1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
|
// SPDX-License-Identifier: GPL-2.0
/*
* Analog Devices LTC4282 I2C High Current Hot Swap Controller over I2C
*
* Copyright 2023 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/i2c.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/property.h>
#include <linux/string.h>
#include <linux/units.h>
#include <linux/util_macros.h>
#define LTC4282_CTRL_LSB 0x00
#define LTC4282_CTRL_OV_RETRY_MASK BIT(0)
#define LTC4282_CTRL_UV_RETRY_MASK BIT(1)
#define LTC4282_CTRL_OC_RETRY_MASK BIT(2)
#define LTC4282_CTRL_ON_ACTIVE_LOW_MASK BIT(5)
#define LTC4282_CTRL_ON_DELAY_MASK BIT(6)
#define LTC4282_CTRL_MSB 0x01
#define LTC4282_CTRL_VIN_MODE_MASK GENMASK(1, 0)
#define LTC4282_CTRL_OV_MODE_MASK GENMASK(3, 2)
#define LTC4282_CTRL_UV_MODE_MASK GENMASK(5, 4)
#define LTC4282_FAULT_LOG 0x04
#define LTC4282_OV_FAULT_MASK BIT(0)
#define LTC4282_UV_FAULT_MASK BIT(1)
#define LTC4282_VDD_FAULT_MASK \
(LTC4282_OV_FAULT_MASK | LTC4282_UV_FAULT_MASK)
#define LTC4282_OC_FAULT_MASK BIT(2)
#define LTC4282_POWER_BAD_FAULT_MASK BIT(3)
#define LTC4282_FET_SHORT_FAULT_MASK BIT(5)
#define LTC4282_FET_BAD_FAULT_MASK BIT(6)
#define LTC4282_FET_FAILURE_FAULT_MASK \
(LTC4282_FET_SHORT_FAULT_MASK | LTC4282_FET_BAD_FAULT_MASK)
#define LTC4282_ADC_ALERT_LOG 0x05
#define LTC4282_GPIO_ALARM_L_MASK BIT(0)
#define LTC4282_GPIO_ALARM_H_MASK BIT(1)
#define LTC4282_VSOURCE_ALARM_L_MASK BIT(2)
#define LTC4282_VSOURCE_ALARM_H_MASK BIT(3)
#define LTC4282_VSENSE_ALARM_L_MASK BIT(4)
#define LTC4282_VSENSE_ALARM_H_MASK BIT(5)
#define LTC4282_POWER_ALARM_L_MASK BIT(6)
#define LTC4282_POWER_ALARM_H_MASK BIT(7)
#define LTC4282_FET_BAD_FAULT_TIMEOUT 0x06
#define LTC4282_FET_BAD_MAX_TIMEOUT 255
#define LTC4282_GPIO_CONFIG 0x07
#define LTC4282_GPIO_2_FET_STRESS_MASK BIT(1)
#define LTC4282_GPIO_1_CONFIG_MASK GENMASK(5, 4)
#define LTC4282_VGPIO_MIN 0x08
#define LTC4282_VGPIO_MAX 0x09
#define LTC4282_VSOURCE_MIN 0x0a
#define LTC4282_VSOURCE_MAX 0x0b
#define LTC4282_VSENSE_MIN 0x0c
#define LTC4282_VSENSE_MAX 0x0d
#define LTC4282_POWER_MIN 0x0e
#define LTC4282_POWER_MAX 0x0f
#define LTC4282_CLK_DIV 0x10
#define LTC4282_CLK_DIV_MASK GENMASK(4, 0)
#define LTC4282_CLKOUT_MASK GENMASK(6, 5)
#define LTC4282_ILIM_ADJUST 0x11
#define LTC4282_GPIO_MODE_MASK BIT(1)
#define LTC4282_VDD_MONITOR_MASK BIT(2)
#define LTC4282_FOLDBACK_MODE_MASK GENMASK(4, 3)
#define LTC4282_ILIM_ADJUST_MASK GENMASK(7, 5)
#define LTC4282_ENERGY 0x12
#define LTC4282_TIME_COUNTER 0x18
#define LTC4282_ALERT_CTRL 0x1c
#define LTC4282_ALERT_OUT_MASK BIT(6)
#define LTC4282_ADC_CTRL 0x1d
#define LTC4282_FAULT_LOG_EN_MASK BIT(2)
#define LTC4282_METER_HALT_MASK BIT(5)
#define LTC4282_METER_RESET_MASK BIT(6)
#define LTC4282_RESET_MASK BIT(7)
#define LTC4282_STATUS_LSB 0x1e
#define LTC4282_OV_STATUS_MASK BIT(0)
#define LTC4282_UV_STATUS_MASK BIT(1)
#define LTC4282_VDD_STATUS_MASK \
(LTC4282_OV_STATUS_MASK | LTC4282_UV_STATUS_MASK)
#define LTC4282_OC_STATUS_MASK BIT(2)
#define LTC4282_POWER_GOOD_MASK BIT(3)
#define LTC4282_FET_FAILURE_MASK GENMASK(6, 5)
#define LTC4282_STATUS_MSB 0x1f
#define LTC4282_RESERVED_1 0x32
#define LTC4282_RESERVED_2 0x33
#define LTC4282_VGPIO 0x34
#define LTC4282_VGPIO_LOWEST 0x36
#define LTC4282_VGPIO_HIGHEST 0x38
#define LTC4282_VSOURCE 0x3a
#define LTC4282_VSOURCE_LOWEST 0x3c
#define LTC4282_VSOURCE_HIGHEST 0x3e
#define LTC4282_VSENSE 0x40
#define LTC4282_VSENSE_LOWEST 0x42
#define LTC4282_VSENSE_HIGHEST 0x44
#define LTC4282_POWER 0x46
#define LTC4282_POWER_LOWEST 0x48
#define LTC4282_POWER_HIGHEST 0x4a
#define LTC4282_RESERVED_3 0x50
#define LTC4282_CLKIN_MIN (250 * KILO)
#define LTC4282_CLKIN_MAX (15500 * KILO)
#define LTC4282_CLKIN_RANGE (LTC4282_CLKIN_MAX - LTC4282_CLKIN_MIN + 1)
#define LTC4282_CLKOUT_SYSTEM (250 * KILO)
#define LTC4282_CLKOUT_CNV 15
enum {
LTC4282_CHAN_VSOURCE,
LTC4282_CHAN_VDD,
LTC4282_CHAN_VGPIO,
};
struct ltc4282_cache {
u32 in_max_raw;
u32 in_min_raw;
long in_highest;
long in_lowest;
bool en;
};
struct ltc4282_state {
struct regmap *map;
/* Protect against multiple accesses to the device registers */
struct mutex lock;
struct clk_hw clk_hw;
/*
* Used to cache values for VDD/VSOURCE depending which will be used
* when hwmon is not enabled for that channel. Needed because they share
* the same registers.
*/
struct ltc4282_cache in0_1_cache[LTC4282_CHAN_VGPIO];
u32 vsense_max;
long power_max;
u32 rsense;
u16 vdd;
u16 vfs_out;
bool energy_en;
};
enum {
LTC4282_CLKOUT_NONE,
LTC4282_CLKOUT_INT,
LTC4282_CLKOUT_TICK,
};
static int ltc4282_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct ltc4282_state *st = container_of(hw, struct ltc4282_state,
clk_hw);
u32 val = LTC4282_CLKOUT_INT;
if (rate == LTC4282_CLKOUT_CNV)
val = LTC4282_CLKOUT_TICK;
return regmap_update_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK,
FIELD_PREP(LTC4282_CLKOUT_MASK, val));
}
/*
* Note the 15HZ conversion rate assumes 12bit ADC which is what we are
* supporting for now.
*/
static const unsigned int ltc4282_out_rates[] = {
LTC4282_CLKOUT_CNV, LTC4282_CLKOUT_SYSTEM
};
static long ltc4282_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
int idx = find_closest(rate, ltc4282_out_rates,
ARRAY_SIZE(ltc4282_out_rates));
return ltc4282_out_rates[idx];
}
static unsigned long ltc4282_recalc_rate(struct clk_hw *hw,
unsigned long parent)
{
struct ltc4282_state *st = container_of(hw, struct ltc4282_state,
clk_hw);
u32 clkdiv;
int ret;
ret = regmap_read(st->map, LTC4282_CLK_DIV, &clkdiv);
if (ret)
return 0;
clkdiv = FIELD_GET(LTC4282_CLKOUT_MASK, clkdiv);
if (!clkdiv)
return 0;
if (clkdiv == LTC4282_CLKOUT_INT)
return LTC4282_CLKOUT_SYSTEM;
return LTC4282_CLKOUT_CNV;
}
static void ltc4282_disable(struct clk_hw *clk_hw)
{
struct ltc4282_state *st = container_of(clk_hw, struct ltc4282_state,
clk_hw);
regmap_clear_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK);
}
static int ltc4282_read_voltage_word(const struct ltc4282_state *st, u32 reg,
u32 fs, long *val)
{
__be16 in;
int ret;
ret = regmap_bulk_read(st->map, reg, &in, sizeof(in));
if (ret)
return ret;
/*
* This is also used to calculate current in which case fs comes in
* 10 * uV. Hence the ULL usage.
*/
*val = DIV_ROUND_CLOSEST_ULL(be16_to_cpu(in) * (u64)fs, U16_MAX);
return 0;
}
static int ltc4282_read_voltage_byte_cached(const struct ltc4282_state *st,
u32 reg, u32 fs, long *val,
u32 *cached_raw)
{
int ret;
u32 in;
if (cached_raw) {
in = *cached_raw;
} else {
ret = regmap_read(st->map, reg, &in);
if (ret)
return ret;
}
*val = DIV_ROUND_CLOSEST(in * fs, U8_MAX);
return 0;
}
static int ltc4282_read_voltage_byte(const struct ltc4282_state *st, u32 reg,
u32 fs, long *val)
{
return ltc4282_read_voltage_byte_cached(st, reg, fs, val, NULL);
}
static int __ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask,
long *val)
{
u32 alarm;
int ret;
ret = regmap_read(st->map, reg, &alarm);
if (ret)
return ret;
*val = !!(alarm & mask);
/* if not status/fault logs, clear the alarm after reading it */
if (reg != LTC4282_STATUS_LSB && reg != LTC4282_FAULT_LOG)
return regmap_clear_bits(st->map, reg, mask);
return 0;
}
static int ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask,
long *val)
{
guard(mutex)(&st->lock);
return __ltc4282_read_alarm(st, reg, mask, val);
}
static int ltc4282_vdd_source_read_in(struct ltc4282_state *st, u32 channel,
long *val)
{
guard(mutex)(&st->lock);
if (!st->in0_1_cache[channel].en)
return -ENODATA;
return ltc4282_read_voltage_word(st, LTC4282_VSOURCE, st->vfs_out, val);
}
static int ltc4282_vdd_source_read_hist(struct ltc4282_state *st, u32 reg,
u32 channel, long *cached, long *val)
{
int ret;
guard(mutex)(&st->lock);
if (!st->in0_1_cache[channel].en) {
*val = *cached;
return 0;
}
ret = ltc4282_read_voltage_word(st, reg, st->vfs_out, val);
if (ret)
return ret;
*cached = *val;
return 0;
}
static int ltc4282_vdd_source_read_lim(struct ltc4282_state *st, u32 reg,
u32 channel, u32 *cached, long *val)
{
guard(mutex)(&st->lock);
if (!st->in0_1_cache[channel].en)
return ltc4282_read_voltage_byte_cached(st, reg, st->vfs_out,
val, cached);
return ltc4282_read_voltage_byte(st, reg, st->vfs_out, val);
}
static int ltc4282_vdd_source_read_alm(struct ltc4282_state *st, u32 mask,
u32 channel, long *val)
{
guard(mutex)(&st->lock);
if (!st->in0_1_cache[channel].en) {
/*
* Do this otherwise alarms can get confused because we clear
* them after reading them. So, if someone mistakenly reads
* VSOURCE right before VDD (or the other way around), we might
* get no alarm just because it was cleared when reading VSOURCE
* and had no time for a new conversion and thus having the
* alarm again.
*/
*val = 0;
return 0;
}
return __ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, mask, val);
}
static int ltc4282_read_in(struct ltc4282_state *st, u32 attr, long *val,
u32 channel)
{
switch (attr) {
case hwmon_in_input:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_read_voltage_word(st, LTC4282_VGPIO,
1280, val);
return ltc4282_vdd_source_read_in(st, channel, val);
case hwmon_in_highest:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_read_voltage_word(st,
LTC4282_VGPIO_HIGHEST,
1280, val);
return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_HIGHEST,
channel,
&st->in0_1_cache[channel].in_highest, val);
case hwmon_in_lowest:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_read_voltage_word(st, LTC4282_VGPIO_LOWEST,
1280, val);
return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_LOWEST,
channel,
&st->in0_1_cache[channel].in_lowest, val);
case hwmon_in_max_alarm:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
LTC4282_GPIO_ALARM_H_MASK,
val);
return ltc4282_vdd_source_read_alm(st,
LTC4282_VSOURCE_ALARM_H_MASK,
channel, val);
case hwmon_in_min_alarm:
if (channel == LTC4282_CHAN_VGPIO)
ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
LTC4282_GPIO_ALARM_L_MASK, val);
return ltc4282_vdd_source_read_alm(st,
LTC4282_VSOURCE_ALARM_L_MASK,
channel, val);
case hwmon_in_crit_alarm:
return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
LTC4282_OV_STATUS_MASK, val);
case hwmon_in_lcrit_alarm:
return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
LTC4282_UV_STATUS_MASK, val);
case hwmon_in_max:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MAX,
1280, val);
return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MAX,
channel,
&st->in0_1_cache[channel].in_max_raw, val);
case hwmon_in_min:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MIN,
1280, val);
return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MIN,
channel,
&st->in0_1_cache[channel].in_min_raw, val);
case hwmon_in_enable:
scoped_guard(mutex, &st->lock) {
*val = st->in0_1_cache[channel].en;
}
return 0;
case hwmon_in_fault:
/*
* We report failure if we detect either a fer_bad or a
* fet_short in the status register.
*/
return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
LTC4282_FET_FAILURE_MASK, val);
default:
return -EOPNOTSUPP;
}
}
static int ltc4282_read_current_word(const struct ltc4282_state *st, u32 reg,
long *val)
{
long in;
int ret;
/*
* We pass in full scale in 10 * micro (note that 40 is already
* millivolt) so we have better approximations to calculate current.
*/
ret = ltc4282_read_voltage_word(st, reg, DECA * 40 * MILLI, &in);
if (ret)
return ret;
*val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense);
return 0;
}
static int ltc4282_read_current_byte(const struct ltc4282_state *st, u32 reg,
long *val)
{
long in;
int ret;
ret = ltc4282_read_voltage_byte(st, reg, DECA * 40 * MILLI, &in);
if (ret)
return ret;
*val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense);
return 0;
}
static int ltc4282_read_curr(struct ltc4282_state *st, const u32 attr,
long *val)
{
switch (attr) {
case hwmon_curr_input:
return ltc4282_read_current_word(st, LTC4282_VSENSE, val);
case hwmon_curr_highest:
return ltc4282_read_current_word(st, LTC4282_VSENSE_HIGHEST,
val);
case hwmon_curr_lowest:
return ltc4282_read_current_word(st, LTC4282_VSENSE_LOWEST,
val);
case hwmon_curr_max:
return ltc4282_read_current_byte(st, LTC4282_VSENSE_MAX, val);
case hwmon_curr_min:
return ltc4282_read_current_byte(st, LTC4282_VSENSE_MIN, val);
case hwmon_curr_max_alarm:
return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
LTC4282_VSENSE_ALARM_H_MASK, val);
case hwmon_curr_min_alarm:
return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
LTC4282_VSENSE_ALARM_L_MASK, val);
case hwmon_curr_crit_alarm:
return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
LTC4282_OC_STATUS_MASK, val);
default:
return -EOPNOTSUPP;
}
}
static int ltc4282_read_power_word(const struct ltc4282_state *st, u32 reg,
long *val)
{
u64 temp = DECA * 40ULL * st->vfs_out * BIT(16), temp_2;
__be16 raw;
u16 power;
int ret;
ret = regmap_bulk_read(st->map, reg, &raw, sizeof(raw));
if (ret)
return ret;
power = be16_to_cpu(raw);
/*
* Power is given by:
* P = CODE(16b) * 0.040 * Vfs(out) * 2^16 / ((2^16 - 1)^2 * Rsense)
*/
if (check_mul_overflow(power * temp, MICRO, &temp_2)) {
temp = DIV_ROUND_CLOSEST_ULL(power * temp, U16_MAX);
*val = DIV64_U64_ROUND_CLOSEST(temp * MICRO,
U16_MAX * (u64)st->rsense);
return 0;
}
*val = DIV64_U64_ROUND_CLOSEST(temp_2,
st->rsense * int_pow(U16_MAX, 2));
return 0;
}
static int ltc4282_read_power_byte(const struct ltc4282_state *st, u32 reg,
long *val)
{
u32 power;
u64 temp;
int ret;
ret = regmap_read(st->map, reg, &power);
if (ret)
return ret;
temp = power * 40 * DECA * st->vfs_out * BIT_ULL(8);
*val = DIV64_U64_ROUND_CLOSEST(temp * MICRO,
int_pow(U8_MAX, 2) * st->rsense);
return 0;
}
static int ltc4282_read_energy(const struct ltc4282_state *st, u64 *val)
{
u64 temp, energy;
__be64 raw;
int ret;
ret = regmap_bulk_read(st->map, LTC4282_ENERGY, &raw, 6);
if (ret)
return ret;
energy = be64_to_cpu(raw) >> 16;
/*
* The formula for energy is given by:
* E = CODE(48b) * 0.040 * Vfs(out) * Tconv * 256 /
* ((2^16 - 1)^2 * Rsense)
*
* Since we only support 12bit ADC, Tconv = 0.065535s. Passing Vfs(out)
* and 0.040 to mV and Tconv to us, we can simplify the formula to:
* E = CODE(48b) * 40 * Vfs(out) * 256 / (U16_MAX * Rsense)
*
* As Rsense can have tenths of micro-ohm resolution, we need to
* multiply by DECA to get microujoule.
*/
if (check_mul_overflow(DECA * st->vfs_out * 40 * BIT(8), energy, &temp)) {
temp = DIV_ROUND_CLOSEST(DECA * st->vfs_out * 40 * BIT(8), U16_MAX);
*val = DIV_ROUND_CLOSEST_ULL(temp * energy, st->rsense);
return 0;
}
*val = DIV64_U64_ROUND_CLOSEST(temp, U16_MAX * (u64)st->rsense);
return 0;
}
static int ltc4282_read_power(struct ltc4282_state *st, const u32 attr,
long *val)
{
switch (attr) {
case hwmon_power_input:
return ltc4282_read_power_word(st, LTC4282_POWER, val);
case hwmon_power_input_highest:
return ltc4282_read_power_word(st, LTC4282_POWER_HIGHEST, val);
case hwmon_power_input_lowest:
return ltc4282_read_power_word(st, LTC4282_POWER_LOWEST, val);
case hwmon_power_max_alarm:
return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
LTC4282_POWER_ALARM_H_MASK, val);
case hwmon_power_min_alarm:
return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
LTC4282_POWER_ALARM_L_MASK, val);
case hwmon_power_max:
return ltc4282_read_power_byte(st, LTC4282_POWER_MAX, val);
case hwmon_power_min:
return ltc4282_read_power_byte(st, LTC4282_POWER_MIN, val);
default:
return -EOPNOTSUPP;
}
}
static int ltc4282_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct ltc4282_state *st = dev_get_drvdata(dev);
switch (type) {
case hwmon_in:
return ltc4282_read_in(st, attr, val, channel);
case hwmon_curr:
return ltc4282_read_curr(st, attr, val);
case hwmon_power:
return ltc4282_read_power(st, attr, val);
case hwmon_energy:
scoped_guard(mutex, &st->lock) {
*val = st->energy_en;
}
return 0;
default:
return -EOPNOTSUPP;
}
}
static int ltc4282_write_power_byte(const struct ltc4282_state *st, u32 reg,
long val)
{
u32 power;
u64 temp;
if (val > st->power_max)
val = st->power_max;
temp = val * int_pow(U8_MAX, 2) * st->rsense;
power = DIV64_U64_ROUND_CLOSEST(temp,
MICRO * DECA * 256ULL * st->vfs_out * 40);
return regmap_write(st->map, reg, power);
}
static int ltc4282_write_power_word(const struct ltc4282_state *st, u32 reg,
long val)
{
u64 temp = int_pow(U16_MAX, 2) * st->rsense, temp_2;
__be16 __raw;
u16 code;
if (check_mul_overflow(temp, val, &temp_2)) {
temp = DIV_ROUND_CLOSEST_ULL(temp, DECA * MICRO);
code = DIV64_U64_ROUND_CLOSEST(temp * val,
40ULL * BIT(16) * st->vfs_out);
} else {
temp = DECA * MICRO * 40ULL * BIT(16) * st->vfs_out;
code = DIV64_U64_ROUND_CLOSEST(temp_2, temp);
}
__raw = cpu_to_be16(code);
return regmap_bulk_write(st->map, reg, &__raw, sizeof(__raw));
}
static int __ltc4282_in_write_history(const struct ltc4282_state *st, u32 reg,
long lowest, long highest, u32 fs)
{
__be16 __raw;
u16 tmp;
int ret;
tmp = DIV_ROUND_CLOSEST(U16_MAX * lowest, fs);
__raw = cpu_to_be16(tmp);
ret = regmap_bulk_write(st->map, reg, &__raw, 2);
if (ret)
return ret;
tmp = DIV_ROUND_CLOSEST(U16_MAX * highest, fs);
__raw = cpu_to_be16(tmp);
return regmap_bulk_write(st->map, reg + 2, &__raw, 2);
}
static int ltc4282_in_write_history(struct ltc4282_state *st, u32 reg,
long lowest, long highest, u32 fs)
{
guard(mutex)(&st->lock);
return __ltc4282_in_write_history(st, reg, lowest, highest, fs);
}
static int ltc4282_power_reset_hist(struct ltc4282_state *st)
{
int ret;
guard(mutex)(&st->lock);
ret = ltc4282_write_power_word(st, LTC4282_POWER_LOWEST,
st->power_max);
if (ret)
return ret;
ret = ltc4282_write_power_word(st, LTC4282_POWER_HIGHEST, 0);
if (ret)
return ret;
/* now, let's also clear possible power_bad fault logs */
return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
LTC4282_POWER_BAD_FAULT_MASK);
}
static int ltc4282_write_power(struct ltc4282_state *st, u32 attr,
long val)
{
switch (attr) {
case hwmon_power_max:
return ltc4282_write_power_byte(st, LTC4282_POWER_MAX, val);
case hwmon_power_min:
return ltc4282_write_power_byte(st, LTC4282_POWER_MIN, val);
case hwmon_power_reset_history:
return ltc4282_power_reset_hist(st);
default:
return -EOPNOTSUPP;
}
}
static int ltc4282_write_voltage_byte_cached(const struct ltc4282_state *st,
u32 reg, u32 fs, long val,
u32 *cache_raw)
{
u32 in;
val = clamp_val(val, 0, fs);
in = DIV_ROUND_CLOSEST(val * U8_MAX, fs);
if (cache_raw) {
*cache_raw = in;
return 0;
}
return regmap_write(st->map, reg, in);
}
static int ltc4282_write_voltage_byte(const struct ltc4282_state *st, u32 reg,
u32 fs, long val)
{
return ltc4282_write_voltage_byte_cached(st, reg, fs, val, NULL);
}
static int ltc4282_cache_history(struct ltc4282_state *st, u32 channel)
{
long val;
int ret;
ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_LOWEST, st->vfs_out,
&val);
if (ret)
return ret;
st->in0_1_cache[channel].in_lowest = val;
ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_HIGHEST,
st->vfs_out, &val);
if (ret)
return ret;
st->in0_1_cache[channel].in_highest = val;
ret = regmap_read(st->map, LTC4282_VSOURCE_MIN,
&st->in0_1_cache[channel].in_min_raw);
if (ret)
return ret;
return regmap_read(st->map, LTC4282_VSOURCE_MAX,
&st->in0_1_cache[channel].in_max_raw);
}
static int ltc4282_cache_sync(struct ltc4282_state *st, u32 channel)
{
int ret;
ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
st->in0_1_cache[channel].in_lowest,
st->in0_1_cache[channel].in_highest,
st->vfs_out);
if (ret)
return ret;
ret = regmap_write(st->map, LTC4282_VSOURCE_MIN,
st->in0_1_cache[channel].in_min_raw);
if (ret)
return ret;
return regmap_write(st->map, LTC4282_VSOURCE_MAX,
st->in0_1_cache[channel].in_max_raw);
}
static int ltc4282_vdd_source_write_lim(struct ltc4282_state *st, u32 reg,
int channel, u32 *cache, long val)
{
int ret;
guard(mutex)(&st->lock);
if (st->in0_1_cache[channel].en)
ret = ltc4282_write_voltage_byte(st, reg, st->vfs_out, val);
else
ret = ltc4282_write_voltage_byte_cached(st, reg, st->vfs_out,
val, cache);
return ret;
}
static int ltc4282_vdd_source_reset_hist(struct ltc4282_state *st, int channel)
{
long lowest = st->vfs_out;
int ret;
if (channel == LTC4282_CHAN_VDD)
lowest = st->vdd;
guard(mutex)(&st->lock);
if (st->in0_1_cache[channel].en) {
ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
lowest, 0, st->vfs_out);
if (ret)
return ret;
}
st->in0_1_cache[channel].in_lowest = lowest;
st->in0_1_cache[channel].in_highest = 0;
/*
* We are also clearing possible fault logs in reset_history. Clearing
* the logs might be important when the auto retry bits are not enabled
* as the chip only enables the output again after having these logs
* cleared. As some of these logs are related to limits, it makes sense
* to clear them in here. For VDD, we need to clear under/over voltage
* events. For VSOURCE, fet_short and fet_bad...
*/
if (channel == LTC4282_CHAN_VSOURCE)
return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
LTC4282_FET_FAILURE_FAULT_MASK);
return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
LTC4282_VDD_FAULT_MASK);
}
/*
* We need to mux between VSOURCE and VDD which means they are mutually
* exclusive. Moreover, we can't really disable both VDD and VSOURCE as the ADC
* is continuously running (we cannot independently halt it without also
* stopping VGPIO). Hence, the logic is that disabling or enabling VDD will
* automatically have the reverse effect on VSOURCE and vice-versa.
*/
static int ltc4282_vdd_source_enable(struct ltc4282_state *st, int channel,
long val)
{
int ret, other_chan = ~channel & 0x1;
u8 __val = val;
guard(mutex)(&st->lock);
if (st->in0_1_cache[channel].en == !!val)
return 0;
/* clearing the bit makes the ADC to monitor VDD */
if (channel == LTC4282_CHAN_VDD)
__val = !__val;
ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
LTC4282_VDD_MONITOR_MASK,
FIELD_PREP(LTC4282_VDD_MONITOR_MASK, !!__val));
if (ret)
return ret;
st->in0_1_cache[channel].en = !!val;
st->in0_1_cache[other_chan].en = !val;
if (st->in0_1_cache[channel].en) {
/*
* Then, we are disabling @other_chan. Let's save it's current
* history.
*/
ret = ltc4282_cache_history(st, other_chan);
if (ret)
return ret;
return ltc4282_cache_sync(st, channel);
}
/*
* Then, we are enabling @other_chan. We need to do the opposite from
* above.
*/
ret = ltc4282_cache_history(st, channel);
if (ret)
return ret;
return ltc4282_cache_sync(st, other_chan);
}
static int ltc4282_write_in(struct ltc4282_state *st, u32 attr, long val,
int channel)
{
switch (attr) {
case hwmon_in_max:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MAX,
1280, val);
return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MAX,
channel,
&st->in0_1_cache[channel].in_max_raw, val);
case hwmon_in_min:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MIN,
1280, val);
return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MIN,
channel,
&st->in0_1_cache[channel].in_min_raw, val);
case hwmon_in_reset_history:
if (channel == LTC4282_CHAN_VGPIO)
return ltc4282_in_write_history(st,
LTC4282_VGPIO_LOWEST,
1280, 0, 1280);
return ltc4282_vdd_source_reset_hist(st, channel);
case hwmon_in_enable:
return ltc4282_vdd_source_enable(st, channel, val);
default:
return -EOPNOTSUPP;
}
}
static int ltc4282_curr_reset_hist(struct ltc4282_state *st)
{
int ret;
guard(mutex)(&st->lock);
ret = __ltc4282_in_write_history(st, LTC4282_VSENSE_LOWEST,
st->vsense_max, 0, 40 * MILLI);
if (ret)
return ret;
/* now, let's also clear possible overcurrent fault logs */
return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
LTC4282_OC_FAULT_MASK);
}
static int ltc4282_write_curr(struct ltc4282_state *st, u32 attr,
long val)
{
/* need to pass it in millivolt */
u32 in = DIV_ROUND_CLOSEST_ULL((u64)val * st->rsense, DECA * MICRO);
switch (attr) {
case hwmon_curr_max:
return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40,
in);
case hwmon_curr_min:
return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MIN, 40,
in);
case hwmon_curr_reset_history:
return ltc4282_curr_reset_hist(st);
default:
return -EOPNOTSUPP;
}
}
static int ltc4282_energy_enable_set(struct ltc4282_state *st, long val)
{
int ret;
guard(mutex)(&st->lock);
/* setting the bit halts the meter */
ret = regmap_update_bits(st->map, LTC4282_ADC_CTRL,
LTC4282_METER_HALT_MASK,
FIELD_PREP(LTC4282_METER_HALT_MASK, !val));
if (ret)
return ret;
st->energy_en = !!val;
return 0;
}
static int ltc4282_write(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
struct ltc4282_state *st = dev_get_drvdata(dev);
switch (type) {
case hwmon_power:
return ltc4282_write_power(st, attr, val);
case hwmon_in:
return ltc4282_write_in(st, attr, val, channel);
case hwmon_curr:
return ltc4282_write_curr(st, attr, val);
case hwmon_energy:
return ltc4282_energy_enable_set(st, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t ltc4282_in_is_visible(const struct ltc4282_state *st, u32 attr)
{
switch (attr) {
case hwmon_in_input:
case hwmon_in_highest:
case hwmon_in_lowest:
case hwmon_in_max_alarm:
case hwmon_in_min_alarm:
case hwmon_in_label:
case hwmon_in_lcrit_alarm:
case hwmon_in_crit_alarm:
case hwmon_in_fault:
return 0444;
case hwmon_in_max:
case hwmon_in_min:
case hwmon_in_enable:
case hwmon_in_reset_history:
return 0644;
default:
return 0;
}
}
static umode_t ltc4282_curr_is_visible(u32 attr)
{
switch (attr) {
case hwmon_curr_input:
case hwmon_curr_highest:
case hwmon_curr_lowest:
case hwmon_curr_max_alarm:
case hwmon_curr_min_alarm:
case hwmon_curr_crit_alarm:
case hwmon_curr_label:
return 0444;
case hwmon_curr_max:
case hwmon_curr_min:
case hwmon_curr_reset_history:
return 0644;
default:
return 0;
}
}
static umode_t ltc4282_power_is_visible(u32 attr)
{
switch (attr) {
case hwmon_power_input:
case hwmon_power_input_highest:
case hwmon_power_input_lowest:
case hwmon_power_label:
case hwmon_power_max_alarm:
case hwmon_power_min_alarm:
return 0444;
case hwmon_power_max:
case hwmon_power_min:
case hwmon_power_reset_history:
return 0644;
default:
return 0;
}
}
static umode_t ltc4282_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_in:
return ltc4282_in_is_visible(data, attr);
case hwmon_curr:
return ltc4282_curr_is_visible(attr);
case hwmon_power:
return ltc4282_power_is_visible(attr);
case hwmon_energy:
/* hwmon_energy_enable */
return 0644;
default:
return 0;
}
}
static const char * const ltc4282_in_strs[] = {
"VSOURCE", "VDD", "VGPIO"
};
static int ltc4282_read_labels(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_in:
*str = ltc4282_in_strs[channel];
return 0;
case hwmon_curr:
*str = "ISENSE";
return 0;
case hwmon_power:
*str = "Power";
return 0;
default:
return -EOPNOTSUPP;
}
}
static ssize_t ltc4282_energy_show(struct device *dev,
struct device_attribute *da, char *buf)
{
struct ltc4282_state *st = dev_get_drvdata(dev);
u64 energy;
int ret;
guard(mutex)(&st->lock);
if (!st->energy_en)
return -ENODATA;
ret = ltc4282_read_energy(st, &energy);
if (ret < 0)
return ret;
return sysfs_emit(buf, "%llu\n", energy);
}
static const struct clk_ops ltc4282_ops = {
.recalc_rate = ltc4282_recalc_rate,
.round_rate = ltc4282_round_rate,
.set_rate = ltc4282_set_rate,
.disable = ltc4282_disable,
};
static int ltc428_clk_provider_setup(struct ltc4282_state *st,
struct device *dev)
{
struct clk_init_data init;
int ret;
if (!IS_ENABLED(CONFIG_COMMON_CLK))
return 0;
init.name = devm_kasprintf(dev, GFP_KERNEL, "%s-clk",
fwnode_get_name(dev_fwnode(dev)));
if (!init.name)
return -ENOMEM;
init.ops = <c4282_ops;
init.flags = CLK_GET_RATE_NOCACHE;
st->clk_hw.init = &init;
ret = devm_clk_hw_register(dev, &st->clk_hw);
if (ret)
return ret;
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
&st->clk_hw);
}
static int ltc428_clks_setup(struct ltc4282_state *st, struct device *dev)
{
unsigned long rate;
struct clk *clkin;
u32 val;
int ret;
ret = ltc428_clk_provider_setup(st, dev);
if (ret)
return ret;
clkin = devm_clk_get_optional_enabled(dev, NULL);
if (IS_ERR(clkin))
return dev_err_probe(dev, PTR_ERR(clkin),
"Failed to get clkin");
if (!clkin)
return 0;
rate = clk_get_rate(clkin);
if (!in_range(rate, LTC4282_CLKIN_MIN, LTC4282_CLKIN_RANGE))
return dev_err_probe(dev, -EINVAL,
"Invalid clkin range(%lu) [%lu %lu]\n",
rate, LTC4282_CLKIN_MIN,
LTC4282_CLKIN_MAX);
/*
* Clocks faster than 250KHZ should be reduced to 250KHZ. The clock
* frequency is divided by twice the value in the register.
*/
val = rate / (2 * LTC4282_CLKIN_MIN);
return regmap_update_bits(st->map, LTC4282_CLK_DIV,
LTC4282_CLK_DIV_MASK,
FIELD_PREP(LTC4282_CLK_DIV_MASK, val));
}
static const int ltc4282_curr_lim_uv[] = {
12500, 15625, 18750, 21875, 25000, 28125, 31250, 34375
};
static int ltc4282_get_defaults(struct ltc4282_state *st, u32 *vin_mode)
{
u32 reg_val, ilm_adjust;
int ret;
ret = regmap_read(st->map, LTC4282_ADC_CTRL, ®_val);
if (ret)
return ret;
st->energy_en = !FIELD_GET(LTC4282_METER_HALT_MASK, reg_val);
ret = regmap_read(st->map, LTC4282_CTRL_MSB, ®_val);
if (ret)
return ret;
*vin_mode = FIELD_GET(LTC4282_CTRL_VIN_MODE_MASK, reg_val);
ret = regmap_read(st->map, LTC4282_ILIM_ADJUST, ®_val);
if (ret)
return ret;
ilm_adjust = FIELD_GET(LTC4282_ILIM_ADJUST_MASK, reg_val);
st->vsense_max = ltc4282_curr_lim_uv[ilm_adjust];
st->in0_1_cache[LTC4282_CHAN_VSOURCE].en = FIELD_GET(LTC4282_VDD_MONITOR_MASK,
ilm_adjust);
if (!st->in0_1_cache[LTC4282_CHAN_VSOURCE].en) {
st->in0_1_cache[LTC4282_CHAN_VDD].en = true;
return regmap_read(st->map, LTC4282_VSOURCE_MAX,
&st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_max_raw);
}
return regmap_read(st->map, LTC4282_VSOURCE_MAX,
&st->in0_1_cache[LTC4282_CHAN_VDD].in_max_raw);
}
/*
* Set max limits for ISENSE and Power as that depends on the max voltage on
* rsense that is defined in ILIM_ADJUST. This is specially important for power
* because for some rsense and vfsout values, if we allow the default raw 255
* value, that would overflow long in 32bit archs when reading back the max
* power limit.
*
* Also set meaningful historic values for VDD and VSOURCE
* (0 would not mean much).
*/
static int ltc4282_set_max_limits(struct ltc4282_state *st)
{
int ret;
ret = ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40 * MILLI,
st->vsense_max);
if (ret)
return ret;
/* Power is given by ISENSE * Vout. */
st->power_max = DIV_ROUND_CLOSEST(st->vsense_max * DECA * MILLI, st->rsense) * st->vfs_out;
ret = ltc4282_write_power_byte(st, LTC4282_POWER_MAX, st->power_max);
if (ret)
return ret;
if (st->in0_1_cache[LTC4282_CHAN_VDD].en) {
st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_lowest = st->vfs_out;
return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
st->vdd, 0, st->vfs_out);
}
st->in0_1_cache[LTC4282_CHAN_VDD].in_lowest = st->vdd;
return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
st->vfs_out, 0, st->vfs_out);
}
static const char * const ltc4282_gpio1_modes[] = {
"power_bad", "power_good"
};
static const char * const ltc4282_gpio2_modes[] = {
"adc_input", "stress_fet"
};
static int ltc4282_gpio_setup(struct ltc4282_state *st, struct device *dev)
{
const char *func = NULL;
int ret;
ret = device_property_read_string(dev, "adi,gpio1-mode", &func);
if (!ret) {
ret = match_string(ltc4282_gpio1_modes,
ARRAY_SIZE(ltc4282_gpio1_modes), func);
if (ret < 0)
return dev_err_probe(dev, ret,
"Invalid func(%s) for gpio1\n",
func);
ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG,
LTC4282_GPIO_1_CONFIG_MASK,
FIELD_PREP(LTC4282_GPIO_1_CONFIG_MASK, ret));
if (ret)
return ret;
}
ret = device_property_read_string(dev, "adi,gpio2-mode", &func);
if (!ret) {
ret = match_string(ltc4282_gpio2_modes,
ARRAY_SIZE(ltc4282_gpio2_modes), func);
if (ret < 0)
return dev_err_probe(dev, ret,
"Invalid func(%s) for gpio2\n",
func);
if (!ret) {
/* setting the bit to 1 so the ADC to monitors GPIO2 */
ret = regmap_set_bits(st->map, LTC4282_ILIM_ADJUST,
LTC4282_GPIO_MODE_MASK);
} else {
ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG,
LTC4282_GPIO_2_FET_STRESS_MASK,
FIELD_PREP(LTC4282_GPIO_2_FET_STRESS_MASK, 1));
}
if (ret)
return ret;
}
if (!device_property_read_bool(dev, "adi,gpio3-monitor-enable"))
return 0;
if (func && !strcmp(func, "adc_input"))
return dev_err_probe(dev, -EINVAL,
"Cannot have both gpio2 and gpio3 muxed into the ADC");
return regmap_clear_bits(st->map, LTC4282_ILIM_ADJUST,
LTC4282_GPIO_MODE_MASK);
}
static const char * const ltc4282_dividers[] = {
"external", "vdd_5_percent", "vdd_10_percent", "vdd_15_percent"
};
/* This maps the Vout full scale for the given Vin mode */
static const u16 ltc4282_vfs_milli[] = { 5540, 8320, 16640, 33280 };
static const u16 ltc4282_vdd_milli[] = { 3300, 5000, 12000, 24000 };
enum {
LTC4282_VIN_3_3V,
LTC4282_VIN_5V,
LTC4282_VIN_12V,
LTC4282_VIN_24V,
};
static int ltc4282_setup(struct ltc4282_state *st, struct device *dev)
{
const char *divider;
u32 val, vin_mode;
int ret;
/* The part has an eeprom so let's get the needed defaults from it */
ret = ltc4282_get_defaults(st, &vin_mode);
if (ret)
return ret;
ret = device_property_read_u32(dev, "adi,rsense-nano-ohms",
&st->rsense);
if (ret)
return dev_err_probe(dev, ret,
"Failed to read adi,rsense-nano-ohms\n");
if (st->rsense < CENTI)
return dev_err_probe(dev, -EINVAL,
"adi,rsense-nano-ohms too small (< %lu)\n",
CENTI);
/*
* The resolution for rsense is tenths of micro (eg: 62.5 uOhm) which
* means we need nano in the bindings. However, to make things easier to
* handle (with respect to overflows) we divide it by 100 as we don't
* really need the last two digits.
*/
st->rsense /= CENTI;
val = vin_mode;
ret = device_property_read_u32(dev, "adi,vin-mode-microvolt", &val);
if (!ret) {
switch (val) {
case 3300000:
val = LTC4282_VIN_3_3V;
break;
case 5000000:
val = LTC4282_VIN_5V;
break;
case 12000000:
val = LTC4282_VIN_12V;
break;
case 24000000:
val = LTC4282_VIN_24V;
break;
default:
return dev_err_probe(dev, -EINVAL,
"Invalid val(%u) for vin-mode-microvolt\n",
val);
}
ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
LTC4282_CTRL_VIN_MODE_MASK,
FIELD_PREP(LTC4282_CTRL_VIN_MODE_MASK, val));
if (ret)
return ret;
/* Foldback mode should also be set to the input voltage */
ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
LTC4282_FOLDBACK_MODE_MASK,
FIELD_PREP(LTC4282_FOLDBACK_MODE_MASK, val));
if (ret)
return ret;
}
st->vfs_out = ltc4282_vfs_milli[val];
st->vdd = ltc4282_vdd_milli[val];
ret = device_property_read_u32(dev, "adi,current-limit-sense-microvolt",
&st->vsense_max);
if (!ret) {
int reg_val;
switch (val) {
case 12500:
reg_val = 0;
break;
case 15625:
reg_val = 1;
break;
case 18750:
reg_val = 2;
break;
case 21875:
reg_val = 3;
break;
case 25000:
reg_val = 4;
break;
case 28125:
reg_val = 5;
break;
case 31250:
reg_val = 6;
break;
case 34375:
reg_val = 7;
break;
default:
return dev_err_probe(dev, -EINVAL,
"Invalid val(%u) for adi,current-limit-microvolt\n",
st->vsense_max);
}
ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
LTC4282_ILIM_ADJUST_MASK,
FIELD_PREP(LTC4282_ILIM_ADJUST_MASK, reg_val));
if (ret)
return ret;
}
ret = ltc4282_set_max_limits(st);
if (ret)
return ret;
ret = device_property_read_string(dev, "adi,overvoltage-dividers",
÷r);
if (!ret) {
int div = match_string(ltc4282_dividers,
ARRAY_SIZE(ltc4282_dividers), divider);
if (div < 0)
return dev_err_probe(dev, -EINVAL,
"Invalid val(%s) for adi,overvoltage-divider\n",
divider);
ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
LTC4282_CTRL_OV_MODE_MASK,
FIELD_PREP(LTC4282_CTRL_OV_MODE_MASK, div));
}
ret = device_property_read_string(dev, "adi,undervoltage-dividers",
÷r);
if (!ret) {
int div = match_string(ltc4282_dividers,
ARRAY_SIZE(ltc4282_dividers), divider);
if (div < 0)
return dev_err_probe(dev, -EINVAL,
"Invalid val(%s) for adi,undervoltage-divider\n",
divider);
ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
LTC4282_CTRL_UV_MODE_MASK,
FIELD_PREP(LTC4282_CTRL_UV_MODE_MASK, div));
}
if (device_property_read_bool(dev, "adi,overcurrent-retry")) {
ret = regmap_set_bits(st->map, LTC4282_CTRL_LSB,
LTC4282_CTRL_OC_RETRY_MASK);
if (ret)
return ret;
}
if (device_property_read_bool(dev, "adi,overvoltage-retry-disable")) {
ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB,
LTC4282_CTRL_OV_RETRY_MASK);
if (ret)
return ret;
}
if (device_property_read_bool(dev, "adi,undervoltage-retry-disable")) {
ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB,
LTC4282_CTRL_UV_RETRY_MASK);
if (ret)
return ret;
}
if (device_property_read_bool(dev, "adi,fault-log-enable")) {
ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_FAULT_LOG_EN_MASK);
if (ret)
return ret;
}
ret = device_property_read_u32(dev, "adi,fet-bad-timeout-ms", &val);
if (!ret) {
if (val > LTC4282_FET_BAD_MAX_TIMEOUT)
return dev_err_probe(dev, -EINVAL,
"Invalid value(%u) for adi,fet-bad-timeout-ms",
val);
ret = regmap_write(st->map, LTC4282_FET_BAD_FAULT_TIMEOUT, val);
if (ret)
return ret;
}
return ltc4282_gpio_setup(st, dev);
}
static bool ltc4282_readable_reg(struct device *dev, unsigned int reg)
{
if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2)
return false;
return true;
}
static bool ltc4282_writable_reg(struct device *dev, unsigned int reg)
{
if (reg == LTC4282_STATUS_LSB || reg == LTC4282_STATUS_MSB)
return false;
if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2)
return false;
return true;
}
static const struct regmap_config ltc4282_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = LTC4282_RESERVED_3,
.readable_reg = ltc4282_readable_reg,
.writeable_reg = ltc4282_writable_reg,
};
static const struct hwmon_channel_info * const ltc4282_info[] = {
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
HWMON_I_MAX_ALARM | HWMON_I_ENABLE |
HWMON_I_RESET_HISTORY | HWMON_I_FAULT |
HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
HWMON_I_MAX_ALARM | HWMON_I_LCRIT_ALARM |
HWMON_I_CRIT_ALARM | HWMON_I_ENABLE |
HWMON_I_RESET_HISTORY | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
HWMON_I_RESET_HISTORY | HWMON_I_MAX_ALARM |
HWMON_I_LABEL),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LOWEST | HWMON_C_HIGHEST |
HWMON_C_MAX | HWMON_C_MIN | HWMON_C_MIN_ALARM |
HWMON_C_MAX_ALARM | HWMON_C_CRIT_ALARM |
HWMON_C_RESET_HISTORY | HWMON_C_LABEL),
HWMON_CHANNEL_INFO(power,
HWMON_P_INPUT | HWMON_P_INPUT_LOWEST |
HWMON_P_INPUT_HIGHEST | HWMON_P_MAX | HWMON_P_MIN |
HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
HWMON_P_RESET_HISTORY | HWMON_P_LABEL),
HWMON_CHANNEL_INFO(energy,
HWMON_E_ENABLE),
NULL
};
static const struct hwmon_ops ltc4282_hwmon_ops = {
.read = ltc4282_read,
.write = ltc4282_write,
.is_visible = ltc4282_is_visible,
.read_string = ltc4282_read_labels,
};
static const struct hwmon_chip_info ltc2947_chip_info = {
.ops = <c4282_hwmon_ops,
.info = ltc4282_info,
};
/* energy attributes are 6bytes wide so we need u64 */
static SENSOR_DEVICE_ATTR_RO(energy1_input, ltc4282_energy, 0);
static struct attribute *ltc4282_attrs[] = {
&sensor_dev_attr_energy1_input.dev_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(ltc4282);
static int ltc4282_show_fault_log(void *arg, u64 *val, u32 mask)
{
struct ltc4282_state *st = arg;
long alarm;
int ret;
ret = ltc4282_read_alarm(st, LTC4282_FAULT_LOG, mask, &alarm);
if (ret)
return ret;
*val = alarm;
return 0;
}
static int ltc4282_show_curr1_crit_fault_log(void *arg, u64 *val)
{
return ltc4282_show_fault_log(arg, val, LTC4282_OC_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_curr1_crit_fault_log,
ltc4282_show_curr1_crit_fault_log, NULL, "%llu\n");
static int ltc4282_show_in1_lcrit_fault_log(void *arg, u64 *val)
{
return ltc4282_show_fault_log(arg, val, LTC4282_UV_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_lcrit_fault_log,
ltc4282_show_in1_lcrit_fault_log, NULL, "%llu\n");
static int ltc4282_show_in1_crit_fault_log(void *arg, u64 *val)
{
return ltc4282_show_fault_log(arg, val, LTC4282_OV_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_crit_fault_log,
ltc4282_show_in1_crit_fault_log, NULL, "%llu\n");
static int ltc4282_show_fet_bad_fault_log(void *arg, u64 *val)
{
return ltc4282_show_fault_log(arg, val, LTC4282_FET_BAD_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_bad_fault_log,
ltc4282_show_fet_bad_fault_log, NULL, "%llu\n");
static int ltc4282_show_fet_short_fault_log(void *arg, u64 *val)
{
return ltc4282_show_fault_log(arg, val, LTC4282_FET_SHORT_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_short_fault_log,
ltc4282_show_fet_short_fault_log, NULL, "%llu\n");
static int ltc4282_show_power1_bad_fault_log(void *arg, u64 *val)
{
return ltc4282_show_fault_log(arg, val, LTC4282_POWER_BAD_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_power1_bad_fault_log,
ltc4282_show_power1_bad_fault_log, NULL, "%llu\n");
static void ltc4282_debugfs_init(struct ltc4282_state *st, struct i2c_client *i2c)
{
debugfs_create_file_unsafe("power1_bad_fault_log", 0400, i2c->debugfs, st,
<c4282_power1_bad_fault_log);
debugfs_create_file_unsafe("in0_fet_short_fault_log", 0400, i2c->debugfs, st,
<c4282_fet_short_fault_log);
debugfs_create_file_unsafe("in0_fet_bad_fault_log", 0400, i2c->debugfs, st,
<c4282_fet_bad_fault_log);
debugfs_create_file_unsafe("in1_crit_fault_log", 0400, i2c->debugfs, st,
<c4282_in1_crit_fault_log);
debugfs_create_file_unsafe("in1_lcrit_fault_log", 0400, i2c->debugfs, st,
<c4282_in1_lcrit_fault_log);
debugfs_create_file_unsafe("curr1_crit_fault_log", 0400, i2c->debugfs, st,
<c4282_curr1_crit_fault_log);
}
static int ltc4282_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev, *hwmon;
struct ltc4282_state *st;
int ret;
st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
if (!st)
return dev_err_probe(dev, -ENOMEM,
"Failed to allocate memory\n");
st->map = devm_regmap_init_i2c(i2c, <c4282_regmap_config);
if (IS_ERR(st->map))
return dev_err_probe(dev, PTR_ERR(st->map),
"failed regmap init\n");
/* Soft reset */
ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_RESET_MASK);
if (ret)
return ret;
/* Yes, it's big but it is as specified in the datasheet */
msleep(3200);
ret = ltc428_clks_setup(st, dev);
if (ret)
return ret;
ret = ltc4282_setup(st, dev);
if (ret)
return ret;
mutex_init(&st->lock);
hwmon = devm_hwmon_device_register_with_info(dev, "ltc4282", st,
<c2947_chip_info,
ltc4282_groups);
if (IS_ERR(hwmon))
return PTR_ERR(hwmon);
ltc4282_debugfs_init(st, i2c);
return 0;
}
static const struct of_device_id ltc4282_of_match[] = {
{ .compatible = "adi,ltc4282" },
{}
};
MODULE_DEVICE_TABLE(of, ltc4282_of_match);
static struct i2c_driver ltc4282_driver = {
.driver = {
.name = "ltc4282",
.of_match_table = ltc4282_of_match,
},
.probe = ltc4282_probe,
};
module_i2c_driver(ltc4282_driver);
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("LTC4282 I2C High Current Hot Swap Controller");
MODULE_LICENSE("GPL");
|