1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2016 Freescale Semiconductor, Inc.
* Copyright 2018,2021-2025 NXP
*
* NXP System Timer Module:
*
* STM supports commonly required system and application software
* timing functions. STM includes a 32-bit count-up timer and four
* 32-bit compare channels with a separate interrupt source for each
* channel. The timer is driven by the STM module clock divided by an
* 8-bit prescale value (1 to 256). It has ability to stop the timer
* in Debug mode
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/cpuhotplug.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/sched_clock.h>
#include <linux/units.h>
#define STM_CR(__base) (__base)
#define STM_CR_TEN BIT(0)
#define STM_CR_FRZ BIT(1)
#define STM_CR_CPS_OFFSET 8u
#define STM_CR_CPS_MASK GENMASK(15, STM_CR_CPS_OFFSET)
#define STM_CNT(__base) ((__base) + 0x04)
#define STM_CCR0(__base) ((__base) + 0x10)
#define STM_CCR1(__base) ((__base) + 0x20)
#define STM_CCR2(__base) ((__base) + 0x30)
#define STM_CCR3(__base) ((__base) + 0x40)
#define STM_CCR_CEN BIT(0)
#define STM_CIR0(__base) ((__base) + 0x14)
#define STM_CIR1(__base) ((__base) + 0x24)
#define STM_CIR2(__base) ((__base) + 0x34)
#define STM_CIR3(__base) ((__base) + 0x44)
#define STM_CIR_CIF BIT(0)
#define STM_CMP0(__base) ((__base) + 0x18)
#define STM_CMP1(__base) ((__base) + 0x28)
#define STM_CMP2(__base) ((__base) + 0x38)
#define STM_CMP3(__base) ((__base) + 0x48)
#define STM_ENABLE_MASK (STM_CR_FRZ | STM_CR_TEN)
struct stm_timer {
void __iomem *base;
unsigned long rate;
unsigned long delta;
unsigned long counter;
struct clock_event_device ced;
struct clocksource cs;
atomic_t refcnt;
};
static DEFINE_PER_CPU(struct stm_timer *, stm_timers);
static struct stm_timer *stm_sched_clock;
/*
* Global structure for multiple STMs initialization
*/
static int stm_instances;
/*
* This global lock is used to prevent race conditions with the
* stm_instances in case the driver is using the ASYNC option
*/
static DEFINE_MUTEX(stm_instances_lock);
DEFINE_GUARD(stm_instances, struct mutex *, mutex_lock(_T), mutex_unlock(_T))
static struct stm_timer *cs_to_stm(struct clocksource *cs)
{
return container_of(cs, struct stm_timer, cs);
}
static struct stm_timer *ced_to_stm(struct clock_event_device *ced)
{
return container_of(ced, struct stm_timer, ced);
}
static u64 notrace nxp_stm_read_sched_clock(void)
{
return readl(STM_CNT(stm_sched_clock->base));
}
static u32 nxp_stm_clocksource_getcnt(struct stm_timer *stm_timer)
{
return readl(STM_CNT(stm_timer->base));
}
static void nxp_stm_clocksource_setcnt(struct stm_timer *stm_timer, u32 cnt)
{
writel(cnt, STM_CNT(stm_timer->base));
}
static u64 nxp_stm_clocksource_read(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
return (u64)nxp_stm_clocksource_getcnt(stm_timer);
}
static void nxp_stm_module_enable(struct stm_timer *stm_timer)
{
u32 reg;
reg = readl(STM_CR(stm_timer->base));
reg |= STM_ENABLE_MASK;
writel(reg, STM_CR(stm_timer->base));
}
static void nxp_stm_module_disable(struct stm_timer *stm_timer)
{
u32 reg;
reg = readl(STM_CR(stm_timer->base));
reg &= ~STM_ENABLE_MASK;
writel(reg, STM_CR(stm_timer->base));
}
static void nxp_stm_module_put(struct stm_timer *stm_timer)
{
if (atomic_dec_and_test(&stm_timer->refcnt))
nxp_stm_module_disable(stm_timer);
}
static void nxp_stm_module_get(struct stm_timer *stm_timer)
{
if (atomic_inc_return(&stm_timer->refcnt) == 1)
nxp_stm_module_enable(stm_timer);
}
static int nxp_stm_clocksource_enable(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_module_get(stm_timer);
return 0;
}
static void nxp_stm_clocksource_disable(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_module_put(stm_timer);
}
static void nxp_stm_clocksource_suspend(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_clocksource_disable(cs);
stm_timer->counter = nxp_stm_clocksource_getcnt(stm_timer);
}
static void nxp_stm_clocksource_resume(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_clocksource_setcnt(stm_timer, stm_timer->counter);
nxp_stm_clocksource_enable(cs);
}
static void __init devm_clocksource_unregister(void *data)
{
struct stm_timer *stm_timer = data;
clocksource_unregister(&stm_timer->cs);
}
static int __init nxp_stm_clocksource_init(struct device *dev, struct stm_timer *stm_timer,
const char *name, void __iomem *base, struct clk *clk)
{
int ret;
stm_timer->base = base;
stm_timer->rate = clk_get_rate(clk);
stm_timer->cs.name = name;
stm_timer->cs.rating = 460;
stm_timer->cs.read = nxp_stm_clocksource_read;
stm_timer->cs.enable = nxp_stm_clocksource_enable;
stm_timer->cs.disable = nxp_stm_clocksource_disable;
stm_timer->cs.suspend = nxp_stm_clocksource_suspend;
stm_timer->cs.resume = nxp_stm_clocksource_resume;
stm_timer->cs.mask = CLOCKSOURCE_MASK(32);
stm_timer->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
ret = clocksource_register_hz(&stm_timer->cs, stm_timer->rate);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, devm_clocksource_unregister, stm_timer);
if (ret) {
clocksource_unregister(&stm_timer->cs);
return ret;
}
stm_sched_clock = stm_timer;
sched_clock_register(nxp_stm_read_sched_clock, 32, stm_timer->rate);
dev_dbg(dev, "Registered clocksource %s\n", name);
return 0;
}
static int nxp_stm_clockevent_read_counter(struct stm_timer *stm_timer)
{
return readl(STM_CNT(stm_timer->base));
}
static void nxp_stm_clockevent_disable(struct stm_timer *stm_timer)
{
writel(0, STM_CCR0(stm_timer->base));
}
static void nxp_stm_clockevent_enable(struct stm_timer *stm_timer)
{
writel(STM_CCR_CEN, STM_CCR0(stm_timer->base));
}
static int nxp_stm_clockevent_shutdown(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_clockevent_disable(stm_timer);
return 0;
}
static int nxp_stm_clockevent_set_next_event(unsigned long delta, struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
u32 val;
nxp_stm_clockevent_disable(stm_timer);
stm_timer->delta = delta;
val = nxp_stm_clockevent_read_counter(stm_timer) + delta;
writel(val, STM_CMP0(stm_timer->base));
/*
* The counter is shared across the channels and can not be
* stopped while we are setting the next event. If the delta
* is very small it is possible the counter increases above
* the computed 'val'. The min_delta value specified when
* registering the clockevent will prevent that. The second
* case is if the counter wraps while we compute the 'val' and
* before writing the comparator register. We read the counter,
* check if we are back in time and abort the timer with -ETIME.
*/
if (val > nxp_stm_clockevent_read_counter(stm_timer) + delta)
return -ETIME;
nxp_stm_clockevent_enable(stm_timer);
return 0;
}
static int nxp_stm_clockevent_set_periodic(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
return nxp_stm_clockevent_set_next_event(stm_timer->rate, ced);
}
static void nxp_stm_clockevent_suspend(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_module_put(stm_timer);
}
static void nxp_stm_clockevent_resume(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_module_get(stm_timer);
}
static int __init nxp_stm_clockevent_per_cpu_init(struct device *dev, struct stm_timer *stm_timer,
const char *name, void __iomem *base, int irq,
struct clk *clk, int cpu)
{
stm_timer->base = base;
stm_timer->rate = clk_get_rate(clk);
stm_timer->ced.name = name;
stm_timer->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
stm_timer->ced.set_state_shutdown = nxp_stm_clockevent_shutdown;
stm_timer->ced.set_state_periodic = nxp_stm_clockevent_set_periodic;
stm_timer->ced.set_next_event = nxp_stm_clockevent_set_next_event;
stm_timer->ced.suspend = nxp_stm_clockevent_suspend;
stm_timer->ced.resume = nxp_stm_clockevent_resume;
stm_timer->ced.cpumask = cpumask_of(cpu);
stm_timer->ced.rating = 460;
stm_timer->ced.irq = irq;
per_cpu(stm_timers, cpu) = stm_timer;
nxp_stm_module_get(stm_timer);
dev_dbg(dev, "Initialized per cpu clockevent name=%s, irq=%d, cpu=%d\n", name, irq, cpu);
return 0;
}
static int nxp_stm_clockevent_starting_cpu(unsigned int cpu)
{
struct stm_timer *stm_timer = per_cpu(stm_timers, cpu);
int ret;
if (WARN_ON(!stm_timer))
return -EFAULT;
ret = irq_force_affinity(stm_timer->ced.irq, cpumask_of(cpu));
if (ret)
return ret;
/*
* The timings measurement show reading the counter register
* and writing to the comparator register takes as a maximum
* value 1100 ns at 133MHz rate frequency. The timer must be
* set above this value and to be secure we set the minimum
* value equal to 2000ns, so 2us.
*
* minimum ticks = (rate / MICRO) * 2
*/
clockevents_config_and_register(&stm_timer->ced, stm_timer->rate,
(stm_timer->rate / MICRO) * 2, ULONG_MAX);
return 0;
}
static irqreturn_t nxp_stm_module_interrupt(int irq, void *dev_id)
{
struct stm_timer *stm_timer = dev_id;
struct clock_event_device *ced = &stm_timer->ced;
u32 val;
/*
* The interrupt is shared across the channels in the
* module. But this one is configured to run only one channel,
* consequently it is pointless to test the interrupt flags
* before and we can directly reset the channel 0 irq flag
* register.
*/
writel(STM_CIR_CIF, STM_CIR0(stm_timer->base));
/*
* Update STM_CMP value using the counter value
*/
val = nxp_stm_clockevent_read_counter(stm_timer) + stm_timer->delta;
writel(val, STM_CMP0(stm_timer->base));
/*
* stm hardware doesn't support oneshot, it will generate an
* interrupt and start the counter again so software needs to
* disable the timer to stop the counter loop in ONESHOT mode.
*/
if (likely(clockevent_state_oneshot(ced)))
nxp_stm_clockevent_disable(stm_timer);
ced->event_handler(ced);
return IRQ_HANDLED;
}
static int __init nxp_stm_timer_probe(struct platform_device *pdev)
{
struct stm_timer *stm_timer;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const char *name = of_node_full_name(np);
struct clk *clk;
void __iomem *base;
int irq, ret;
/*
* The device tree can have multiple STM nodes described, so
* it makes this driver a good candidate for the async probe.
* It is still unclear if the time framework correctly handles
* parallel loading of the timers but at least this driver is
* ready to support the option.
*/
guard(stm_instances)(&stm_instances_lock);
/*
* The S32Gx are SoCs featuring a diverse set of cores. Linux
* is expected to run on Cortex-A53 cores, while other
* software stacks will operate on Cortex-M cores. The number
* of STM instances has been sized to include at most one
* instance per core.
*
* As we need a clocksource and a clockevent per cpu, we
* simply initialize a clocksource per cpu along with the
* clockevent which makes the resulting code simpler.
*
* However if the device tree is describing more STM instances
* than the number of cores, then we ignore them.
*/
if (stm_instances >= num_possible_cpus())
return 0;
base = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(base))
return dev_err_probe(dev, PTR_ERR(base), "Failed to iomap %pOFn\n", np);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get IRQ\n");
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "Clock not found\n");
stm_timer = devm_kzalloc(dev, sizeof(*stm_timer), GFP_KERNEL);
if (!stm_timer)
return -ENOMEM;
ret = devm_request_irq(dev, irq, nxp_stm_module_interrupt,
IRQF_TIMER | IRQF_NOBALANCING, name, stm_timer);
if (ret)
return dev_err_probe(dev, ret, "Unable to allocate interrupt line\n");
ret = nxp_stm_clocksource_init(dev, stm_timer, name, base, clk);
if (ret)
return ret;
/*
* Next probed STM will be a per CPU clockevent, until we
* probe as many as we have CPUs available on the system, we
* do a partial initialization
*/
ret = nxp_stm_clockevent_per_cpu_init(dev, stm_timer, name,
base, irq, clk,
stm_instances);
if (ret)
return ret;
stm_instances++;
/*
* The number of probed STMs for per CPU clockevent is
* equal to the number of available CPUs on the
* system. We install the cpu hotplug to finish the
* initialization by registering the clockevents
*/
if (stm_instances == num_possible_cpus()) {
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "STM timer:starting",
nxp_stm_clockevent_starting_cpu, NULL);
if (ret < 0)
return ret;
}
return 0;
}
static const struct of_device_id nxp_stm_of_match[] = {
{ .compatible = "nxp,s32g2-stm" },
{ }
};
MODULE_DEVICE_TABLE(of, nxp_stm_of_match);
static struct platform_driver nxp_stm_probe = {
.probe = nxp_stm_timer_probe,
.driver = {
.name = "nxp-stm",
.of_match_table = nxp_stm_of_match,
},
};
module_platform_driver(nxp_stm_probe);
MODULE_DESCRIPTION("NXP System Timer Module driver");
MODULE_LICENSE("GPL");
|