1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Renesas RZ/N1 Real Time Clock interface for Linux
*
* Copyright:
* - 2014 Renesas Electronics Europe Limited
* - 2022 Schneider Electric
*
* Authors:
* - Michel Pollet <buserror@gmail.com>
* - Miquel Raynal <miquel.raynal@bootlin.com>
*/
#include <linux/bcd.h>
#include <linux/clk.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/rtc.h>
#include <linux/spinlock.h>
#define RZN1_RTC_CTL0 0x00
#define RZN1_RTC_CTL0_SLSB_SCMP BIT(4)
#define RZN1_RTC_CTL0_AMPM BIT(5)
#define RZN1_RTC_CTL0_CEST BIT(6)
#define RZN1_RTC_CTL0_CE BIT(7)
#define RZN1_RTC_CTL1 0x04
#define RZN1_RTC_CTL1_1SE BIT(3)
#define RZN1_RTC_CTL1_ALME BIT(4)
#define RZN1_RTC_CTL2 0x08
#define RZN1_RTC_CTL2_WAIT BIT(0)
#define RZN1_RTC_CTL2_WST BIT(1)
#define RZN1_RTC_CTL2_WUST BIT(5)
#define RZN1_RTC_CTL2_STOPPED (RZN1_RTC_CTL2_WAIT | RZN1_RTC_CTL2_WST)
#define RZN1_RTC_TIME 0x30
#define RZN1_RTC_TIME_MIN_SHIFT 8
#define RZN1_RTC_TIME_HOUR_SHIFT 16
#define RZN1_RTC_CAL 0x34
#define RZN1_RTC_CAL_DAY_SHIFT 8
#define RZN1_RTC_CAL_MON_SHIFT 16
#define RZN1_RTC_CAL_YEAR_SHIFT 24
#define RZN1_RTC_SUBU 0x38
#define RZN1_RTC_SUBU_DEV BIT(7)
#define RZN1_RTC_SUBU_DECR BIT(6)
#define RZN1_RTC_SCMP 0x3c
#define RZN1_RTC_ALM 0x40
#define RZN1_RTC_ALH 0x44
#define RZN1_RTC_ALW 0x48
#define RZN1_RTC_SECC 0x4c
#define RZN1_RTC_TIMEC 0x68
#define RZN1_RTC_CALC 0x6c
struct rzn1_rtc {
struct rtc_device *rtcdev;
void __iomem *base;
/*
* Protects access to RZN1_RTC_CTL1 reg. rtc_lock with threaded_irqs
* would introduce race conditions when switching interrupts because
* of potential sleeps
*/
spinlock_t ctl1_access_lock;
struct rtc_time tm_alarm;
};
static void rzn1_rtc_get_time_snapshot(struct rzn1_rtc *rtc, struct rtc_time *tm)
{
u32 val;
val = readl(rtc->base + RZN1_RTC_TIMEC);
tm->tm_sec = bcd2bin(val);
tm->tm_min = bcd2bin(val >> RZN1_RTC_TIME_MIN_SHIFT);
tm->tm_hour = bcd2bin(val >> RZN1_RTC_TIME_HOUR_SHIFT);
val = readl(rtc->base + RZN1_RTC_CALC);
tm->tm_wday = val & 0x0f;
tm->tm_mday = bcd2bin(val >> RZN1_RTC_CAL_DAY_SHIFT);
tm->tm_mon = bcd2bin(val >> RZN1_RTC_CAL_MON_SHIFT) - 1;
tm->tm_year = bcd2bin(val >> RZN1_RTC_CAL_YEAR_SHIFT) + 100;
}
static int rzn1_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct rzn1_rtc *rtc = dev_get_drvdata(dev);
u32 val, secs;
/*
* The RTC was not started or is stopped and thus does not carry the
* proper time/date.
*/
val = readl(rtc->base + RZN1_RTC_CTL2);
if (val & RZN1_RTC_CTL2_STOPPED)
return -EINVAL;
rzn1_rtc_get_time_snapshot(rtc, tm);
secs = readl(rtc->base + RZN1_RTC_SECC);
if (tm->tm_sec != bcd2bin(secs))
rzn1_rtc_get_time_snapshot(rtc, tm);
return 0;
}
static int rzn1_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct rzn1_rtc *rtc = dev_get_drvdata(dev);
u32 val;
int ret;
val = readl(rtc->base + RZN1_RTC_CTL2);
if (!(val & RZN1_RTC_CTL2_STOPPED)) {
/* Hold the counter if it was counting up */
writel(RZN1_RTC_CTL2_WAIT, rtc->base + RZN1_RTC_CTL2);
/* Wait for the counter to stop: two 32k clock cycles */
usleep_range(61, 100);
ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, val,
val & RZN1_RTC_CTL2_WST, 0, 100);
if (ret)
return ret;
}
val = bin2bcd(tm->tm_sec);
val |= bin2bcd(tm->tm_min) << RZN1_RTC_TIME_MIN_SHIFT;
val |= bin2bcd(tm->tm_hour) << RZN1_RTC_TIME_HOUR_SHIFT;
writel(val, rtc->base + RZN1_RTC_TIME);
val = tm->tm_wday;
val |= bin2bcd(tm->tm_mday) << RZN1_RTC_CAL_DAY_SHIFT;
val |= bin2bcd(tm->tm_mon + 1) << RZN1_RTC_CAL_MON_SHIFT;
val |= bin2bcd(tm->tm_year - 100) << RZN1_RTC_CAL_YEAR_SHIFT;
writel(val, rtc->base + RZN1_RTC_CAL);
writel(0, rtc->base + RZN1_RTC_CTL2);
return 0;
}
static irqreturn_t rzn1_rtc_alarm_irq(int irq, void *dev_id)
{
struct rzn1_rtc *rtc = dev_id;
u32 ctl1, set_irq_bits = 0;
if (rtc->tm_alarm.tm_sec == 0)
rtc_update_irq(rtc->rtcdev, 1, RTC_AF | RTC_IRQF);
else
/* Switch to 1s interrupts */
set_irq_bits = RZN1_RTC_CTL1_1SE;
guard(spinlock)(&rtc->ctl1_access_lock);
ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
ctl1 &= ~RZN1_RTC_CTL1_ALME;
ctl1 |= set_irq_bits;
writel(ctl1, rtc->base + RZN1_RTC_CTL1);
return IRQ_HANDLED;
}
static irqreturn_t rzn1_rtc_1s_irq(int irq, void *dev_id)
{
struct rzn1_rtc *rtc = dev_id;
u32 ctl1;
if (readl(rtc->base + RZN1_RTC_SECC) == bin2bcd(rtc->tm_alarm.tm_sec)) {
guard(spinlock)(&rtc->ctl1_access_lock);
ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
ctl1 &= ~RZN1_RTC_CTL1_1SE;
writel(ctl1, rtc->base + RZN1_RTC_CTL1);
rtc_update_irq(rtc->rtcdev, 1, RTC_AF | RTC_IRQF);
}
return IRQ_HANDLED;
}
static int rzn1_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
{
struct rzn1_rtc *rtc = dev_get_drvdata(dev);
struct rtc_time *tm = &rtc->tm_alarm, tm_now;
u32 ctl1;
int ret;
guard(spinlock_irqsave)(&rtc->ctl1_access_lock);
ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
if (enable) {
/*
* Use alarm interrupt if alarm time is at least a minute away
* or less than a minute but in the next minute. Otherwise use
* 1 second interrupt to wait for the proper second
*/
do {
ctl1 &= ~(RZN1_RTC_CTL1_ALME | RZN1_RTC_CTL1_1SE);
ret = rzn1_rtc_read_time(dev, &tm_now);
if (ret)
return ret;
if (rtc_tm_sub(tm, &tm_now) > 59 || tm->tm_min != tm_now.tm_min)
ctl1 |= RZN1_RTC_CTL1_ALME;
else
ctl1 |= RZN1_RTC_CTL1_1SE;
writel(ctl1, rtc->base + RZN1_RTC_CTL1);
} while (readl(rtc->base + RZN1_RTC_SECC) != bin2bcd(tm_now.tm_sec));
} else {
ctl1 &= ~(RZN1_RTC_CTL1_ALME | RZN1_RTC_CTL1_1SE);
writel(ctl1, rtc->base + RZN1_RTC_CTL1);
}
return 0;
}
static int rzn1_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rzn1_rtc *rtc = dev_get_drvdata(dev);
struct rtc_time *tm = &alrm->time;
unsigned int min, hour, wday, delta_days;
time64_t alarm;
u32 ctl1;
int ret;
ret = rzn1_rtc_read_time(dev, tm);
if (ret)
return ret;
min = readl(rtc->base + RZN1_RTC_ALM);
hour = readl(rtc->base + RZN1_RTC_ALH);
wday = readl(rtc->base + RZN1_RTC_ALW);
tm->tm_sec = 0;
tm->tm_min = bcd2bin(min);
tm->tm_hour = bcd2bin(hour);
delta_days = ((fls(wday) - 1) - tm->tm_wday + 7) % 7;
tm->tm_wday = fls(wday) - 1;
if (delta_days) {
alarm = rtc_tm_to_time64(tm) + (delta_days * 86400);
rtc_time64_to_tm(alarm, tm);
}
ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
alrm->enabled = !!(ctl1 & (RZN1_RTC_CTL1_ALME | RZN1_RTC_CTL1_1SE));
return 0;
}
static int rzn1_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rzn1_rtc *rtc = dev_get_drvdata(dev);
struct rtc_time *tm = &alrm->time, tm_now;
unsigned long alarm, farest;
unsigned int days_ahead, wday;
int ret;
ret = rzn1_rtc_read_time(dev, &tm_now);
if (ret)
return ret;
/* We cannot set alarms more than one week ahead */
farest = rtc_tm_to_time64(&tm_now) + rtc->rtcdev->alarm_offset_max;
alarm = rtc_tm_to_time64(tm);
if (time_after(alarm, farest))
return -ERANGE;
/* Convert alarm day into week day */
days_ahead = tm->tm_mday - tm_now.tm_mday;
wday = (tm_now.tm_wday + days_ahead) % 7;
writel(bin2bcd(tm->tm_min), rtc->base + RZN1_RTC_ALM);
writel(bin2bcd(tm->tm_hour), rtc->base + RZN1_RTC_ALH);
writel(BIT(wday), rtc->base + RZN1_RTC_ALW);
rtc->tm_alarm = alrm->time;
rzn1_rtc_alarm_irq_enable(dev, alrm->enabled);
return 0;
}
static int rzn1_rtc_read_offset(struct device *dev, long *offset)
{
struct rzn1_rtc *rtc = dev_get_drvdata(dev);
unsigned int ppb_per_step;
bool subtract;
u32 val;
val = readl(rtc->base + RZN1_RTC_SUBU);
ppb_per_step = val & RZN1_RTC_SUBU_DEV ? 1017 : 3051;
subtract = val & RZN1_RTC_SUBU_DECR;
val &= 0x3F;
if (!val)
*offset = 0;
else if (subtract)
*offset = -(((~val) & 0x3F) + 1) * ppb_per_step;
else
*offset = (val - 1) * ppb_per_step;
return 0;
}
static int rzn1_rtc_set_offset(struct device *dev, long offset)
{
struct rzn1_rtc *rtc = dev_get_drvdata(dev);
int stepsh, stepsl, steps;
u32 subu = 0, ctl2;
int ret;
/*
* Check which resolution mode (every 20 or 60s) can be used.
* Between 2 and 124 clock pulses can be added or substracted.
*
* In 20s mode, the minimum resolution is 2 / (32768 * 20) which is
* close to 3051 ppb. In 60s mode, the resolution is closer to 1017.
*/
stepsh = DIV_ROUND_CLOSEST(offset, 1017);
stepsl = DIV_ROUND_CLOSEST(offset, 3051);
if (stepsh >= -0x3E && stepsh <= 0x3E) {
/* 1017 ppb per step */
steps = stepsh;
subu |= RZN1_RTC_SUBU_DEV;
} else if (stepsl >= -0x3E && stepsl <= 0x3E) {
/* 3051 ppb per step */
steps = stepsl;
} else {
return -ERANGE;
}
if (!steps)
return 0;
if (steps > 0) {
subu |= steps + 1;
} else {
subu |= RZN1_RTC_SUBU_DECR;
subu |= (~(-steps - 1)) & 0x3F;
}
ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, ctl2,
!(ctl2 & RZN1_RTC_CTL2_WUST), 100, 2000000);
if (ret)
return ret;
writel(subu, rtc->base + RZN1_RTC_SUBU);
return 0;
}
static const struct rtc_class_ops rzn1_rtc_ops_subu = {
.read_time = rzn1_rtc_read_time,
.set_time = rzn1_rtc_set_time,
.read_alarm = rzn1_rtc_read_alarm,
.set_alarm = rzn1_rtc_set_alarm,
.alarm_irq_enable = rzn1_rtc_alarm_irq_enable,
.read_offset = rzn1_rtc_read_offset,
.set_offset = rzn1_rtc_set_offset,
};
static const struct rtc_class_ops rzn1_rtc_ops_scmp = {
.read_time = rzn1_rtc_read_time,
.set_time = rzn1_rtc_set_time,
.read_alarm = rzn1_rtc_read_alarm,
.set_alarm = rzn1_rtc_set_alarm,
.alarm_irq_enable = rzn1_rtc_alarm_irq_enable,
};
static int rzn1_rtc_probe(struct platform_device *pdev)
{
struct rzn1_rtc *rtc;
u32 val, scmp_val = 0;
struct clk *xtal;
unsigned long rate;
int irq, ret;
rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
platform_set_drvdata(pdev, rtc);
rtc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rtc->base))
return dev_err_probe(&pdev->dev, PTR_ERR(rtc->base), "Missing reg\n");
irq = platform_get_irq_byname(pdev, "alarm");
if (irq < 0)
return irq;
rtc->rtcdev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(rtc->rtcdev))
return PTR_ERR(rtc->rtcdev);
rtc->rtcdev->range_min = RTC_TIMESTAMP_BEGIN_2000;
rtc->rtcdev->range_max = RTC_TIMESTAMP_END_2099;
rtc->rtcdev->alarm_offset_max = 7 * 86400;
ret = devm_pm_runtime_enable(&pdev->dev);
if (ret < 0)
return ret;
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0)
return ret;
/* Only switch to scmp if we have an xtal clock with a valid rate and != 32768 */
xtal = devm_clk_get_optional(&pdev->dev, "xtal");
if (IS_ERR(xtal)) {
ret = PTR_ERR(xtal);
goto dis_runtime_pm;
} else if (xtal) {
rate = clk_get_rate(xtal);
if (rate < 32000 || rate > BIT(22)) {
ret = -EOPNOTSUPP;
goto dis_runtime_pm;
}
if (rate != 32768)
scmp_val = RZN1_RTC_CTL0_SLSB_SCMP;
}
/* Disable controller during SUBU/SCMP setup */
val = readl(rtc->base + RZN1_RTC_CTL0) & ~RZN1_RTC_CTL0_CE;
writel(val, rtc->base + RZN1_RTC_CTL0);
/* Wait 2-4 32k clock cycles for the disabled controller */
ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL0, val,
!(val & RZN1_RTC_CTL0_CEST), 62, 123);
if (ret)
goto dis_runtime_pm;
/* Set desired modes leaving the controller disabled */
writel(RZN1_RTC_CTL0_AMPM | scmp_val, rtc->base + RZN1_RTC_CTL0);
if (scmp_val) {
writel(rate - 1, rtc->base + RZN1_RTC_SCMP);
rtc->rtcdev->ops = &rzn1_rtc_ops_scmp;
} else {
rtc->rtcdev->ops = &rzn1_rtc_ops_subu;
}
/* Enable controller finally */
writel(RZN1_RTC_CTL0_CE | RZN1_RTC_CTL0_AMPM | scmp_val, rtc->base + RZN1_RTC_CTL0);
/* Disable all interrupts */
writel(0, rtc->base + RZN1_RTC_CTL1);
spin_lock_init(&rtc->ctl1_access_lock);
ret = devm_request_irq(&pdev->dev, irq, rzn1_rtc_alarm_irq, 0, "RZN1 RTC Alarm", rtc);
if (ret) {
dev_err(&pdev->dev, "RTC alarm interrupt not available\n");
goto dis_runtime_pm;
}
irq = platform_get_irq_byname_optional(pdev, "pps");
if (irq >= 0)
ret = devm_request_irq(&pdev->dev, irq, rzn1_rtc_1s_irq, 0, "RZN1 RTC 1s", rtc);
if (irq < 0 || ret) {
set_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->rtcdev->features);
clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->rtcdev->features);
dev_warn(&pdev->dev, "RTC pps interrupt not available. Alarm has only minute accuracy\n");
}
ret = devm_rtc_register_device(rtc->rtcdev);
if (ret)
goto dis_runtime_pm;
return 0;
dis_runtime_pm:
pm_runtime_put(&pdev->dev);
return ret;
}
static void rzn1_rtc_remove(struct platform_device *pdev)
{
struct rzn1_rtc *rtc = platform_get_drvdata(pdev);
/* Disable all interrupts */
writel(0, rtc->base + RZN1_RTC_CTL1);
pm_runtime_put(&pdev->dev);
}
static const struct of_device_id rzn1_rtc_of_match[] = {
{ .compatible = "renesas,rzn1-rtc" },
{},
};
MODULE_DEVICE_TABLE(of, rzn1_rtc_of_match);
static struct platform_driver rzn1_rtc_driver = {
.probe = rzn1_rtc_probe,
.remove = rzn1_rtc_remove,
.driver = {
.name = "rzn1-rtc",
.of_match_table = rzn1_rtc_of_match,
},
};
module_platform_driver(rzn1_rtc_driver);
MODULE_AUTHOR("Michel Pollet <buserror@gmail.com>");
MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com");
MODULE_DESCRIPTION("RZ/N1 RTC driver");
MODULE_LICENSE("GPL");
|