1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* In-kernel FPU support functions
*
*
* Consider these guidelines before using in-kernel FPU functions:
*
* 1. Use kernel_fpu_begin() and kernel_fpu_end() to enclose all in-kernel
* use of floating-point or vector registers and instructions.
*
* 2. For kernel_fpu_begin(), specify the vector register range you want to
* use with the KERNEL_VXR_* constants. Consider these usage guidelines:
*
* a) If your function typically runs in process-context, use the lower
* half of the vector registers, for example, specify KERNEL_VXR_LOW.
* b) If your function typically runs in soft-irq or hard-irq context,
* prefer using the upper half of the vector registers, for example,
* specify KERNEL_VXR_HIGH.
*
* If you adhere to these guidelines, an interrupted process context
* does not require to save and restore vector registers because of
* disjoint register ranges.
*
* Also note that the __kernel_fpu_begin()/__kernel_fpu_end() functions
* includes logic to save and restore up to 16 vector registers at once.
*
* 3. You can nest kernel_fpu_begin()/kernel_fpu_end() by using different
* struct kernel_fpu states. Vector registers that are in use by outer
* levels are saved and restored. You can minimize the save and restore
* effort by choosing disjoint vector register ranges.
*
* 5. To use vector floating-point instructions, specify the KERNEL_FPC
* flag to save and restore floating-point controls in addition to any
* vector register range.
*
* 6. To use floating-point registers and instructions only, specify the
* KERNEL_FPR flag. This flag triggers a save and restore of vector
* registers V0 to V15 and floating-point controls.
*
* Copyright IBM Corp. 2015
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#ifndef _ASM_S390_FPU_H
#define _ASM_S390_FPU_H
#include <linux/cpufeature.h>
#include <linux/processor.h>
#include <linux/preempt.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <asm/sigcontext.h>
#include <asm/fpu-types.h>
#include <asm/fpu-insn.h>
enum {
KERNEL_FPC_BIT = 0,
KERNEL_VXR_V0V7_BIT,
KERNEL_VXR_V8V15_BIT,
KERNEL_VXR_V16V23_BIT,
KERNEL_VXR_V24V31_BIT,
};
#define KERNEL_FPC BIT(KERNEL_FPC_BIT)
#define KERNEL_VXR_V0V7 BIT(KERNEL_VXR_V0V7_BIT)
#define KERNEL_VXR_V8V15 BIT(KERNEL_VXR_V8V15_BIT)
#define KERNEL_VXR_V16V23 BIT(KERNEL_VXR_V16V23_BIT)
#define KERNEL_VXR_V24V31 BIT(KERNEL_VXR_V24V31_BIT)
#define KERNEL_VXR_LOW (KERNEL_VXR_V0V7 | KERNEL_VXR_V8V15)
#define KERNEL_VXR_MID (KERNEL_VXR_V8V15 | KERNEL_VXR_V16V23)
#define KERNEL_VXR_HIGH (KERNEL_VXR_V16V23 | KERNEL_VXR_V24V31)
#define KERNEL_VXR (KERNEL_VXR_LOW | KERNEL_VXR_HIGH)
#define KERNEL_FPR (KERNEL_FPC | KERNEL_VXR_LOW)
void load_fpu_state(struct fpu *state, int flags);
void save_fpu_state(struct fpu *state, int flags);
void __kernel_fpu_begin(struct kernel_fpu *state, int flags);
void __kernel_fpu_end(struct kernel_fpu *state, int flags);
static __always_inline void save_vx_regs(__vector128 *vxrs)
{
fpu_vstm(0, 15, &vxrs[0]);
fpu_vstm(16, 31, &vxrs[16]);
}
static __always_inline void load_vx_regs(__vector128 *vxrs)
{
fpu_vlm(0, 15, &vxrs[0]);
fpu_vlm(16, 31, &vxrs[16]);
}
static __always_inline void __save_fp_regs(freg_t *fprs, unsigned int offset)
{
fpu_std(0, &fprs[0 * offset]);
fpu_std(1, &fprs[1 * offset]);
fpu_std(2, &fprs[2 * offset]);
fpu_std(3, &fprs[3 * offset]);
fpu_std(4, &fprs[4 * offset]);
fpu_std(5, &fprs[5 * offset]);
fpu_std(6, &fprs[6 * offset]);
fpu_std(7, &fprs[7 * offset]);
fpu_std(8, &fprs[8 * offset]);
fpu_std(9, &fprs[9 * offset]);
fpu_std(10, &fprs[10 * offset]);
fpu_std(11, &fprs[11 * offset]);
fpu_std(12, &fprs[12 * offset]);
fpu_std(13, &fprs[13 * offset]);
fpu_std(14, &fprs[14 * offset]);
fpu_std(15, &fprs[15 * offset]);
}
static __always_inline void __load_fp_regs(freg_t *fprs, unsigned int offset)
{
fpu_ld(0, &fprs[0 * offset]);
fpu_ld(1, &fprs[1 * offset]);
fpu_ld(2, &fprs[2 * offset]);
fpu_ld(3, &fprs[3 * offset]);
fpu_ld(4, &fprs[4 * offset]);
fpu_ld(5, &fprs[5 * offset]);
fpu_ld(6, &fprs[6 * offset]);
fpu_ld(7, &fprs[7 * offset]);
fpu_ld(8, &fprs[8 * offset]);
fpu_ld(9, &fprs[9 * offset]);
fpu_ld(10, &fprs[10 * offset]);
fpu_ld(11, &fprs[11 * offset]);
fpu_ld(12, &fprs[12 * offset]);
fpu_ld(13, &fprs[13 * offset]);
fpu_ld(14, &fprs[14 * offset]);
fpu_ld(15, &fprs[15 * offset]);
}
static __always_inline void save_fp_regs(freg_t *fprs)
{
__save_fp_regs(fprs, sizeof(freg_t) / sizeof(freg_t));
}
static __always_inline void load_fp_regs(freg_t *fprs)
{
__load_fp_regs(fprs, sizeof(freg_t) / sizeof(freg_t));
}
static __always_inline void save_fp_regs_vx(__vector128 *vxrs)
{
freg_t *fprs = (freg_t *)&vxrs[0].high;
__save_fp_regs(fprs, sizeof(__vector128) / sizeof(freg_t));
}
static __always_inline void load_fp_regs_vx(__vector128 *vxrs)
{
freg_t *fprs = (freg_t *)&vxrs[0].high;
__load_fp_regs(fprs, sizeof(__vector128) / sizeof(freg_t));
}
static inline void load_user_fpu_regs(void)
{
struct thread_struct *thread = ¤t->thread;
if (!thread->ufpu_flags)
return;
load_fpu_state(&thread->ufpu, thread->ufpu_flags);
thread->ufpu_flags = 0;
}
static __always_inline void __save_user_fpu_regs(struct thread_struct *thread, int flags)
{
save_fpu_state(&thread->ufpu, flags);
__atomic_or(flags, &thread->ufpu_flags);
}
static inline void save_user_fpu_regs(void)
{
struct thread_struct *thread = ¤t->thread;
int mask, flags;
mask = __atomic_or(KERNEL_FPC | KERNEL_VXR, &thread->kfpu_flags);
flags = ~READ_ONCE(thread->ufpu_flags) & (KERNEL_FPC | KERNEL_VXR);
if (flags)
__save_user_fpu_regs(thread, flags);
barrier();
WRITE_ONCE(thread->kfpu_flags, mask);
}
static __always_inline void _kernel_fpu_begin(struct kernel_fpu *state, int flags)
{
struct thread_struct *thread = ¤t->thread;
int mask, uflags;
mask = __atomic_or(flags, &thread->kfpu_flags);
state->hdr.mask = mask;
uflags = READ_ONCE(thread->ufpu_flags);
if ((uflags & flags) != flags)
__save_user_fpu_regs(thread, ~uflags & flags);
if (mask & flags)
__kernel_fpu_begin(state, flags);
}
static __always_inline void _kernel_fpu_end(struct kernel_fpu *state, int flags)
{
int mask = state->hdr.mask;
if (mask & flags)
__kernel_fpu_end(state, flags);
barrier();
WRITE_ONCE(current->thread.kfpu_flags, mask);
}
void __kernel_fpu_invalid_size(void);
static __always_inline void kernel_fpu_check_size(int flags, unsigned int size)
{
unsigned int cnt = 0;
if (flags & KERNEL_VXR_V0V7)
cnt += 8;
if (flags & KERNEL_VXR_V8V15)
cnt += 8;
if (flags & KERNEL_VXR_V16V23)
cnt += 8;
if (flags & KERNEL_VXR_V24V31)
cnt += 8;
if (cnt != size)
__kernel_fpu_invalid_size();
}
#define kernel_fpu_begin(state, flags) \
{ \
typeof(state) s = (state); \
int _flags = (flags); \
\
kernel_fpu_check_size(_flags, ARRAY_SIZE(s->vxrs)); \
_kernel_fpu_begin((struct kernel_fpu *)s, _flags); \
}
#define kernel_fpu_end(state, flags) \
{ \
typeof(state) s = (state); \
int _flags = (flags); \
\
kernel_fpu_check_size(_flags, ARRAY_SIZE(s->vxrs)); \
_kernel_fpu_end((struct kernel_fpu *)s, _flags); \
}
static inline void save_kernel_fpu_regs(struct thread_struct *thread)
{
if (!thread->kfpu_flags)
return;
save_fpu_state(&thread->kfpu, thread->kfpu_flags);
}
static inline void restore_kernel_fpu_regs(struct thread_struct *thread)
{
if (!thread->kfpu_flags)
return;
load_fpu_state(&thread->kfpu, thread->kfpu_flags);
}
static inline void convert_vx_to_fp(freg_t *fprs, __vector128 *vxrs)
{
int i;
for (i = 0; i < __NUM_FPRS; i++)
fprs[i].ui = vxrs[i].high;
}
static inline void convert_fp_to_vx(__vector128 *vxrs, freg_t *fprs)
{
int i;
for (i = 0; i < __NUM_FPRS; i++)
vxrs[i].high = fprs[i].ui;
}
static inline void fpregs_store(_s390_fp_regs *fpregs, struct fpu *fpu)
{
fpregs->pad = 0;
fpregs->fpc = fpu->fpc;
convert_vx_to_fp((freg_t *)&fpregs->fprs, fpu->vxrs);
}
static inline void fpregs_load(_s390_fp_regs *fpregs, struct fpu *fpu)
{
fpu->fpc = fpregs->fpc;
convert_fp_to_vx(fpu->vxrs, (freg_t *)&fpregs->fprs);
}
#endif /* _ASM_S390_FPU_H */
|