev->dev,
			"Unknown HBM type, set RAS retire flip bits to the value in NPS1 mode.\n");
		break;
	}
	adev->umc.retire_unit = 0x1 << flip_bits->bit_num;
}
static int umc_v12_0_convert_error_address(struct amdgpu_device *adev,
					struct ras_err_data *err_data,
					struct ta_ras_query_address_input *addr_in,
					struct ta_ras_query_address_output *addr_out,
					bool dump_addr)
{
	uint32_t col, col_lower, row, row_lower, row_high, bank;
	uint32_t channel_index = 0, umc_inst = 0;
	uint32_t i, bit_num, retire_unit, *flip_bits;
	uint64_t soc_pa, column, err_addr;
	struct ta_ras_query_address_output addr_out_tmp;
	struct ta_ras_query_address_output *paddr_out;
	int ret = 0;
	if (!addr_out)
		paddr_out = &addr_out_tmp;
	else
		paddr_out = addr_out;
	err_addr = bank = 0;
	if (addr_in) {
		err_addr = addr_in->ma.err_addr;
		addr_in->addr_type = TA_RAS_MCA_TO_PA;
		ret = psp_ras_query_address(&adev->psp, addr_in, paddr_out);
		if (ret) {
			dev_warn(adev->dev, "Failed to query RAS physical address for 0x%llx",
				err_addr);
			goto out;
		}
		bank = paddr_out->pa.bank;
		/* no need to care about umc inst if addr_in is NULL */
		umc_inst = addr_in->ma.umc_inst;
	}
	flip_bits = adev->umc.flip_bits.flip_bits_in_pa;
	bit_num = adev->umc.flip_bits.bit_num;
	retire_unit = adev->umc.retire_unit;
	soc_pa = paddr_out->pa.pa;
	channel_index = paddr_out->pa.channel_idx;
	/* clear loop bits in soc physical address */
	for (i = 0; i < bit_num; i++)
		soc_pa &= ~BIT_ULL(flip_bits[i]);
	paddr_out->pa.pa = soc_pa;
	/* get column bit 0 and 1 in mca address */
	col_lower = (err_addr >> 1) & 0x3ULL;
	/* extra row bit will be handled later */
	row_lower = (err_addr >> UMC_V12_0_MA_R0_BIT) & 0x1fffULL;
	row_lower &= ~BIT_ULL(adev->umc.flip_bits.flip_row_bit);
	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(9, 5, 0)) {
		row_high = (soc_pa >> adev->umc.flip_bits.r13_in_pa) & 0x3ULL;
		/* it's 2.25GB in each channel, from MCA address to PA
		 * [R14 R13] is converted if the two bits value are 0x3,
		 * get them from PA instead of MCA address.
		 */
		row_lower |= (row_high << 13);
	}
	if (!err_data && !dump_addr)
		goto out;
	/* loop for all possibilities of retired bits */
	for (column = 0; column < retire_unit; column++) {
		soc_pa = paddr_out->pa.pa;
		for (i = 0; i < bit_num; i++)
			soc_pa |= (((column >> i) & 0x1ULL) << flip_bits[i]);
		col = ((column & 0x7) << 2) | col_lower;
		/* handle extra row bit */
		if (bit_num == RETIRE_FLIP_BITS_NUM)
			row = ((column >> 3) << adev->umc.flip_bits.flip_row_bit) |
					row_lower;
		if (dump_addr)
			dev_info(adev->dev,
				"Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n",
				soc_pa, row, col, bank, channel_index);
		if (err_data)
			amdgpu_umc_fill_error_record(err_data, err_addr,
				soc_pa, channel_index, umc_inst);
	}
out:
	return ret;
}
static int umc_v12_0_query_error_address(struct amdgpu_device *adev,
					uint32_t node_inst, uint32_t umc_inst,
					uint32_t ch_inst, void *data)
{
	struct ras_err_data *err_data = (struct ras_err_data *)data;
	struct ta_ras_query_address_input addr_in;
	uint64_t mc_umc_status_addr;
	uint64_t mc_umc_status, err_addr;
	uint64_t mc_umc_addrt0;
	uint64_t umc_reg_offset =
		get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst);
	mc_umc_status_addr =
		SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_STATUST0);
	mc_umc_status = RREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4);
	if (mc_umc_status == 0)
		return 0;
	if (!err_data->err_addr) {
		/* clear umc status */
		WREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4, 0x0ULL);
		return 0;
	}
	/* calculate error address if ue error is detected */
	if (umc_v12_0_is_uncorrectable_error(adev, mc_umc_status) ||
	    umc_v12_0_is_deferred_error(adev, mc_umc_status)) {
		mc_umc_addrt0 =
			SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_ADDRT0);
		err_addr = RREG64_PCIE_EXT((mc_umc_addrt0 + umc_reg_offset) * 4);
		err_addr = REG_GET_FIELD(err_addr, MCA_UMC_UMC0_MCUMC_ADDRT0, ErrorAddr);
		if (!adev->aid_mask &&
		    adev->smuio.funcs &&
		    adev->smuio.funcs->get_socket_id)
			addr_in.ma.socket_id = adev->smuio.funcs->get_socket_id(adev);
		else
			addr_in.ma.socket_id = 0;
		addr_in.ma.err_addr = err_addr;
		addr_in.ma.ch_inst = ch_inst;
		addr_in.ma.umc_inst = umc_inst;
		addr_in.ma.node_inst = node_inst;
		umc_v12_0_convert_error_address(adev, err_data, &addr_in, NULL, true);
	}
	/* clear umc status */
	WREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4, 0x0ULL);
	return 0;
}
static void umc_v12_0_query_ras_error_address(struct amdgpu_device *adev,
					     void *ras_error_status)
{
	amdgpu_umc_loop_channels(adev,
		umc_v12_0_query_error_address, ras_error_status);
}
static int umc_v12_0_err_cnt_init_per_channel(struct amdgpu_device *adev,
					uint32_t node_inst, uint32_t umc_inst,
					uint32_t ch_inst, void *data)
{
	uint32_t odecc_cnt_sel;
	uint64_t odecc_cnt_sel_addr, odecc_err_cnt_addr;
	uint64_t umc_reg_offset =
		get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst);
	odecc_cnt_sel_addr =
		SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccCntSel);
	odecc_err_cnt_addr =
		SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccErrCnt);
	odecc_cnt_sel = RREG32_PCIE_EXT((odecc_cnt_sel_addr + umc_reg_offset) * 4);
	/* set ce error interrupt type to APIC based interrupt */
	odecc_cnt_sel = REG_SET_FIELD(odecc_cnt_sel, UMCCH0_OdEccCntSel,
					OdEccErrInt, 0x1);
	WREG32_PCIE_EXT((odecc_cnt_sel_addr + umc_reg_offset) * 4, odecc_cnt_sel);
	/* set error count to initial value */
	WREG32_PCIE_EXT((odecc_err_cnt_addr + umc_reg_offset) * 4, UMC_V12_0_CE_CNT_INIT);
	return 0;
}
static bool umc_v12_0_check_ecc_err_status(struct amdgpu_device *adev,
			enum amdgpu_mca_error_type type, void *ras_error_status)
{
	uint64_t mc_umc_status = *(uint64_t *)ras_error_status;
	switch (type) {
	case AMDGPU_MCA_ERROR_TYPE_UE:
		return umc_v12_0_is_uncorrectable_error(adev, mc_umc_status);
	case AMDGPU_MCA_ERROR_TYPE_CE:
		return umc_v12_0_is_correctable_error(adev, mc_umc_status);
	case AMDGPU_MCA_ERROR_TYPE_DE:
		return umc_v12_0_is_deferred_error(adev, mc_umc_status);
	default:
		return false;
	}
	return false;
}
static void umc_v12_0_err_cnt_init(struct amdgpu_device *adev)
{
	amdgpu_umc_loop_channels(adev,
		umc_v12_0_err_cnt_init_per_channel, NULL);
}
static bool umc_v12_0_query_ras_poison_mode(struct amdgpu_device *adev)
{
	/*
	 * Force return true, because regUMCCH0_EccCtrl
	 * is not accessible from host side
	 */
	return true;
}
const struct amdgpu_ras_block_hw_ops umc_v12_0_ras_hw_ops = {
	.query_ras_error_count = umc_v12_0_query_ras_error_count,
	.query_ras_error_address = umc_v12_0_query_ras_error_address,
};
static int umc_v12_0_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank,
				     enum aca_smu_type type, void *data)
{
	struct amdgpu_device *adev = handle->adev;
	struct aca_bank_info info;
	enum aca_error_type err_type;
	u64 status, count;
	u32 ext_error_code;
	int ret;
	status = bank->regs[ACA_REG_IDX_STATUS];
	if (umc_v12_0_is_deferred_error(adev, status))
		err_type = ACA_ERROR_TYPE_DEFERRED;
	else if (umc_v12_0_is_uncorrectable_error(adev, status))
		err_type = ACA_ERROR_TYPE_UE;
	else if (umc_v12_0_is_correctable_error(adev, status))
		err_type = ACA_ERROR_TYPE_CE;
	else
		return 0;
	bank->aca_err_type = err_type;
	ret = aca_bank_info_decode(bank, &info);
	if (ret)
		return ret;
	amdgpu_umc_update_ecc_status(adev,
		bank->regs[ACA_REG_IDX_STATUS],
		bank->regs[ACA_REG_IDX_IPID],
		bank->regs[ACA_REG_IDX_ADDR]);
	ext_error_code = ACA_REG__STATUS__ERRORCODEEXT(status);
	if (umc_v12_0_is_deferred_error(adev, status))
		count = ext_error_code == 0 ?
			adev->umc.err_addr_cnt / adev->umc.retire_unit : 1ULL;
	else
		count = ext_error_code == 0 ?
			ACA_REG__MISC0__ERRCNT(bank->regs[ACA_REG_IDX_MISC0]) : 1ULL;
	return aca_error_cache_log_bank_error(handle, &info, err_type, count);
}
static const struct aca_bank_ops umc_v12_0_aca_bank_ops = {
	.aca_bank_parser = umc_v12_0_aca_bank_parser,
};
const struct aca_info umc_v12_0_aca_info = {
	.hwip = ACA_HWIP_TYPE_UMC,
	.mask = ACA_ERROR_UE_MASK | ACA_ERROR_CE_MASK | ACA_ERROR_DEFERRED_MASK,
	.bank_ops = &umc_v12_0_aca_bank_ops,
};
static int umc_v12_0_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
{
	int ret;
	ret = amdgpu_umc_ras_late_init(adev, ras_block);
	if (ret)
		return ret;
	ret = amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__UMC,
				  &umc_v12_0_aca_info, NULL);
	if (ret)
		return ret;
	return 0;
}
static int umc_v12_0_update_ecc_status(struct amdgpu_device *adev,
			uint64_t status, uint64_t ipid, uint64_t addr)
{
	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
	uint16_t hwid, mcatype;
	uint64_t page_pfn[UMC_V12_0_BAD_PAGE_NUM_PER_CHANNEL];
	uint64_t err_addr, pa_addr = 0;
	struct ras_ecc_err *ecc_err;
	struct ta_ras_query_address_output addr_out;
	uint32_t shift_bit = adev->umc.flip_bits.flip_bits_in_pa[2];
	int count, ret, i;
	hwid = REG_GET_FIELD(ipid, MCMP1_IPIDT0, HardwareID);
	mcatype = REG_GET_FIELD(ipid, MCMP1_IPIDT0, McaType);
	if ((hwid != MCA_UMC_HWID_V12_0) || (mcatype != MCA_UMC_MCATYPE_V12_0))
		return 0;
	if (!status)
		return 0;
	if (!umc_v12_0_is_deferred_error(adev, status))
		return 0;
	err_addr = REG_GET_FIELD(addr,
				MCA_UMC_UMC0_MCUMC_ADDRT0, ErrorAddr);
	dev_dbg(adev->dev,
		"UMC:IPID:0x%llx, socket:%llu, aid:%llu, inst:%llu, ch:%llu, err_addr:0x%llx\n",
		ipid,
		MCA_IPID_2_SOCKET_ID(ipid),
		MCA_IPID_2_DIE_ID(ipid),
		MCA_IPID_2_UMC_INST(ipid),
		MCA_IPID_2_UMC_CH(ipid),
		err_addr);
	ret = amdgpu_umc_mca_to_addr(adev,
			err_addr, MCA_IPID_2_UMC_CH(ipid),
			MCA_IPID_2_UMC_INST(ipid), MCA_IPID_2_DIE_ID(ipid),
			MCA_IPID_2_SOCKET_ID(ipid), &addr_out, true);
	if (ret)
		return ret;
	ecc_err = kzalloc(sizeof(*ecc_err), GFP_KERNEL);
	if (!ecc_err)
		return -ENOMEM;
	pa_addr = addr_out.pa.pa;
	ecc_err->status = status;
	ecc_err->ipid = ipid;
	ecc_err->addr = addr;
	ecc_err->pa_pfn = pa_addr >> AMDGPU_GPU_PAGE_SHIFT;
	ecc_err->channel_idx = addr_out.pa.channel_idx;
	/* If converted pa_pfn is 0, use pa C4 pfn. */
	if (!ecc_err->pa_pfn)
		ecc_err->pa_pfn = BIT_ULL(shift_bit) >> AMDGPU_GPU_PAGE_SHIFT;
	ret = amdgpu_umc_logs_ecc_err(adev, &con->umc_ecc_log.de_page_tree, ecc_err);
	if (ret) {
		if (ret == -EEXIST)
			con->umc_ecc_log.de_queried_count++;
		else
			dev_err(adev->dev, "Fail to log ecc error! ret:%d\n", ret);
		kfree(ecc_err);
		return ret;
	}
	con->umc_ecc_log.de_queried_count++;
	memset(page_pfn, 0, sizeof(page_pfn));
	count = amdgpu_umc_lookup_bad_pages_in_a_row(adev,
				pa_addr,
				page_pfn, ARRAY_SIZE(page_pfn));
	if (count <= 0) {
		dev_warn(adev->dev, "Fail to convert error address! count:%d\n", count);
		return 0;
	}
	/* Reserve memory */
	for (i = 0; i < count; i++)
		amdgpu_ras_reserve_page(adev, page_pfn[i]);
	/* The problem case is as follows:
	 * 1. GPU A triggers a gpu ras reset, and GPU A drives
	 *    GPU B to also perform a gpu ras reset.
	 * 2. After gpu B ras reset started, gpu B queried a DE
	 *    data. Since the DE data was queried in the ras reset
	 *    thread instead of the page retirement thread, bad
	 *    page retirement work would not be triggered. Then
	 *    even if all gpu resets are completed, the bad pages
	 *    will be cached in RAM until GPU B's bad page retirement
	 *    work is triggered again and then saved to eeprom.
	 * Trigger delayed work to save the bad pages to eeprom in time
	 * after gpu ras reset is completed.
	 */
	if (amdgpu_ras_in_recovery(adev))
		schedule_delayed_work(&con->page_retirement_dwork,
			msecs_to_jiffies(DELAYED_TIME_FOR_GPU_RESET));
	return 0;
}
static int umc_v12_0_fill_error_record(struct amdgpu_device *adev,
				struct ras_ecc_err *ecc_err, void *ras_error_status)
{
	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
	uint64_t page_pfn[UMC_V12_0_BAD_PAGE_NUM_PER_CHANNEL];
	int ret, i, count;
	if (!err_data || !ecc_err)
		return -EINVAL;
	memset(page_pfn, 0, sizeof(page_pfn));
	count = amdgpu_umc_lookup_bad_pages_in_a_row(adev,
				ecc_err->pa_pfn << AMDGPU_GPU_PAGE_SHIFT,
				page_pfn, ARRAY_SIZE(page_pfn));
	for (i = 0; i < count; i++) {
		ret = amdgpu_umc_fill_error_record(err_data,
				ecc_err->addr,
				page_pfn[i] << AMDGPU_GPU_PAGE_SHIFT,
				ecc_err->channel_idx,
				MCA_IPID_2_UMC_INST(ecc_err->ipid));
		if (ret)
			break;
	}
	err_data->de_count++;
	return ret;
}
static void umc_v12_0_query_ras_ecc_err_addr(struct amdgpu_device *adev,
					void *ras_error_status)
{
	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
	struct ras_ecc_err *entries[MAX_ECC_NUM_PER_RETIREMENT];
	struct radix_tree_root *ecc_tree;
	int new_detected, ret, i;
	ecc_tree = &con->umc_ecc_log.de_page_tree;
	mutex_lock(&con->umc_ecc_log.lock);
	new_detected = radix_tree_gang_lookup_tag(ecc_tree, (void **)entries,
			0, ARRAY_SIZE(entries), UMC_ECC_NEW_DETECTED_TAG);
	for (i = 0; i < new_detected; i++) {
		if (!entries[i])
			continue;
		ret = umc_v12_0_fill_error_record(adev, entries[i], ras_error_status);
		if (ret) {
			dev_err(adev->dev, "Fail to fill umc error record, ret:%d\n", ret);
			break;
		}
		radix_tree_tag_clear(ecc_tree,
				entries[i]->pa_pfn, UMC_ECC_NEW_DETECTED_TAG);
	}
	mutex_unlock(&con->umc_ecc_log.lock);
}
static uint32_t umc_v12_0_get_die_id(struct amdgpu_device *adev,
		uint64_t mca_addr, uint64_t retired_page)
{
	uint32_t die = 0;
	/* we only calculate die id for nps1 mode right now */
	die += ((((retired_page >> 12) & 0x1ULL)^
	    ((retired_page >> 20) & 0x1ULL) ^
	    ((retired_page >> 27) & 0x1ULL) ^
	    ((retired_page >> 34) & 0x1ULL) ^
	    ((retired_page >> 41) & 0x1ULL)) << 0);
	/* the original PA_C4 and PA_R13 may be cleared in retired_page, so
	 * get them from mca_addr.
	 */
	die += ((((retired_page >> 13) & 0x1ULL) ^
	    ((mca_addr >> 5) & 0x1ULL) ^
	    ((retired_page >> 28) & 0x1ULL) ^
	    ((mca_addr >> 23) & 0x1ULL) ^
	    ((retired_page >> 42) & 0x1ULL)) << 1);
	die &= 3;
	return die;
}
struct amdgpu_umc_ras umc_v12_0_ras = {
	.ras_block = {
		.hw_ops = &umc_v12_0_ras_hw_ops,
		.ras_late_init = umc_v12_0_ras_late_init,
	},
	.err_cnt_init = umc_v12_0_err_cnt_init,
	.query_ras_poison_mode = umc_v12_0_query_ras_poison_mode,
	.ecc_info_query_ras_error_address = umc_v12_0_query_ras_ecc_err_addr,
	.check_ecc_err_status = umc_v12_0_check_ecc_err_status,
	.update_ecc_status = umc_v12_0_update_ecc_status,
	.convert_ras_err_addr = umc_v12_0_convert_error_address,
	.get_die_id_from_pa = umc_v12_0_get_die_id,
	.get_retire_flip_bits = umc_v12_0_get_retire_flip_bits,
};
 |